

Computer Science Logo Style
Advanced Techniques

Volume 2

Brian Harvey

SECOND EDITION

Computer Science Logo Style

Advanced Techniques

The MIT Press
Cambridge, Massachusetts
London, England











′

Computer Power and Human Reason

Compulsory Miseducation

1997 by the Massachusetts Institute of Technology

The Logo programs in this book are copyright 1997 by Brian Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (printed in the
first volume of this series) for more details.

For information on program diskettes for PC and Macintosh, please contact the Marketing
Department, The MIT Press, 55 Hayward Street, Cambridge, Massachusetts, 02142.

The quotation on pages 148–149 is reprinted from by
Joseph Weizenbaum, copyright 1976, W. H. Freeman and Company.

The cryptograms on pages 231–232 are reprinted from by Paul
Goodman, copyright 1964, by permission of the publisher, Horizon Press, New York.

This book was typeset in the Baskerville typeface.

The cover art is an untitled mixed media acrylic monotype by San Francisco artist Jon
Rife, copyright 1996 by Jon Rife and reproduced by permission of the artist.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Computer Science Logo Style / Brian Harvey. — 2nd ed.

p. cm.
Includes indexes.
Contents: v. 1. Symbolic computing. — v. 2. Advanced techniques —
v. 3. Beyond programming.
ISBN 0–262–58151–5 (set : pbk. : alk. paper). — ISBN
0–262–58148–5 (v. 1 : pbk. : alk. paper). — ISBN 0–262–58149–3 (v.
2 : pbk. : alk. paper). — ISBN 0–262–58150–7 (v. 3 : pbk. : alk.
paper)
1. Electronic digital computers–Programming. 2. LOGO (Computer

programming language) I. Title.
QA76.6.H385 1997
005.13 3—dc20 96–35371

CIP

Contents

xi

xvii

1

17

xii
xiv

xv

1
3

4
4

5
8

9
14

19
20

20
21

22
24

25

v

Preface

Acknowledgments

1 Data Files

2 Example: Finding File Differences

About the Projects
About This Series
How to Read This Book

Reader and Writer
End of File
Case Sensitivity
Dribble Files
A Text Formatter
Page Geometry
The Program
Improving the Formatter

Program Overview
The File Information Block Abstract Data Type
Saving and Re-Reading Input Lines
Skipping Equal Lines
Comparing and Remembering Unequal Lines
Reporting a Difference
Program Listing

31

41

73

81

Text Define

3 Nonlocal Exit

4 Example: Solitaire

5 Program as Data

6 Example: BASIC Compiler

31
33

34
36

39

41
42
45

47
48

49
50

54
58

60
61

73
75

76
78

82
86

87
90

92
95
101
102

102

vi Contents

Quiz Program Revisited
Nonlocal Exit and Modularity
Nonlocal Output
Catching Errors
Ending It All

The User Interface
The Game of Solitaire
Running the Program
Program Structure
Initialization
Data Abstraction
Stacks
Program as Data
Multiple Branching
Further Explorations
Program Listing

and
Automated Definition
A Single-Keystroke Program Generator
Procedure Cross-Reference Listings

A Short Course in BASIC
Using the BASIC Translator
Overview of the Implementation
The Reader
The Parser
The Code Generator
The Runtime Library
Further Explorations
Program Listing

Equalp

109

137

147

181

7 Pattern Matcher

8 Property Lists

9 Example: Doctor

10 Iteration, Control Structures, Extensibility

120
120

122
124

127
129

131
131

132
133

138
139

140
141

142
142

144

149
150

157
158

160
160

165
166

167

182
183

186
187

188

Contents vii

Reinventing for Lists
A Simple Pattern Matcher
Efficiency and Elegance
Logo’s Evaluation of Inputs
Indirect Assignment
Defaults
Program as Data
Parsing Rules
Further Explorations
Program Listing

Naming Properties
Writing Property List Procedures in Logo
Property Lists Aren’t Variables
How Language Designers Earn Their Pay
Fast Replacement
Defaults
An Example: Family Trees

Eliza and Artificial Intelligence
Eliza’s Linguistic Strategy
Stimulus-Response Psychology
Property Lists
Generated Symbols
Modification of List Structure
Linguistic Structure
Further Explorations
Program Listing

Recursion as Iteration
Numeric Iteration
Logo: an Extensible Language
No Perfect Control Structures
Iteration Over a List

205

233

245

Apply

For

Localmake

11 Example: Cryptographer’s Helper

12 Macros

13 Example: Fourier Series Plotter

192
195

197
198

200
201

202
204

210
212

214
218

220
221

223
224

233
236

238
242

243

249
257

258
259

260
261

262
264

viii Contents

Implementing
Mapping
Mapping as a Metaphor
Other Higher Order Functions
Mapping Over Trees
Iteration and Tail Recursion
Multiple Inputs to
The Evaluation Environment Bug

Program Structure
Guided Tour of Global Variables
What’s In a Name?
Flag Variables
Iteration Over Letters
Computed Variable Names
Further Explorations
Program Listing

Backquote
Implementing Iterative Commands
Debugging Macros
The Real Thing

Square Waves
Keyword Inputs
Making the Variables Local
Indirect Assignment
Numeric Precision
Dynamic Scope
Further Explorations
Program Listing

267

Appendices

Berkeley Logo Reference Manual
267

268
270

270
271
272

273
274

275
275

276
277

279
279

279
281

281
281

282
282

283
283

284
284
286

286
287

Contents ix

Entering and Leaving Logo
Tokenization
Data Structure Primitives

Constructors
Selectors
Mutators
Predicates
Queries

Communication
Transmitters
Receivers
File Access
Terminal Access

Arithmetic
Numeric Operations
Predicates
Random Numbers
Print Formatting
Bitwise Operations

Logical Operations
Graphics

Turtle Motion
Turtle Motion Queries
Turtle and Window Control
Turtle and Window Queries
Pen and Background Control
Pen Queries

311

317

Index of Defined Procedures

General Index

288
288

290
290

291
291

292
293

295
299

304
307

307
308

x Contents

Workspace Management
Procedure Definition
Variable Definition
Property Lists
Predicates
Queries
Inspection
Workspace Control

Control Structures
Template-Based Iteration

Macros
Error Processing

Error Codes
Special Variables

Preface

Computer Science Logo Style,

xi

This is the second volume of a three-volume series that uses
the Logo programming language as the medium for a presentation of a range of topics
in computer science. The main audience I had in mind for these books was high school
students, but it’s turned out that they have also been used in teacher training, and to
some extent by independent adult learners.

In the first edition, the first volume was a complete Logo tutorial, explaining all of
the features of the language; the second volume was entirely devoted to programming
projects. (The third volume, then and now, is a sampler of topics from undergraduate
computer science courses.) My idea was that students would spend their first year in an
intensive programming course, and would then pursue their own programming projects
on an independent study basis, using my projects as examples.

As it turned out, people found the first volume both too hard and too easy. It was
too hard because it arrived too soon at the more advanced and complicated features of
Logo; it was too easy because the actual programming examples were all short enough
to fit on a page. Such tiny examples didn’t help the learner extrapolate to the design
of a program that could actually do something interesting. This deficiency may have
encouraged some readers to conclude that Logo is just a toy, and that serious projects
should be done in a “serious” language such as Pascal or C++.

In this second edition I’ve rearranged things. The first volume now teaches only
the core features of Logo, the ones every programmer must understand; it also includes
three of the projects that were originally in the second volume. This volume is now a
more advanced programming text; it alternates tutorial chapters on advanced language
features with example projects that demonstrate those features.

The project chapters serve two purposes at once. First, each project is an example
of something you might actually want to do. The emphasis is on getting the computer

About the Projects

am

your

are

xii Preface

to do something fun and interesting. Each of the projects in this book is here because
I thought I’d enjoy writing it myself, not because it fit some subtle pedagogic purpose.
The projects are offered as case studies, as examples to inspire your own creative efforts.

At the same time, I a teacher, and in this book I’m trying to teach some ideas
about programming technique and programming style. Often there is an easy way and
a hard way to achieve a certain result, and you’re better off if you know the easy way.
Nobody has a complete list of such techniques; you’ll be learning new ones for as long as
you maintain your interest in computer programming. The ones I discuss in this book
are the ones that came up in these particular projects. Ideally, as your teacher, I would
look over your shoulder while you’re working, and I’d tell you about the techniques that
apply to projects. I can’t do that in a book, and so instead I’m presenting some
projects of my own and discussing them as I would discuss your projects if I knew you
personally.

With one exception, each example chapter comes after a tutorial chapter that has
introduced a new Logo programming technique, and that technique is used in the
project. (The exception, the pattern matching project, is an advanced programming
technique in its own right, and is used in a later project.) But the technique from the
previous chapter is rarely the most important aspect of the project! Each project exhibits
many different techniques, and the project chapters describe some of them.

This book does not make much explicit reference to the first volume, but to
understand the discussion here, you should be familiar with the ideas presented in
Volume 1: evaluation, procedures, locality, iteration, recursion, mapping, predicates,
operations, and so on.

Teaching and learning, by the way, don’t necessarily imply a classroom in a school.
I like to imagine you curled up with this book in front of your home computer, playing
around with one of these projects just for the fun of it. Pretend I’m a friend or relative
who happens to be a professional computer scientist. On the other hand, if you
reading this for a course in a school, you have the advantage of a living teacher who can
provide the kind of individual attention to your specific projects that I can’t. There are
advantages and disadvantages either way.

Although I now have the projects linked with tutorial chapters, in the first edition I
organized them into five categories, based not on the programming techniques used
but rather on the purposes of the programs. The projects reflect aspects of my own

mathematical

About the Projects xiii

LogoWorks: Challenging Programs in
Logo

* You can find a video game that I wrote in the collection
, edited by Solomon, Minsky, and Harvey (McGraw-Hill, 1985).

character: I came to computers by way of an early interest in mathematics; my computing
background is in artificial intelligence and in systems programming; I tend to think in
words, not in pictures. I think it may give the collection of projects a more coherent feel
if I explain the categories in which they were written, even though the book is no longer
organized around those categories.

The first is cryptography. One of the first books I can remember buying, as a child
in elementary school, was about secret codes. Besides the universal appeal of knowing
a secret, cryptography was interesting to me because it’s a sort of puzzle,
like those logic problems about who lives in the yellow house. The Cryptographer’s
Helper project in this volume includes a very small effort at artificial intelligence: the
program makes some guesses, on its own, to start solving a cryptogram. The Playfair
Cipher project, now moved to the first volume, deals with a more complicated technique
for encoding a message, but it doesn’t try to break such a code.

The second category is games. I’m not a video game enthusiast; hand-eye coordi-
nation isn’t my strong point. (I never really learned to ride a bicycle!) Anyway, writing
video game programs depends too much on the particular hardware of your computer,
so I can’t do it in this general book.* Instead I’ve written two simple strategy games. In
the first volume is a program that plays tic-tac-toe. This game is extremely trivial for a
human being, but it’s surprisingly hard to formulate strategy rules that are simple and
precise enough to embody in a computer program. Also, it’s an opportunity to throw in
a little bit of graphics programming, to draw the board and fill it with Xs and Os. In this
volume is a program that deals out a hand of solitaire and maintains the display of the
layout as you play the hand. Before I wrote this program, I had been feeling bored and
lonely for an extended period, and I was wasting a lot of time playing solitaire myself. I
figured it would be more productive to write a computer program!

The third category is mathematics. I once spent some time working as a systems
programmer at a computer music research center in Paris, and this volume includes a
project about Fourier analysis, the mathematical basis of computer music. The project
demonstrates graphically how a complex waveform, representing the texture of a sound,
can be built up from much simpler elements. In the first volume is a program to solve
the kind of problem, often found on IQ tests, in which you are given pitchers of certain
sizes and asked to use them to measure a given amount of water by pouring back and
forth. This project illustrates the idea of searching through a “solution space” of possible
pouring steps.

equalp

doctor

About This Series

Computer Science Logo Style

top-down

tools:

xiv Preface

The fourth category is that of utility programs. This is actually the area of
programming I know best: writing things that are not complete applications in themselves,
but rather tools to help in the creation of even larger projects. For the second edition I’ve
replaced the original projects in this category with two new ones. The project Finding File
Differences is a utility program that can be used to compare two versions of a file to see
what’s changed from the old one to the new one. Then there is a compiler for the BASIC
programming language; besides illustrating the idea of program as data—the compiler
generates new Logo procedures to carry out the instructions in a BASIC program—this
project may help to prepare the reader for the more complicated Pascal compiler in the
third volume.

The fifth category is pattern matching. This category combines my interests in
systems programming and artificial intelligence. The first project is a tool, like the
ones in the utilities category, but it’s a tool designed specifically for artificial intelligence
applications: a pattern matcher. This program compares a particular list with a general
template, or pattern. Instead of checking for exact equality like , the pattern
matcher checks for a kind of “fill in the blanks” partial equality. The second project in
this category uses the pattern matcher to implement , another famous artificial
intelligence program that simulates a conversation with the user.

is intended to bring to the hobbyist audience a particular point
of view about computer science: the artificial intelligence view. This way of looking at
computers is quite different from the more usual software engineering approach. In that
approach, you are always dealing with a very well-defined problem, and are looking for
the best way to solve it. Software engineers like to start with a formal problem statement,
and then design a computer program to fit. They believe that the design process should
be ; you should start with the overall structure and work down to the details.
Their preferred programming language is Pascal.

In artificial intelligence, the problems are not usually so well defined. Starting with a
vague problem statement like “develop a good strategy for playing chess,” AI programmers
can’t begin with a rigid program specification. Instead, they build program
fragments that can be pieced together to form larger programs. The programming
process involves writing code, testing, coming up with new ideas, and modifying the
program interactively. This process is encouraged by an interactive language like Lisp or
Logo.

How to Read This Book

Beyond
Programming,

How to Read This Book xv

Computer programming is a great intellectual hobby; it provides the same opportu-
nity for creative, concrete work in mathematical thinking that drama or creative writing
does for verbal thinking. A learner can have years of intellectual adventure just learning
to write better and better programs. Finally, though, there may come a time when the
learner gets bored with just writing more and more programs, and seeks a deeper under-
standing of the issues behind this practical work. The third volume of this series,

addresses the needs of these learners by introducing them to some of the
elements of university-level computer science, still in the context of Logo programming.

You should have each program actually available to you on a computer as you read about
it. These programs are available on diskette from the MIT Press, or can be downloaded
from the Internet. Details are in the first volume.

There are many dialects of Logo; this book uses Berkeley Logo, a free version
available for PC, Macintosh, and Unix systems. The more fundamental Logo techniques
used in the first volume are more or less standard among Logo implementations, but
some of the advanced techniques in this volume are unique to Berkeley Logo. It, too, is
on the diskette and the Internet.

The programs you see here are essentially the programs I wrote as I was trying to
get each project to work. I didn’t start with a particular programming style in mind
and then invent an example to illustrate the style. It’s not always obvious what is the
“correct” style for a given problem; sometimes one way is much easier to understand,
for example, while a different solution may run much more efficiently. The comments
in each chapter sometimes suggest alternative ways in which I might have written some
piece of the program. I try to explain why I chose the style I did, although sometimes the
real explanation is simply that that’s the first thing I thought of. I’ve modified almost all
of these programs for the second edition, and some of the chapters explain my second
thoughts.

Each example chapter begins with an explanation of what the project is all about.
Remember that these projects were meant to be interesting in themselves, not just as
vehicles for a discussion of programming techniques! The discussion in each chapter
ends with a return to the purpose of the project, with suggestions for how that purpose
might be extended. One source of ideas for projects of your own is to extend someone
else’s work, and one important purpose of this book is to give you ideas for such starting
points. In between comes a technical discussion of the programming techniques used.

not

xvi Preface

What I do provide, generally, is a guided tour of every procedure. One of the
things you should learn from this book is the ability to read a long program on your own.
You should recognize some of the typical categories of procedures, like ones that apply a
given command to each member of a list. In the discussions, rather than explain every
detail, I try to focus your attention on the parts of the program that seem to illuminate
some more general technical issue. A complete listing of the program is at the end of
each example chapter.

The programs in this book are copyright, but you can use, copy, and redistribute them
freely; the exact terms are given in the GNU General Public License, which is distributed
with the programs and is printed in the first volume of this series. Essentially, the only
restriction is that you can’t use these programs as the basis for your own commercial
programs; if you extend these projects, you can only distribute your extensions on the
same free terms. Share ideas, don’t hoard them!

Acknowledgments

LogoWorks:
Challenging Programs in Logo

LogoWorks

xvii

Cynthia Solomon and Margaret Minsky are the people who got me started at the
enterprise of developing exemplary Logo projects. People in the Logo community had
been talking for many years about the need for an advanced Logo project book, but
nobody got around to it until 1982 when Atari had all the money in the world and used
some of it to establish a Corporate Research Department. Cynthia was in charge of
the Atari research lab in Cambridge, where many MIT old-timers were gathered. She
and Margaret decided that this was the time for the project book. I was one of several
people they recruited to contribute projects. The result of that effort is called

(McGraw-Hill, 1985).

This book is somewhat different from in that it’s part of a series, so I can
make assumptions here about what the reader already knows from having read the first
volume. Still, I’ve benefited greatly from what I learned from Cynthia and Margaret
about how to explain the structure of a large programming project.

The people who have read and commented on early drafts of this book include
Hal Abelson, Alison Birch, Sharon Yoder, Mike Clancy, Jim Davis, Batya Friedman, Paul
Goldenberg, Margaret Minsky, and Cynthia Solomon. As for the first volume, I am
particularly indebted to Hal and Paul for their strong encouragement and their deep
insights into issues both in computer science and in education. Matthew Wright reviewed
some chapters for the second edition.

Berkeley Logo, the interpreter used in this edition, is a collective effort of many
people, both at Berkeley and across the Internet. My main debt in that project is to
three former students: Dan van Blerkom, Michael Katz, and Doug Orleans. At the risk
of missing someone, I also want to acknowledge substantial contributions by Freeman
Deutsch, Khang Dao, Fred Gilham, Yehuda Katz, George Mills, and Randy Sargent.

Computer Science Logo Style
Advanced Techniques

data files

1

1 Data Files

Reader and Writer

format

readlist readchar
print type

Program file for this chapter:

The programming techniques that you learned in the first volume of this series are all you
need to express any computation. That is, given any question that a computer program
can answer, you can write the program in Logo using those techniques. Also, those
techniques can be used, with few if any changes in notation, in any implementation of
Logo. However, saying that a problem can be solved using certain tools doesn’t mean
that it can be solved in the most convenient way. In this volume the overall goal is to
expand your repertoire of Logo techniques, so that you’ll find it easier to deal with more
difficult problems. Some of the techniques here are unique to Berkeley Logo; others
exist in other dialects, but in significantly different forms.

Probably the most glaring omission in the first volume is that we made no provision
for saving information from one session to the next. (You do know how to save a Logo
workspace, but that’s too all-or-nothing to be very useful. You’d like to be able to save
specific kinds of information, and perhaps use that information in some program outside
of Logo.) In this chapter we’ll explore the use of in Logo programs.

There isn’t much in the way of truly new ideas here. There are a few new primitives
and a few grubby details about how files are named in your particular computer, but
for the most part you won’t have to change the way you think about the programming
process. My plan for this chapter is to give a quick summary of the vocabulary you’ll
need, and spend most of the chapter on a practical programming project that will show
you the sort of thing you can accomplish easily in Logo.

We’ve been reading and writing data all along. We’ve been reading from the keyboard,
with operations like and , and we’ve been writing to your screen,
with commands like and .

Openwrite
openupdate

openappend

reader; writer.

open

2 Chapter 1 Data Files

readlist readchar
print

setread setwrite

save load

setread
setwrite

setread setwrite
openread openwrite

setread setwrite

close

setwrite
setwrite

* creates a new, empty file, replacing any file that might previously have existed with
the same name. Berkeley Logo also provides , which opens an existing file for both
reading and writing simultaneously, and , which opens an existing file for writing,
putting the newly written data after the old contents of the file. I won’t use those in this book,
though.

The goal now is to read and write the same data, but from and to other devices. This
includes files on a hard disk or a diskette, but also things like printers or TV cameras
if you have them. The same procedures that read the keyboard and write the screen
can be used for these other devices as well. The trick is to divert the attention of those
procedures to someplace else.

The part of the Logo interpreter that reads characters for and
is called the the part that handles and its friends is the The commands

and tell the reader and the writer, respectively, what file or device
to use. The input to either command is the name of a file or device. The format of that
name will vary from one operating system to another, so you should look it up in your
computer’s reference manual. Generally it will be the same format that you (I assume)
have already been using as input to the and commands.

If you invoke with the empty list as input, it tells the reader to read from
the keyboard. If you give the empty list as input, it tells the writer to write to
the screen. In other words the empty list “turns off” whatever file or device you may have
been using and returns to Logo’s usual style of interaction.

You can switch the attention of the reader or the writer among several files in rotation
without “losing your place” in each one. You must a file when you want to begin
reading or writing it before you can use it as input to or . You do
this with the or command.* Once a file is opened, you can

or to it, read or write some data, then switch to a different file for
a while, and then continue where you left off. When you’re finished using the file, you
must it.

Some operating systems allow access to devices like printers using the same program-
ming interface that works for files. In those systems, you can to a printer just
as you can to a disk file. The format of the input to may be different (a device
name instead of a file name), but there is no conceptual difference.

End of File

extract "brian "phonelist

before

word
list

End of File 3

eofp
true

eofp false

readlist
Readchar

wordp listp

Extract

to extract :word :file
openread :file
setread :file
extract1 :word
setread []
close :file
end

to extract1 :word
local "line
if eofp [stop]
make "line readlist
if memberp :word :line [print :line]
extract1 :word
end

?
Brian Harvey 555-2368
Brian Silverman 555-5274

When reading information from a file, the problem arises of what happens when there is
no more left to read. How does a program know it’s reached the end of the file?

Berkeley Logo provides two ways to answer this question. If the structure of your
program makes it convenient to test for the end of the file attempting to read more
information from the file, you can use the predicate , which takes no inputs, and
returns if the file currently being read is at its end. (If Logo is reading from the
keyboard, then always returns .)

In some cases it may be more convenient to try to read from the file, and then later
test whether there was really any information available to read. To make this possible, the
reading operations output an empty datum when there is nothing left to read, but of the
opposite type from their usual output. In other words , which usually outputs
a list, outputs an empty to indicate the end of a file. , which normally
outputs a word, outputs an empty when there are no more characters to be read. You
can use or , therefore, to check for the end of the file.

Here’s an example. is a command that takes two inputs, a word and a
filename. Its effect is to print every line in that file that contains the chosen word.
For example, you might have a file in which each line contains someone’s name and
telephone number; you could use this procedure to find a particular person in the file.

make "caseignoredp "false

Case Sensitivity

Dribble Files

not

everything

transcript file, dribble file.

in addition to

instead of

4 Chapter 1 Data Files

phonelist

brian extract
Brian

caseignoredp true
equalp memberp

print PRINT

dribble
nodribble

setwrite

Notice that the program restores reading from the keyboard when it’s done reading the
file. In the example I’m assuming that is the name of a file you’ve created
earlier, with a Logo program or with your favorite text editor outside of Logo.

In this example, I used the word , in all lower case letters, as the input to ,
whereas the data file contained the word with an initial upper case or capital
letter. You can control whether or not Logo considers those two words equal by changing
the value of the variable . If this variable has the value , as it does
by default, then and consider upper and lower case letters the same.
But if you say

then upper and lower case letters will not be equal. (This variable does affect Logo’s
understanding of the names of procedures and variables, in which case is always ignored.
The words and always name the same procedure, for example.)

Not everything Logo prints goes through the writer. Error messages and trace output
always go to the screen, not into a file. The idea is that even when you’re using files,
you’re still programming interactively, and those messages are part of the programming
process rather than part of the result of your program.

Sometimes, though, you want to capture in a file that happens while you’re
using Logo. Some programming teachers, for instance, like to look over their students’
shoulders but can’t look at everyone at once. If you record everything you do, your
teacher can print out the record, take it home, and study it overnight. The formal name
for this kind of record is a but it’s more popularly known as a
(The metaphor is that there’s a leak in the pipe between the computer and the screen
and some of the data dribbles out into the file.)

The command takes a file name as input and starts dribbling into that
file. The command, with no input, turns off dribbling. Information is sent
to the dribble file being printed on your screen, or written in a file by the
writer. Compare this with the effect of , which tells Logo to print into a file

onto the screen.

po

yesfill

* nofill

fill

A Text Formatter

fill
justify

formatting commands

A Text Formatter 5

* I’d have liked to call the command , as it would be in a commercial word processing
program, but unfortunately that’s the name of a primitive procedure in Logo.

If you want to keep a transcript of a programming session, remember that much of
your interaction with Logo happens in the Logo editor and that that kind of interaction
can’t be recorded in a dribble file. So you might want to make it a habit to the
procedures you’ve edited, each time you leave the editor.

Okay, it’s time for the practical project I promised you. Probably the most useful “real”
program you can find for a home computer is a word processor. There are two parts
to a word processing package: a text editor and a formatter. The editor is the part
of the system that lets you type in your document, correct errors, and make additions
and deletions later. The formatter is the part that takes what you type and turns it into
beautiful printed pages with even margins and so on. (In most word processors, these
two parts are integrated, so that every character you type makes an immediate change in
the beautifully formatted document. But in principle the two tasks are separable.)

I’m going to write a text formatter. I assume that you have some way to put text
into a file. (In some versions of Logo the same editor that you use for procedures can
also edit text files. Otherwise you probably have a separate program that edits files, or
else you can write one in Logo!) The formatter will read lines from a file, fill and justify
paragraphs, and print the result. (To text means to fit as many words as possible into
each printed line. To the text is to insert extra spaces between words so that both
margins line up.) You can see how the formatter will work by examining the example on
the following pages. I’ve shown both what’s in the file and what my program prints.

For the most part the formatter just copies words from one file to another, filling and
justifying as it goes. A blank line in the file indicates a break between paragraphs. The
program skips a line between paragraphs and indents the first line of the new paragraph.
It’s possible to control the formatter’s work by including in the file.
These are the lines that start with asterisks in the example. For example, the line that says

means, “From now on, stop filling paragraphs. Instead, each line in the input file should
be one line in the printed result.” The command returns to normal paragraph
style.*

formatter input file

6 Chapter 1 Data Files

When I wrote the first edition of this book in 1984, I said that the study of
computer programming was intellectually rewarding for young children in
elementary school, and for computer science majors in college, but that high
school students and adults studying on their own generally had an
intellectually barren diet, full of technical details of some particular
computer brand.

At about the same time I wrote those words, the College Board was introducing
an Advanced Placement exam in computer science. Since then, the AP course has
become popular, and similar official or semi-official computer science
curricula have been adopted in other countries as well. Meanwhile, the
computers available to ordinary people have become large enough and powerful
enough to run serious programming languages, breaking the monopoly of BASIC.
* nofill
I think that there shall never exist
a poem as lovely as a tree-structured list.
* yesfill
So, the good news is that intellectually serious computer science is within
the reach of just about everyone. The bad news is that the curricula tend to
be imitations of what is taught to beginning undergraduate computer science
majors, and I think that’s too rigid a starting point for independent
learners, and especially for teenagers.

See, the wonderful thing about computer programming is that it’s fun, perhaps
not for everyone, but for very many people. There aren’t many mathematical
activities that appeal so spontaneously. Kids get caught up in the
excitement of programming, in the same way that other kids (or maybe the
same ones) get caught up in acting, in sports, in journalism (provided the
paper isn’t run by teachers), or in ham radio. If schools get too serious
about computer science, that spontaneous excitement can be lost. I once
heard a high school teacher say proudly that kids used to hang out in his
computer lab at all hours, but since they introduced the computer science
curriculum, the kids don’t want to program so much because they’ve learned
that programming is just a means to the end of understanding the
curriculum. No! The ideas of computer science are a means to the end of
getting computers to do what you want.
*skip 4
*make "nofilltab 15
*nofill
Computer
Science
Apprenticeship
*yesfill
*make "spacing 2
My goal in this series of books is to make the goals and methods of a serious
computer scientist accessible, at an introductory level, to people who are
interested in computer programming but are not computer science majors. If
you’re an adult or teenaged hobbyist, or a teacher who wants to use the
computer as an educational tool, you’re definitely part of this audience.
I’ve taught these ideas to teachers and to high school students. What I enjoy
most is teaching high school freshmen who bring a love of programming into the
class with them--the ones who are always tugging at my arm to tell me what they
found in the latest Byte.

i nt r oduct or y@@l evel , @@t o@@peopl e@@who@@ar e@i nt er est ed@i n@comput er

pr ogr ammi ng@@but @@ar e@@not @@comput er @sci ence@maj or s. @I f @you' r e@an

adul t @@or @@t eenaged@@hobbyi st , @@or @a@t eacher @who@want s@t o@use@t he

comput er @@as@@an@educat i onal @t ool , @you' r e@def i ni t el y@par t @of @t hi s

audi ence. @@I ' ve@t aught @t hese@i deas@t o@t eacher s@and@t o@hi gh@school

st udent s. @@What @I @enj oy@most @i s@t eachi ng@hi gh@school @f r eshmen@who

br i ng@@a@@l ove@@of @pr ogr ammi ng@i nt o@t he@cl ass@wi t h@t hem- - t he@ones

who@@ar e@@al ways@@t uggi ng@at @my@ar m@t o@t el l @me@what @t hey@f ound@i n

t he@l at est @Byt e.

@@@@@When@@I @wr ot e@t he@f i r st @edi t i on@of @t hi s@book@i n@1984, @I @sai d
t hat @@@t he@@st udy@@of @@comput er @@pr ogr ammi ng@@was@@i nt el l ect ual l y
r ewar di ng@@f or @@young@@chi l dr en@@i n@@el ement ar y@@school , @@and@f or
comput er @sci ence@maj or s@i n@col l ege, @but @t hat @hi gh@school @st udent s
and@@adul t s@st udyi ng@on@t hei r @own@gener al l y@had@an@i nt el l ect ual l y
bar r en@@di et , @@f ul l @@of @@t echni cal @@det ai l s@@of @@some@@par t i cul ar
comput er @br and.

@@@@@At @@about @@t he@@same@@t i me@@I @wr ot e@t hose@wor ds, @t he@Col l ege
Boar d@@was@@i nt r oduci ng@@an@@Advanced@@Pl acement @exam@i n@comput er
sci ence. @@Si nce@@t hen, @@t he@@AP@@cour se@@has@@become@popul ar , @and
si mi l ar @of f i c i al @or @semi - of f i c i al @comput er @sci ence@cur r i cul a@have
been@adopt ed@i n@ot her @count r i es@as@wel l . @Meanwhi l e, @t he@comput er s
avai l abl e@@t o@@or di nar y@@peopl e@@have@@become@@l ar ge@@enough@@and
power f ul @@enough@@t o@@r un@ser i ous@pr ogr ammi ng@l anguages, @br eaki ng
t he@monopol y@of @BASI C.

I @t hi nk@t hat @t her e@shal l @never @exi st
a@poem@as@l ovel y@as@a@t r ee- st r uct ur ed@l i st .

@@@@@So, @@t he@@good@@news@i s@t hat @i nt el l ect ual l y@ser i ous@comput er
sci ence@@i s@wi t hi n@t he@r each@of @j ust @about @ever yone. @The@bad@news
i s@@t hat @t he@cur r i cul a@t end@t o@be@i mi t at i ons@of @what @i s@t aught @t o
begi nni ng@@under gr aduat e@@comput er @@sci ence@@maj or s, @@and@I @t hi nk
t hat ' s@@t oo@@r i gi d@a@st ar t i ng@poi nt @f or @i ndependent @l ear ner s, @and
especi al l y@f or @t eenager s.

@@@@@See, @@t he@wonder f ul @t hi ng@about @comput er @pr ogr ammi ng@i s@t hat
i t ' s@@f un, @@per haps@@not @@f or @ever yone, @but @f or @ver y@many@peopl e.
Ther e@@@ar en' t @@@many@@mat hemat i cal @@act i v i t i es@@t hat @@appeal @@so
spont aneousl y. @@@Ki ds@@@get @@@caught @@up@@i n@@t he@@exci t ement @@of
pr ogr ammi ng, @@i n@@t he@same@way@t hat @ot her @ki ds@(or @maybe@t he@same
ones) @get @caught @up@i n@act i ng, @i n@spor t s, @i n@j our nal i sm@(pr ovi ded
t he@paper @i sn' t @r un@by@t eacher s) , @or @i n@ham@r adi o. @I f @school s@get
t oo@@ser i ous@@about @comput er @sci ence, @t hat @spont aneous@exci t ement
can@@be@l ost . @I @once@hear d@a@hi gh@school @t eacher @say@pr oudl y@t hat
k i ds@used@t o@hang@out @i n@hi s@comput er @l ab@at @al l @hour s, @but @si nce
t hey@@i nt r oduced@@t he@comput er @sci ence@cur r i cul um, @t he@ki ds@don' t
want @@t o@pr ogr am@so@much@because@t hey' ve@l ear ned@t hat @pr ogr ammi ng
i s@@j ust @@a@means@t o@t he@end@of @under st andi ng@t he@cur r i cul um. @No!
The@@i deas@@of @comput er @sci ence@ar e@a@means@t o@t he@end@of @get t i ng
comput er s@t o@do@what @you@want .

@@@@@@@@@@@@@@@Comput er
@@@@@@@@@@@@@@@Sci ence
@@@@@@@@@@@@@@@Appr ent i ceshi p

@@@@@My@@goal @@i n@@t hi s@@ser i es@of @books@i s@t o@make@t he@goal s@and

met hods@@of @@a@@ser i ous@@comput er @@sci ent i st @@accessi bl e, @@at @@an

A
TextForm

atter
7

form
atted

output

lines

topmar

spacing

width

filltab

nofilltab

leftmar

pageheight

parskip

Page Geometry

8 Chapter 1 Data Files

format

pageheight
topmar
lines
parskip
spacing
leftmar
width
filltab
nofilltab nofill

To run the program, invoke the command. This command takes two inputs:
the name of a file to read and the name of a file to write. The latter might be the name
of the printer if your operating system allows it.

The program uses several global variables to determine the layout of a printed page.
Vertical measurements are in vertical lines (6 per inch for most computer printers); hor-
izontal measurements are in characters (10 per inch is common, although there is more
variation in this unit). The program assumes fixed-width characters; a more professional
program would handle variable-width character fonts, but the added complexity wouldn’t
help you learn the things I’m most interested in now.

Height of the entire sheet of paper, including margins.
Number of lines of margin at the top of each page.
Number of lines to be printed on each page.
Number of blank lines between paragraphs.
1 for single spaced printing, 2 for double spaced, etc.
Number of characters of margin at the left of the page.
Number of characters to print on each line.
Number of characters to indent the first line of a paragraph.
Number of characters to indent each line.

The Program

The Program 9

The formatter recognizes formatting commands, in the file it’s reading, to change
the values of these variables. By a strange coincidence these formatting commands look
similar to the Logo commands to set a variable. In the sample file, for instance, the
formatting command

is used to start double spacing.

Here are the procedures that make up the formatter.

*make "spacing 2

to format :from :to
openread :from
openwrite :to
setread :from
setwrite :to
init.vars
loop
setread []
setwrite []
close :from
close :to
end

to init.vars
make "pageheight 66
make "topmar 6
make "lines 54
make "leftmar 7
make "width 65
make "filltab 5
make "nofilltab 0
make "parskip 1
make "spacing 1
make "started "false
make "filling "true
make "printed 0
make "inline []
end

10 Chapter 1 Data Files

to loop
forever [if process nextword [stop]]
end

;; Add a word to the output file, starting a new line if necessary

to process :word
if listp :word [output "true]
if not :started [start]
if (:linecount+1+count :word) > :width [putline]
addword :word
output "false
end

to addword :word
if not emptyp :line [make "linecount :linecount+1]
make "line lput :word :line
make "linecount :linecount+count :word
end

to putline
repeat :leftmar+:indent [type "| |]
putwords :line ((count :line)-1) (:width-:linecount)
newline
skip :spacing
end

to putwords :line :spaces :filler
local "perword
if emptyp :line [stop]
type first :line
make "perword ifelse :spaces > 0 [int ((:filler+:spaces-1)/:spaces)] [0]
if :filler > 0 [repeat :perword [type "| |]]
type "| |
putwords (butfirst :line) (:spaces-1) (:filler-:perword)
end

The Program 11

;; Get the next input word, reading a new line if necessary

to nextword
if not emptyp :inline [output extract.word]
if not :filling [break]
make "inline readword
if listp :inline [break output []]
if emptyp :inline [break output nextword]
if equalp first :inline "|*| ~

[run butfirst :inline
make "inline "]

make "inline skipspaces :inline
output nextword
end

to extract.word
local "result
make "result firstword :inline
make "inline skipfirst :inline
output :result
end

to firstword :word
if emptyp :word [output "]
if equalp first :word "| | [output "]
output word (first :word) (firstword butfirst :word)
end

to skipfirst :word
if emptyp :word [output "]
if equalp first :word "| | [output skipspaces :word]
output skipfirst butfirst :word
end

to skipspaces :word
if emptyp :word [output "]
if equalp first :word "| | [output skipspaces butfirst :word]
output :word
end

12 Chapter 1 Data Files

;; Formatting helpers

to start
make "started "true
repeat :topmar [print []]
newindent
end

to newindent
newline
make "indent ifelse :filling [:filltab] [:nofilltab]
make "linecount :indent
end

to newline
make "line []
make "indent 0
make "linecount 0
end

to break
if emptyp :line [stop]
make "linecount :width
putline
newindent
if :filling [skip :parskip]
end

;; Formatting commands to be invoked by the user

to skip :howmany
break
repeat :howmany [print []]
make "printed :printed+:howmany
if :printed < :lines [stop]
repeat :pageheight-:printed [print []]
make "printed 0
end

to nofill
break
make "filling "false
newindent
end

The Program 13

to yesfill
break
if not :filling [skip :parskip]
make "filling "true
newindent
end

loop nextword process
nextword process

process putline
process addword

Addword
:linecount

:linecount

Putline print

type putwords
:spaces

:Filler
:perword

putline
putwords :perword

nextword
inline Nextword readword

readlist
Readword

readword
extract.word firstword skipword skipspaces

nextword
:inline nextword

To help you understand this program, you should start by imagining that the text
file contains one big paragraph with no formatting commands. For each word in the
file, invokes to read the word and to process it. Just take

on faith for now and look at . The third and fourth instruction lines
are the interesting ones. The third line asks whether adding this word to the partially
filled print line will overflow its width. If so, invokes to print that
line and start a new one. Then, in either case, invokes to add the
word to the print line it’s accumulating. puts the word at the end of the line
and also adds its length to , the number of characters in the line. If this
isn’t the first word of a new line, then it must also add another character to
to take account of the space between words.

is essentially just a fancy command. The complication comes in
because the program is trying to justify the line by adding spaces where needed between
words. To do this, it has to the line a word at a time; that’s the task of .
In that procedure, is the number of spaces between words not yet printed; in
other words it’s the number of positions into which extra spaces can be shoved. (The idea
is to spread out the necessary spaces as evenly as possible.) is the total number
of extra spaces we need to insert; is the number that should be inserted
after the particular word we’re typing right now. (When I started writing and

, I thought that I could just calculate once for each line. But if the
number of extra spaces we want to insert is not a multiple of the number of positions
available, then the number of extra spaces may not be equal for every word in the line.)

That’s pretty much the whole story about the printing part of the program. The
reading part is handled by . It reads a line at a time into the variable

. uses the Logo primitive to read a line, rather than the
usual , to avoid Logo’s usual special handling of parentheses and brackets.

outputs a word containing all of the characters on the line that it reads, even if
the line includes spaces, which would ordinarily separate words. Therefore, the program
must divide the long word output by into ordinary words; that’s the job of

and its subprocedures , , and .

Each time is invoked, it removes one word from the line and outputs
that word. When is empty, reads a new line from the file. There

*make "topmar 10

Improving the Formatter

before

14 Chapter 1 Data Files

Listp
nextword

nextword break

nextword run
nextword

run

skip

skip break break skip

started
start Start process

started
false true start

start format loop

start
format

:topmar

make

are four possibilities: First, the end of the file may be reached. tests for this;
if so, outputs an empty list. Second, the new line can be empty, indicating
a paragraph break. In this case invokes and reads another line.
Third, the new line can be a formatting command, starting with an asterisk. In this case

just s the line, minus the asterisk, and reads another line. Fourth, the
line can be an ordinary text line, in which case goes back to extracting words
from the line.

In most programming languages, most of the effort in writing a formatter like this
would be in recognizing and evaluating the formatting commands. I hope you appreciate
how much Logo’s ability to instructions found in a file simplifies this task! The
danger in this technique is that an invalid instruction in the input file will crash the
formatting program, giving a Logo error message. (This is especially bad because after
the error message we are left with a half-written output file still open.) I’d like to “catch”
errors while running the user’s instructions; you’ll see how to do that in Chapter 3.

The rest of the program is just a bunch of detail. The command is written to
be used both by the formatting program itself and as a formatting command, as in the
example I showed earlier. As an exercise in understanding program structure, notice
that invokes and invokes ; then explain why they don’t just
keep invoking each other forever, like a recursive procedure without a stop rule.

Another slightly tricky part to understand is the variable and the procedure
. is invoked by , but only once, before processing the very first

word of the text. Ensuring the “only once” is the sole purpose of , a variable
that initially contains and is changed to by . Instead, why don’t I
just invoke from before calling ? The answer is that this technique
allows the file to start with an instruction like

Any such instructions will be evaluated processing the first text word. If
were invoked by , the top margin would be skipped before this instruction had a
chance to set .

Actually, using as a formatting command is a little schlock—not what I’d call good
“human engineering.” If you wanted to make a million dollars selling this program,
you’d add several little procedures like this:

really

nofill yesfill

skip

run

modularity.

Improving the Formatter 15

to topmar :lines
make "topmar :lines
end

* If you’re ambitious, you could try teaching the program about footnotes!

Like and , these procedures would be used only as formatting com-
mands, not as part of the formatter itself.

The program leaves out a lot of things you’d like to be able to do. You should be
able to number pages automatically in the top or bottom margins. (That’s a pretty easy
modification; most of the work would be in .) You’d like to be able to center lines
on the page for chapter headings. If your printer can underline or use different type
faces, you’ll want a way to control those things with formatting commands.*

Still, this is a usable program carrying out a real task. It takes 19 Logo procedures
averaging 7 lines each. This would be a much harder project in most languages. What
makes it so manageable in Logo? First, A small procedure for each task makes
the overall program easier to understand than it would be if it were all in one piece.
Second, Logo’s data types, words and lists, are well suited to this problem. Third, Logo’s
control mechanisms, especially recursive operations and , have the needed flexibility.

17

CHANGE 6-8 6-7

2 Example: Finding File Differences

diff

diff
diff
diff

< >

CHANGE INSERT DELETE

Program file for this chapter:

As an example of a practical program that manipulates data files, this chapter is about
comparing two similar files to find the differences between them. This program is most
often useful in comparing a current version of a file with an earlier version to see what has
changed. On the next page is an example of two input files and the program’s output.
The output shows only those lines that differ between the two files, indicating changed
lines, insertions, and deletions. When several consecutive lines are different, they are
grouped together as a single reported change. (To demonstrate all of the program’s
capabilities, I’ve used short input files with more lines different than identical, and so the
program’s report is longer than the input files themselves. In a more realistic example,
the input files might be hundreds of lines long, with only a few differences, so it would
be easier to read the program’s output than to examine the files directly.)

I’ve called this program because it was inspired by a similar program of that
name in the Unix operating system. The format of the report that my generates is
similar to that of the Unix version. In particular, I’ve followed the Unix convention
that when a line from one of the input files appears in the report, it is marked by either a
“ ” character if it’s from the first file or a “ ” character if it’s from the second file.

The numbers in the lines that begin with , , or are line
numbers, counting from one, in each of the two files. For example, the line

indicates that lines 6 through 8 in the first file were replaced by lines 6 through 7 in
the second file. (The program considers a change to be finished when it finds two
consecutive identical lines in the two files. In this case, lines 9 and 10 of the first file are
identical to lines 8 and 9 of the second file.)

Text1 Text2
Input Files

Output File

18 Chapter 2 Example: Finding File Differences

My goal in this series of books My goal in this series of books
is to make the goals and methods is to make the goals and methods
of a serious computer scientist of a mad computer scientist
accessible, at an introductory accessible, at an introductory
level, to people who are level, to people who are
interested in computer interested in playing computer
programming but are not computer games.
science majors. If you’re an
If you’re an adult or teenaged hobbyist,
adult or teenaged hobbyist, you’re definitely part of this
or a teacher who wants to use the audience.
computer as an educational tool, And I hope you appreciate
you’re definitely part of this the privilege!
audience.

DIFF results:
< File 1 = Text1
> File 2 = Text2
==========
CHANGE 3-3 3-3
< of a serious computer scientist

> of a mad computer scientist
==========
CHANGE 6-8 6-7
< interested in computer
< programming but are not computer
< science majors.

> interested in playing computer
> games.
==========
DELETE 11-12 10
< or a teacher who wants to use the
< computer as an educational tool,
==========
INSERT 15 12-13
> and I hope you appreciate
> the privilege!
==========

Program Overview

diff "Text1 "Text2 []

numbers

every

remember

Program Overview 19

diff

setread

Diff

diff.same

diff.differ
diff.found

diff.differ
diff.same

diff.differ

report
diff.same

The procedure takes three inputs. The first two are names of the two input
files; the third is either a name for an output file or an empty list, in which case the
program’s results are printed on the screen. For example, to see the results of my sample
run, I’d say

I picked this project partly because it requires switching between two input files, so you
can see how the program uses repeatedly.

reads lines from the two input files in alternation. As long as the corresponding
lines are equal, the program just moves on to the next pair of lines. (Procedure

handles this process.) When a difference is found, the program’s operation
becomes more complicated. It must remember all the lines that it reads from both
files until it finds two consecutive equal pairs of lines. (Procedures and

do this.)

Life would be simple if the differences between the two files were only changes within
a line, without adding or removing entire lines. (This would be a realistic assumption if,
for example, the second file had been created by applying a spelling correction program
to the first file. Individual words would then be different, but each line of the second file
would correspond to one line of the first.) In that case, the structure of
could be similar to that of : Read a line from each file, compare the two, and
report the pairs that are different.

But in practice, a change to a paragraph may make the file longer or shorter. It may
turn out, as in my sample run, that three lines from the first file correspond to only two
lines from the second one. If that’s the case, then there’s no guarantee that the equal
lines that mark the end of a change will be at the same line in the two files. (In
the sample, line 9 of the first file matches line 8 of the second.) Whenever the program
reads a line from one file, therefore, it must compare that line to line that it’s read
from the other file since the two started being different. Therefore, must

all of the lines that it reads from both files.

Finally, when two pairs of equal lines are found, the program must report the
difference that it’s detected. That’s the job of procedure . Once the change has
been reported, the program continues in until another difference is found.

The program finishes its work when the ends of both input files have been reached.

pending
saved

20 Chapter 2 Example: Finding File Differences

report

setread

diff

makefile
which filename linenum lines

popsaved

The File Information Block Abstract Data Type

Saving and Re-Reading Input Lines

Original line 2 Changed line 2
Original line 3 Changed line 3
Original line 4 New line 3.1

New line 3.2
New line 3.3
Changed line 4

setread filename :fib1

Original line 1 Original line 1

Original line 5
Original line 6
Original line 7
Original line 8 Original line 5
Original line 9 Original line 6

For each of the two input files, the program must remember several kinds of information.
The procedure must know which is file number 1 and which file number 2,
in order to print the lines with the correct starting character. The name of each file
is needed as the input to . The current line number is needed in order to
report the location within each file of a changed section. As I’ve just explained, there is
a collection of lines during the examination of a change; we’ll see shortly that
another collection of lines is used for another purpose.

To keep all the information for a file collected together, uses an abstract data
type called a “file information block,” or FIB, that is implemented as an array with five
members. The array is made by a constructor procedure , and there are
selectors for four of the five components: , , , and .
For the fifth component, the saved lines, instead of a selector for the entire collection
the program uses a selector that outputs a single line each time it’s invoked.
(This will make more sense when you read about saved lines in the next section.)

The procedures within this program use these two FIBs as inputs instead of just the
filenames. To read from one of the files, for example, the program will say

One further detail complicates the program. Suppose that a change is found in which
the two groups of differing lines are of different lengths. For example, suppose three
lines in the first file turn into six lines in the second file, like this:

The program has been reading lines alternately from the two files. It has just read the
line saying “Original line 6” from the second file, and that’s the second consecutive match
with a line previously read from the first file. So the program is ready to report a change
from lines 2–4 of the first file to lines 2–7 of the second.

Skipping Equal Lines

diff.same

diff.same

setread
readword popsaved

re-read

position random access
buffer

Skipping Equal Lines 21

Original line 10 Original line 7

to readline :fib
if savedp :fib [output popsaved :fib]
setread filename :fib
output readword
end

to diff.same :fib1 :fib2
local [line1 line2]
do.while [make "line1 getline :fib1

make "line2 getline :fib2
if and listp :line1 listp :line2 [stop] ; Both files ended.

] [equalp :line1 :line2]
addline :fib1 :line1 ; Difference found.
addline :fib2 :line2
diff.differ :fib1 :fib2
end

The trouble is that the program has already read three lines of the first file (the last
three lines shown above) that have to be compared to lines that haven’t yet been read
from the second file. Suppose that the files continue as follows:

We can’t just say, “Okay, we’ve found the end of a difference, so now we can go back to
and read lines from the two files.” If we did that, we’d read “Original line

10” from file 1, but “Original line 7” from file 2, and we’d think there is a difference
when really the two files are in agreement.

To solve this problem we must arrange for to the three unused
lines from file 1. Logo allows a programmer to re-read part of a file by changing the
current within the file (this ability is called), but in this program
I found it easier to the lines by saving them in a list and then, the next time the
program wants to read a line from the file, using one of the saved lines instead.

The first instruction of this procedure says, “If there are any saved lines for this file,
remove the first one from the list and output it.” Otherwise, if there are no saved lines,
then the procedure directs the Logo reader to the desired file (using) and uses

to read a line. Because removes a line from the list of saved lines,
eventually the saved lines will be used up and then the program will continue reading
from the actual file.

Here is the procedure that skips over identical pairs of lines:

Comparing and Remembering Unequal Lines

mutators

22 Chapter 2 Example: Finding File Differences

setitem do.while
true false

Do.while
true do.while

false
:line1 :line2

Getline
nextlinenum

Diff.differ

diff.found

diff.differ

to getline :fib
nextlinenum :fib
output readline :fib
end

to nextlinenum :fib
setitem 3 :fib (item 3 :fib)+1
end

to diff.differ :fib1 :fib2
local "line
make "line readline :fib1
addline :fib1 :line
ifelse memberp :line lines :fib2 ~

[diff.found :fib1 :fib2] ~
[diff.differ :fib2 :fib1]

end

Most of the names you don’t recognize are selectors and for the FIB abstract
data type. (A mutator is a procedure that changes the value of an existing datum, such
as for arrays.) One new Berkeley Logo primitive used here is . It
takes two inputs, an instruction list and an expression whose value is or .

first carries out the instructions in the first input. Then it evaluates the
predicate expression. If it’s , then repeats the process, carrying out the
instructions and evaluating the predicate, until the predicate becomes . In this
case, the idea is “Keep reading lines as long as and are equal.”

reads a line, either from the file or from the saved lines, and also adds one
to the current line number by invoking :

This is a typical mutator; I won’t show the others until the complete program listing at
the end of the chapter.

reads a line (perhaps a saved line) from one of the files, adds it to
the collection of pending lines (not saved lines!) for that file, then looks to see whether
a line equal to this one is pending in the other file. If so, then we may have found the
end of the changed area, and is called to make sure there is a second pair
of equal lines following these two. If not, we must read a line from the other file; this is
accomplished by a recursive call to with the two inputs in reversed order.

first

two

Comparing and Remembering Unequal Lines 23

show member2 "and "joy [she’s my pride and joy etcetera]

show member2 "pride "joy [she’s my pride and joy etcetera]

:fib1 :fib2

diff.differ readline getline

report

Diff.found

member2

member2

member2

member2
diff.differ

report report

member2 firstn

to diff.found :fib1 :fib2
local "lines
make "lines member2 (last butlast lines :fib1) ~

(last lines :fib1) ~
(lines :fib2)

ifelse emptyp :lines ~
[diff.differ :fib2 :fib1] ~
[report :fib1 :fib2 (butlast butlast lines :fib1)

(firstn (lines :fib2) (count lines :fib2)-(count :lines))]
end

>
[and joy etcetera]

>
[]

What was this time will be in the recursive call, and vice versa. (This is why
the FIB data type must include a record of which is the original file 1 and file 2.)

The reason that uses rather than to read from
the input files is that it doesn’t advance the line number. When dealing with a difference
between the files, we are keeping a range of lines from each file, not just a single line.
The line number that the program keeps in the FIB is that of the different line; the
line number of the last different line will be computed by the procedure later.

is called when the last line read from file 1 matches some line pending
from file 2. Its job is to find out whether the last lines from file 1 match two
consecutive lines from file 2. Most of the work is done by the straightforward helper
procedure , which works this way:

If the first two inputs are consecutive members of the third, then outputs the
portion of its third input starting from the point at which the first input was found. If
not, then outputs the empty list.

If ’s output is empty, we continue reading lines from the two files by
invoking . If not, then we’ve found the end of a change, and we invoke

to print the results. The first two inputs to are the two files; the third
and fourth are the corresponding sets of unequal lines. The unequal lines from file 1 are
all but the last two, the ones we just matched; the unequal lines from file 2 are all but the
ones that output. Helper procedure is used to select those lines.

Reporting a Difference

24 Chapter 2 Example: Finding File Differences

report

report
:fib1 report

Report INSERT DELETE
CHANGE process

Process < >

The procedure is somewhat lengthy, but mostly because differences in which
one of the sets of lines is empty are reported specially (as an insertion or a deletion,
rather than as a change).

Here’s how to read : The first step is to ensure that the files are in the proper
order, so that is file number 1. (If not, invokes itself with its inputs
reordered.) The next step is to compute the ending line number for each changed
section; it’s the starting line number (found in the file data structure) plus the number of
unmatched lines, minus one. then prints a header, choosing , ,
or as appropriate. Finally, it invokes once for each file.

prints the unmatched lines, with the appropriate file indicator (or).
Then it takes whatever pending lines were not included in the unmatched group and

to report :fib1 :fib2 :lines1 :lines2
local [end1 end2 dashes]
if equalp (which :fib1) 2 [report :fib2 :fib1 :lines2 :lines1 stop]
print "==========
make "end1 (linenum :fib1)+(count :lines1)-1
make "end2 (linenum :fib2)+(count :lines2)-1
make "dashes "false
ifelse :end1 < (linenum :fib1) [

print (sentence "INSERT :end1+1 (word (linenum :fib2) "- :end2))
] [ifelse :end2 < (linenum :fib2) [

print (sentence "DELETE (word (linenum :fib1) "- :end1) :end2+1)
] [

print (sentence "CHANGE (word (linenum :fib1) "- :end1)
(word (linenum :fib2) "- :end2))

make "dashes "true
]]
process :fib1 "|< | :lines1 :end1
if :dashes [print "-----]
process :fib2 "|> | :lines2 :end2
diff.same :fib1 :fib2
end

to process :fib :prompt :lines :end
foreach :lines [type :prompt print ?]
savelines :fib butfirst butfirst chop :lines (lines :fib)
setlines :fib []
setlinenum :fib :end+2
end

process

process

Program Listing

Program Listing 25

to diff :file1 :file2 :output
local "caseignoredp
make "caseignoredp "false
openread :file1
openread :file2
if not emptyp :output [openwrite :output]
setwrite :output
print [DIFF results:]
print sentence [< File 1 =] :file1
print sentence [> File 2 =] :file2
diff.same (makefile 1 :file1) (makefile 2 :file2)
print "==========
setread []
setwrite []
close :file1
close :file2
if not emptyp :output [close :output]
end

transfers them to the saved lines, so that they will be read again. (As a slight efficiency
improvement, skips over the two lines that we know matched two lines in
the other file; there’s no need to read those again.) The set of pending lines is made
empty, since no file difference is pending. Finally, the line number in the file structure is
increased to match the position following the two lines that ended the difference.

If confuses you, look back at the example I gave earlier, when I first talked
about saving and re-reading lines. In that example, the lines from “Original line 7” to
“Original line 9” in the first file are the ones that must be moved from the list of pending
lines to the list of saved lines. (No lines will be moved in the second file, since that one
had the longer set of lines in this difference, six lines instead of three.)

By the way, in the places where the program adds or subtracts one or two in a line
number calculation, I didn’t work those out in advance. I wrote the program without
them, looked at the wrong results, and then figured out how to correct them!

I’ve discussed the most important parts of this program, but not all of the helper
procedures. If you want to understand the program fully, you can read this complete
listing:

26 Chapter 2 Example: Finding File Differences

;; Skip over identical lines in the two files.

to diff.same :fib1 :fib2
local [line1 line2]
do.while [make "line1 getline :fib1

make "line2 getline :fib2
if and listp :line1 listp :line2 [stop] ; Both files ended.

] [equalp :line1 :line2]
addline :fib1 :line1 ; Difference found.
addline :fib2 :line2
diff.differ :fib1 :fib2
end

;; Remember differing lines while looking for ones that match.

to diff.differ :fib1 :fib2
local "line
make "line readline :fib1
addline :fib1 :line
ifelse memberp :line lines :fib2 ~

[diff.found :fib1 :fib2] ~
[diff.differ :fib2 :fib1]

end

to diff.found :fib1 :fib2
local "lines
make "lines member2 (last butlast lines :fib1) ~

(last lines :fib1) ~
(lines :fib2)

ifelse emptyp :lines ~
[diff.differ :fib2 :fib1] ~
[report :fib1 :fib2 (butlast butlast lines :fib1)

(firstn (lines :fib2) (count lines :fib2)-(count :lines))]
end

to member2 :line1 :line2 :lines
if emptyp butfirst :lines [output []]
if and equalp :line1 first :lines equalp :line2 first butfirst :lines ~

[output :lines]
output member2 :line1 :line2 butfirst :lines
end

Program Listing 27

to firstn :stuff :number
if :number = 0 [output []]
output fput (first :stuff) (firstn butfirst :stuff :number-1)
end

;; Read from file or from saved lines.

to getline :fib
nextlinenum :fib
output readline :fib
end

to readline :fib
if savedp :fib [output popsaved :fib]
setread filename :fib
output readword
end

;; Matching lines found, now report the differences.

to report :fib1 :fib2 :lines1 :lines2
local [end1 end2 dashes]
if equalp (which :fib1) 2 [report :fib2 :fib1 :lines2 :lines1 stop]
print "==========
make "end1 (linenum :fib1)+(count :lines1)-1
make "end2 (linenum :fib2)+(count :lines2)-1
make "dashes "false
ifelse :end1 < (linenum :fib1) [

print (sentence "INSERT :end1+1 (word (linenum :fib2) "- :end2))
] [ifelse :end2 < (linenum :fib2) [

print (sentence "DELETE (word (linenum :fib1) "- :end1) :end2+1)
] [

print (sentence "CHANGE (word (linenum :fib1) "- :end1)
(word (linenum :fib2) "- :end2))

make "dashes "true
]]
process :fib1 "|< | :lines1 :end1
if :dashes [print "-----]
process :fib2 "|> | :lines2 :end2
diff.same :fib1 :fib2
end

28 Chapter 2 Example: Finding File Differences

to process :fib :prompt :lines :end
foreach :lines [type :prompt print ?]
savelines :fib butfirst butfirst chop :lines (lines :fib)
setlines :fib []
setlinenum :fib :end+2
end

to chop :counter :stuff
if emptyp :counter [output :stuff]
output chop butfirst :counter butfirst :stuff
end

;; Constructor, selectors, and mutators for File Information Block (FIB)
;; Five elements: file number, file name, line number,
;; differing lines, and saved lines for re-reading.

to makefile :number :name
local "file
make "file array 5 ; Items 4 and 5 will be empty lists.
setitem 1 :file :number
setitem 2 :file :name
setitem 3 :file 0
output :file
end

to which :fib
output item 1 :fib
end

to filename :fib
output item 2 :fib
end

to linenum :fib
output item 3 :fib
end

to nextlinenum :fib
setitem 3 :fib (item 3 :fib)+1
end

to setlinenum :fib :value
setitem 3 :fib :value
end

Program Listing 29

to addline :fib :line
setitem 4 :fib (lput :line item 4 :fib)
end

to setlines :fib :value
setitem 4 :fib :value
end

to lines :fib
output item 4 :fib
end

to savelines :fib :value
setitem 5 :fib (sentence :value item 5 :fib)
end

to savedp :fib
output not emptyp item 5 :fib
end

to popsaved :fib
local "result
make "result first item 5 :fib
setitem 5 :fib (butfirst item 5 :fib)
output :result
end

really

31

3 Nonlocal Exit

Quiz Program Revisited

catch throw
stop

ask.once
true false

ask.thrice

to ask.thrice :question :answer
repeat 3 [if ask.once :question :answer [stop]]
print sentence [The answer is] :answer
end

to ask.once :question :answer
print :question
if equalp readlist :answer [print [Right!] output "true]
print [Sorry, that’s wrong.]
output "false
end

This chapter is about the commands and . These commands work together
as a kind of super- command, which you can use to stop several levels of procedure
invocation at once.

In Chapter 4 of the first volume, which was about predicates, I posed the problem of a
quiz program that would allow three tries to answer each question. Here is the method I
used then:

I remarked that acts like a command, in that it has an effect (printing
stuff), but it’s also an operation, which outputs or . What it wants to
do is not output a value but instead be able to stop not only itself but also its calling
procedure . Here is another version that allows just that:

32 Chapter 3 Nonlocal Exit

ask.thrice
ask.once ask.thrice

repeat ask.thrice

Ask.once

Throw
throw stop

catch
throw

catch
catch

Catch
catch

run Catch
throw

qa catch catch ask.thrice
repeat ask.once throw

ask.once

to qa :question :answer
catch "correct [ask.thrice :question :answer]
end

to ask.thrice :question :answer
repeat 3 [ask.once :question :answer]
print sentence [The answer is] :answer
end

to ask.once :question :answer
print :question
if equalp readlist :answer [print [Right!] throw "correct]
print [Sorry, that’s wrong.]
end

throw "correct

throw "correct

To understand this group of procedures, start with and suppose the player
keeps getting the wrong answer. Both and are straightforward
commands; the instruction in is simpler than it was in the other
version.

Now what if the person answers correctly? then evaluates the instruction

is a command that requires one input, which must be a word, called a “tag.”
The effect of is to stop the current procedure, like , and to keep stopping
higher-level procedures until it reaches an active whose first input is the same as
the input to .

If that sounds confusing, don’t give up; it’s because I haven’t explained and
you have to understand them together. The description of is deceptively simple:

is a command that requires two inputs. The first must be a word (called the “catch
tag”), the second a list of Logo instructions. The effect of is the same as that of

—it evaluates the instructions in the list. pays no attention to its first input.
That input is there only for the benefit of .

In this example program invokes ; invokes , which
invokes , which invokes . To understand how works, you have
to remember that primitive procedures are just as much procedures as user-defined ones.
That’s something we’re sometimes lax about. A couple of paragraphs ago, I said that

evaluates the instruction

Nonlocal Exit and Modularity

Nonlocal Exit and Modularity 33

ask.once

if if
throw if

catch qa
catch ask.thrice throw

stop
stop if

stop repeat

throw if repeat catch
throw equalp

Throw

make

Throw ask.once

if equalp readlist :answer [print [Right!] throw "correct]

repeat 100 [print "hello if equalp random 5 0 [stop]]

catch "done [repeat 100 [print "hello
if equalp random 5 0 [throw "done]]]

if the player answers correctly. That wasn’t really true. The truth is that
evaluates the instruction

by invoking . It is the procedure that actually evaluates the instruction that invokes
. I made a bit of a fuss about this fine point when we first met , but I’ve been

looser about it since then. Now, though, we need to go back to thinking precisely. The
point is that there is a procedure in the collection of active procedures (,

, , and so on) at the time is invoked.

(In Chapter 9 of the first volume, I made the point that primitives count as active
procedures and that stops the lowest-level invocation of a user-defined procedure.
I said that it would be silly for to stop only the that invoked it, but that you could
imagine stopping a . I gave

as an example of something that doesn’t work. But we can make it work this way:

The stops the , the , and the . Here’s a little quiz for you: Why
don’t I say that the stops the ?)

is called a “nonlocal exit” because it stops not only the (user-defined) procedure
in which it is used but also possibly some number of superprocedures of that one.
Therefore, it has an effect on the program as a whole that’s analogous to the effect of
changing the value of a variable that is not local to the procedure doing the changing. If
you see a command used in some procedure, and the variable whose name is the
first input isn’t local to the same procedure, it becomes much harder to understand what
that procedure is really doing. You can’t just read that procedure in isolation; you have
to think about all its superprocedures too. That’s why I’ve been discouraging you from
using global variables.

is an offense against modularity in the same way. If I gave you to
read, without having shown you the rest of the program, you’d have trouble understanding

Nonlocal Output

34 Chapter 3 Nonlocal Exit

catch throw
ask.thrice ask.once qa1 qa2

qa
quiz

to multiply :list
if emptyp :list [output 1]
output (first :list) * (multiply butfirst :list)
end

to multiply :list
if emptyp :list [output 1]
if equalp first :list 0 [output 0]
output (first :list) * (multiply butfirst :list)
end

it. The point may not seem so important when you’re reading the small example programs
in this book, but when you are working on large projects, with 30 or 300 procedures in
them, it becomes much more important.

If I were going to use and in this quiz project, one thing I might
do is rename and as and . These names would make
it clear that the three procedures are meant to work together and indicate which is
a subprocedure of which. That name change would help a reader of the program.
(Remember that and its friends are not the whole project; they’re all subprocedures
of a higher-level procedure. So grouping them with similar names really does
distinguish them from something else.)

Consider this procedure that takes a list of numbers as its input and computes the product
of all the numbers:

Suppose that we intend to use this procedure with very large lists of numbers, and we
have reason to believe that many of the lists will include a zero element. If any number
in the list is zero, then the product of the entire list must be zero; we can save time by
giving an output of zero as soon as we discover this:

This is an improvement, but not enough of one. To see why, look at this trace of a
typical invocation:

Nonlocal Output 35

trace "multiply
print multiply [4 5 6 0 1 2 3]

trace [multiply mul1]
print multiply [4 5 6 0 1 2 3]

multiply

mul1
multiply mul1

mul1 throw
throw

throw output stop
throw catch

catch throw
zero 0

?
?

0

to multiply :list
output catch "zero [mul1 :list]
end

to mul1 :list
if emptyp :list [output 1]
if equalp first :list 0 [(throw "zero 0)]
output (first :list) * (mul1 butfirst :list)
end

?
?

0

(multiply [4 5 6 0 1 2 3])
(multiply [5 6 0 1 2 3])
(multiply [6 0 1 2 3])
(multiply [0 1 2 3])
multiply outputs 0

multiply outputs 0
multiply outputs 0
multiply outputs 0

(multiply [4 5 6 0 1 2 3])
(mul1 [4 5 6 0 1 2 3])
(mul1 [5 6 0 1 2 3])
(mul1 [6 0 1 2 3])
(mul1 [0 1 2 3])

multiply outputs 0

Each of the last three lines indicates an invocation of in which the zero output
by a lower level is multiplied by a number seen earlier in the list: first 6, then 5, then 4. It
would be even better to avoid those extra multiplications:

This time, as soon as sees a zero in the list, it arranges for an immediate return to
, without completing the other three pending invocations of .

In the definition of , the parentheses around the invocation of are
required, because in this situation we are giving an optional second input. When
given a second input, acts as a super- instead of as a super- . That
is, finds the nearest enclosing matching , as usual, but arranges that that
matching outputs a value, namely the second input to . In this example,
the word is the catch tag, and the number is the output value.

zero

Catching Errors

36 Chapter 3 Nonlocal Exit

print multiply [781 105 87 foo 24 13 6]

to multiply :list
output catch "early [mul1 :list]
end

to mul1 :list
if emptyp :list [output 1]
if not numberp first :list [(throw "early "non-number)]
if equalp first :list 0 [(throw "early 0)]
output (first :list) * (mul1 butfirst :list)
end

?
non-number

to multiply :list
catch "error [output mul1 :list]
output "non-number
end

to mul1 :list
if emptyp :list [output 1]
output (first :list) * (mul1 butfirst :list)
end

The same trick that I’ve used here for efficiency reasons can also be used to
protect against the possibility of invalid input data. This time, suppose that we want
to multiply a list of numbers, but we suspect that occasionally the user of the program
might accidentally supply an input list that includes a non-numeric member. A small
modification will prevent a Logo error message:

I’ve changed the catch tag, even though Logo wouldn’t care, because using the word
as the tag is misleading now that it also serves the purpose of catching non-numeric

data.

On the other hand, if we don’t expect to see invalid data very often, then checking
every list member to make sure it’s a number is needlessly time-consuming; also, this
“defensive” test makes the program structure more complicated and therefore harder for
people to read. Instead, I’d like to be able to multiply the list members, and let Logo
worry about possible non-numeric input. Here’s how:

Catching Errors 37

print multiply [3 4 5]

print multiply [3 four 5]

*

throw
catch

pause.loop
throw

catch
pause.loop

item
item

?
60
?
non-number

throw "error

to safe.item1 :number :list
if :number < (1+count :list) [output item :number :list]
output []
end

To understand how this works, you must know what Logo does when some primitive
procedure (such as in this example) complains about an error. The Logo error handler
automatically carries out the instruction

If this “unwinds” the active procedures all the way to top level without finding a
corresponding , then Logo prints the error message. If you do catch the error, no
message is printed.

If you are paused (see Chapter 15 of the first volume), the situation is a little more
complicated. Imagine that there is a procedure called that reads and
evaluates the instructions you type while paused. The implicit on an error can be
caught by a that is invoked “below” that interactive level. That is, during the pause
you can invoke a procedure that catches errors. But if you don’t do that,
will catch the error and print the appropriate message. (You understand, I hope, that
this is an imaginary procedure. I’ve just given it a name to make the point that the
interactive instruction evaluator that is operating during a pause is midway through the
collection of active procedures starting with the top-level one and ending with the one
that caused the error.) What all this means, more loosely, is that an error during a pause
can’t get you all the way back to top level, but only to where you were paused.

You should beware of the fact that stopping a program by typing control-C or
command-period, depending on the type of computer you’re using, is handled as if it
were an error. That is, it can be caught. So if you write a program that catches errors
and never stops, you’re in trouble. You may have to turn the computer off and start over
again to escape!

If you use the primitive to ask for more items than are in the list, it’s an error.
Here are two versions of that output the empty list instead:

sample

any

38 Chapter 3 Nonlocal Exit

item
item

output

item

output stop

error

to safe.item2 :number :list
catch "error [output item :number :list]
output []
end

catch "error [make "variable item 7 :list]

to sample
catch "error [print :nonexistent]
show error
end

?
[11 [nonexistent has no value] sample

[catch "error [print :nonexistent]]]

catch "error [make "variable item 7 :list]
if not emptyp error [make "variable []]

The first version explicitly checks, before invoking , to make sure the item number
is small enough. The second version goes ahead and invokes without checking,
but it arranges to catch any error that happens. If there is no error, the ends
the running of the procedure. If we get to the next instruction line, we know there must
have been an error. The second version of the procedure is a bit faster because it doesn’t
have to do all that arithmetic before trying . Also, the first version only tests for one
possible error; it will still bomb out, for example, if given a negative item number. The
second version is safe against bad input.

This technique works well if the instruction list s or s. But what if we
want to do something like

and we want to put something special in the variable if there is an error? In this example,
the procedure will continue to its next instruction whether or not an error was caught.
We need a way to ask Logo about any error that might have happened. For this purpose
we use the operation . This operation takes no inputs. It outputs a list with
information about the most recently caught error. If no error has been caught, it outputs
the empty list. Otherwise it outputs a list of four members: a numeric error code, the text
of the error message that would otherwise have been printed, the name of the procedure
in which the error happened, and the instruction line that was being evaluated.

But for now all that matters is that the output will be nonempty if an error was caught.
So I can say

Ending It All

really

Ending It All 39

error error

error

error

error
Ignore

error

throw

zap.player

ignore error

throw "toplevel

to zap.player
print [You’re dead!]
throw "toplevel
end

This will put an empty list into the variable if there is an error in the first line.

You can only invoke once for each caught error. If you invoke a
second time, it will output the empty list. That’s so that you don’t get confused by trying
to catch an error twice and having an error actually happen the first time but not the
second time. If you’ll need to refer to the contents of the list more than once,
put it in a variable.

Just in case you’ve previously caught an error without invoking , it’s a good
idea to use the instruction

before catching an error and invoking to test whether or not the error occurred.
is a Berkeley Logo primitive that takes one input and does nothing with it; the

sole purpose of the instruction is to “use up” any earlier caught error so that the next
invocation of will return an empty list if no error is caught this time.

You can stop all active procedures and return to top level by evaluating the instruction

This is a special kind of that can’t be caught.

You’ve seen this instruction before, in the first volume, where I mentioned it as a
way to get out of a pause. That’s where it’s most useful. Before you use it in a procedure,
though, you should be sure that you want to stop everything. For example, suppose
you’re writing a game program. If the player gets zapped by an evil Whatzit, he’s dead
and the game is over. So you write

because might be invoked several levels deep, but you want to stop
everything. But one day you decide to take three different games you’ve written and
combine them into a single program:

play

40 Chapter 3 Nonlocal Exit

Now your game is no longer the top-level procedure. wants to keep going after a
game is over. By throwing to toplevel in the game program, you make that impossible.

to play
local "gamename
print [You can play wumpus, dungeon, or rummy.]
print [Which do you want?]
make "gamename first rl
if :gamename = "wumpus [wumpus]
if :gamename = "dungeon [dungeon]
if :gamename = "rummy [rummy]
if not memberp :gamename [wumpus dungeon rummy] [print [No such game!]]
play
end

41

The User Interface

4 Example: Solitaire

solitaire

catch
throw

throw

throw
throw

...initialization...

...initialization...

to solitaire

catch "exit [forever [onegame]]
end

to onegame

catch "endgame [forever [catch "bell [parsecmd]]]
end

Program file for this chapter:

This program deals out a hand of solitaire and maintains a picture of the card layout as
you play the game by entering commands to move cards. It doesn’t try to provide help
with strategy, but it does know the rules for legal moves.

This chapter follows Chapter 3 because the solitaire program uses and
for three kinds of nonlocal exit. The program is an infinite loop that plays games

repeatedly, so there is an exit command that is implemented as a . Each game
is itself an infinite loop, processing user commands repeatedly until either the game is
won or the user asks to start a new game. The command to start a new game is also
implemented as a . Finally, if the program detects an error in a user command,
such as asking to move a card that isn’t playable, the program rings a bell and s
back to the command-reading loop.

But what I actually find most interesting about this program is the way in which it interacts
with the user. By now, most people have seen computer solitaire programs in which the
cards are drawn graphically on the screen, and the user moves cards by dragging with a

The Game of Solitaire

easier

everything

stacks
hidden shown

hand pile

top
pile

42 Chapter 4 Example: Solitaire

mouse. (A program of that kind is included with Microsoft Windows, and versions are
also available for most other computer systems.) The advantage of the mouse interface
is that it’s very easy to learn. Once you’ve seen how dragging an object with the mouse
works in a painting program or a word processor, it’s immediately obvious how to drag
cards in the solitaire program, without reading an instruction manual.

This Logo solitaire program doesn’t use a mouse. Instead, you move cards with
keyboard commands. Most of the time it takes a single keystroke to tell the program
which card to move, and where to move it. The trouble is that you have to learn the
command keys! Given the choice, I think that most people would rather start playing
right away with a mouse-driven program than take the time to learn to use mine. But I
actually find the Logo program to use. Typing a single key is faster and easier on
the wrist than moving the mouse to where the card is, holding down the mouse button,
moving the mouse to where you want to put the card, and then releasing the button.

There’s no question that mouse-based graphical user interfaces have vastly increased
the acceptance and use of computers by people who are not technical experts. And I was
happy to have a mouse-based drawing program to produce many of the illustrations in
these books! But I did the word processing with a keyboard-controlled text editor; I find
it easier to use and more flexible than the mouse-based word processors. Maybe it’s just
incipient old age, but I’m still a holdout against the idea that is better done
with a mouse.

Play several games using this program, and several using a mouse-based solitaire
program, and see what you think.

On the next page is a picture of a solitaire game in progress.

In the center of the picture are seven of cards. Each stack may include some
cards and some cards. The hidden cards, if any, are beneath the shown

cards. If there are any cards at all in a stack, at least one must be shown. Cards that are
not part of this layout are held in the and dealt from the hand onto the ; the
cards in the hand are hidden, while the top card of the pile is visible. At the top of the
picture are four more piles of cards, one for each suit; I’ll call these piles “the ” so that
I can reserve the name for the one at the bottom.

The Game of Solitaire 43

Here is how the same layout would be represented by the program:

Shown cards are represented on the screen by the rank and suit of the card. Several cards
may be shown in each stack, while only one card is shown in the pile, and one of each
suit in the top. Each stack has a dash at the top of its display if there are any hidden cards
in that stack; the hand is represented by the number of cards in it.

In playing solitaire it’s important to distinguish black cards from red cards, so
the program does its best to present the color information to you. The facilities for

standout

solitaire

or

and

44 Chapter 4 Example: Solitaire

color display vary tremendously between computer models, both in what capabilities are
available and in the means by which a program can use them. Berkeley Logo sacrifices
versatility for uniformity; there is a primitive operation that can be used to
print text in “reverse video,” whichever of black-on-white and white-on-black isn’t the
usual presentation.

The program displays red cards in normal text and black cards in reverse
video. The DOS version normally displays white text on a black background, while the
Macintosh version normally displays black text on a white background, so the effect looks
different on each kind of computer.

There are many variations in the rules of solitaire, so I should describe in detail the
version this program knows. In the initial layout, there are seven stacks. The first stack
(on the left) has one shown card. The second has one shown and one hidden. The
third has one shown and two hidden. Each stack has one more hidden card than the one
before it, so the seventh stack, at the right, has one shown card and six hidden cards.
There are 28 cards altogether on the board; the remaining 24 cards are in the hand.

Here are the legal moves:

1. Three cards at a time may be dealt from the hand to the pile. The cards are turned
face up, so that the last one dealt is shown. If there are fewer than three cards in
the hand, however many cards are left may be dealt in this way. If there are no
cards in the hand at all, the entire pile may be picked up and turned upside down,
so that they return to the hand in the same order they were in at the beginning.

2. The top card of the pile, or the topmost card of any stack, may be moved to the top
if (a) it is an ace, (b) the card of the same suit and the immediately preceding
rank is visible at the top. For example, the four of clubs can be played onto the
three of clubs at the top.

3. The top card of the pile, or any shown card in any stack, may be moved onto a
stack if the topmost card of that stack is (a) of the opposite color, (b) of the
immediately following rank as the card you are moving. For example, the four of
clubs can be played onto the five of hearts or the five of diamonds on a stack.

4. When a card is moved onto a stack, it is placed so that it does not completely cover
any other shown cards on that stack. Any such shown cards remain shown.

solitaire
s

+ =
P
R
?
card
M
W
G
X

Running the Program

Running the Program 45

Welcome to solitaire

Here are the commands you can type:
Deal three cards onto pile
Play top card from pile
Redisplay the board
Retype these instructions
Play that card
Move same card again
Play up as much as possible (Win)
Give up (start a new game)
Exit to Logo

5. When moving a shown card from a stack, any other cards that are above it (partly
covering it, because they were moved onto it earlier) must be moved along with it.

6. When all shown cards are removed from a stack, the topmost hidden card is turned
over so that it becomes a shown card. If there are no hidden cards in that stack,
the stack becomes empty. (At the beginning of the game, there are no empty
stacks.)

7. Any king that is the top card of the pile, or a shown card in any stack, may be
moved onto an empty stack.

8. The game is won if all cards are moved to the top. The game is lost if there are no
legal moves and not all cards are moved to the top.

I’ve expressed these rules in more formal language than would usually be used. Card
players have shorthand ways of speaking, like “play up in the same suit at the top” or “play
down in the opposite color on the stacks.” I wanted to be very precise in stating the rules
because each part of a rule must be reflected in the computer program. Even so, I’ve left
out some details. For example, my list of rules talks about concepts like “suit” and “rank”
without defining them. I haven’t specified the rank order, namely ace-low. (That is, ace
comes before two, not after king.) What other details, if any, have I forgotten?

To use the program, invoke the command with no inputs. (Being as I am a
lazy typist, I’ve also defined an abbreviation for this command.) The program prints an
initial screenful of instructions, and then repeatedly deals solitaire hands until you give
the exit command. Here are the instructions:

8S

P

M

G

A 2 3 4 5 6 7 8 9 10 J Q K T

H S D C
.

! @ # $ % ˆ &

where

onto.

46 Chapter 4 Example: Solitaire

A card consists of a rank:
or for 10

followed by a suit:

or followed by to play all possible suits up

If you make a mistake, hit delete or backspace.

To move an entire stack,
hit the shifted stack number:

for stacks
1 2 3 4 5 6 7

My goal in designing the “human interface” for this program was that most moves
should require typing only a single character. My idea is that the most common moves
are to play a card from the pile and to move an entire stack (that is, the entire shown
part of a stack) at once. There are one-character commands for all these. If you want to
move only part of a stack, then you must type the name of the card, in the form for
the eight of spades.

As it turns out, in this case what’s easy for the user is also easiest for the program.
When you refer to a card by its position, it’s easy for the program to look up which card
you mean. For example, when you say to play the top card from the pile, it’s easy for
the program to find out what card that is. But when you specify a card by typing its rank
and suit, it’s harder for the program to know that card is. The program must check
the pile and all the stacks to see if your card is a member of each one. So the program
runs faster if you use the single-keystroke commands.

The instructions don’t say how to let the program know where you want to move the
chosen card The reason is that in most cases there is only one possible place, and
the program finds that place itself. (This is the most complicated part of the program.)
Sometimes the chosen card can be moved to two different places. If so, the program
picks a stack to move the card onto, and if you don’t like the program’s choice, you can
type to move the same card again until it ends up where you wanted it.

The program makes no effort to help you with strategic decisions. For example,
some people like to play cards to the top as soon as possible, while other people prefer
to keep cards visible on the stacks as long as possible. Such choices are up to you. Also,
the program does not detect losing the game. (Detecting winning is easy—all four tops
have kings showing—but you haven’t lost the game until no further moves are possible,
which is harder for the program to figure out.) When you decide the game is over, you
just type to start another game.

•
•
•
•
•
•
•
•

Program Structure

Program Structure 47

card

cards

where

onto

:where :onto
run

solitaire onegame
onegame

parsecmd

10H
Parsecmd 1

0 digit parsecmd
H play.by.name

There are about 60 procedures in this program. These procedures can be roughly
divided into several purposes:

initialization
reading and interpreting keyboard commands
finding the chosen card in the layout
finding where the chosen card can move
moving the card
displaying the card layout
miscellaneous user commands
data abstraction

In the procedures that move cards, the most interesting part of the program, a few
important variables are used to communicate what moves should be made:

The card that the user asked to move.

All the cards that must be moved. (There may be more than one if the
requested card is in the middle of a stack.)

The location (before moving) of the chosen card.

A list of all possible locations to which the card can be moved.

As we’ll see later in more detail, the card locations in and are represented
in the form of Logo instructions that can be to perform the desired move.

The overall program structure is two nested loops. The top-level procedure
repeatedly invokes . As its name suggests, each invocation of

plays one solitaire game. It shuffles and deals the cards, then repeatedly in-
vokes , which reads a character from the keyboard and chooses the appropriate
procedure to carry out the user’s command.

(Most user commands require only one character. The situation is a little more
complicated if the user types the name of a card, such as for the ten of hearts, as a
command. actually treats this as three separate commands. The and the

merely record the card’s rank in a variable named . When sees the
letter , which selects the card’s suit, it invokes , which combines the
remembered rank with the just-typed suit to determine the desired card.)

Initialization

shuffling

48 Chapter 4 Example: Solitaire

solitaire onegame

localmake
local make

hand

butfirst

setitem

solitaire
onegame shuffle

arraytolist

do.something.with first :hand
make "hand butfirst :hand

to shuffle :len :array
if :len=0 [output arraytolist :array]
localmake "choice random :len
localmake "temp item :choice :array
setitem :choice :array (item :len-1 :array)
setitem :len-1 :array :temp
output shuffle :len-1 :array
end

Both and include initialization instructions. That’s because some
actions are only required once, such as computing the 52 names of cards in the deck,
while others are required for each game, such as shuffling those cards.

Many initialization actions use the Berkeley Logo primitive command ,
which is an abbreviation for a command followed by a command. The
program uses no global variables, although the variables that are local to these top-level
procedures are available to any procedure within the solitaire program.

For most purposes, the most convenient representation of the deck of cards is as a
list. That’s because what the program most often does with the deck is to deal a card
from it to somewhere else. If the deck is represented as a list in the variable , then
dealing a card is roughly equivalent to these instructions:

A list is convenient because can be used to remove a card from the deck. It
turns out, however, that the deck is easiest if it’s represented as an array. That’s
because the technique used to shuffle the deck is to exchange pairs of cards repeatedly.
In the first step, we swap the 52nd card of the deck with a randomly chosen card (perhaps
itself). The newly chosen last card is now exempt from further exchanges. In the second
step, the 51st card of the deck is swapped with some card in the remainder of the deck,
and so on, for 51 steps. The primitive makes it easy to change the value of a
member partway through an array. If the deck were represented as a list, each exchange
would require making a (slightly changed) copy of the entire list.

The solution to this problem is that both representations, list and array, are used in
the program. The procedure creates an array containing the 52 cards. For
each game, invokes , which shuffles the cards in the array and then
uses the primitive to output a list containing the cards in their new order.
That list is used by the other parts of the program.

Data Abstraction

Data Abstraction 49

first last

8C
butlast

last first butlast

A J Q K

ranknum

to rank :card
output butlast :card
end

to suit :card
output last :card
end

to redp :card
output memberp (suit :card) :reds
end

to ranknum :rank
if emptyp :rank [output 0]
if numberp :rank [output :rank]
if :rank = "A [output 1]
if :rank = "J [output 11]
if :rank = "Q [output 12]
if :rank = "K [output 13]
end

As in most large programs, the solitaire program uses selectors like and for
several different purposes in different contexts. To make the program easier to read and
maintain, more meaningful names are used in each context.

For example, cards are represented in the program as words containing the rank
and the suit, so the word represents the eight of clubs. To find the rank of a card,
the program must take the of the word, and to find the suit, it must take the

of the word. (Why not use instead of to get the rank? Because if
the card happens to be a ten, there are two digits in its rank. The suit is always a single
character.) Instead of using these primitive selectors directly, I’ve defined synonyms:

When considering playing a card onto a stack, the program does not have to know the
precise suit of the card, but must know whether it’s red or black:

One complication in dealing with cards is that the program wants to use a card’s rank
in two different ways. For user interaction (reading commands and displaying cards on
the screen) the ranks should be represented using the names for aces and picture cards
(, , , and). But for comparison purposes (such as deciding whether a card can be
played on top of another card), it’s more convenient to represent all ranks as numbers:
1 for ace, 11 for jack, 12 for queen, and 13 for king. A conversion function
makes this possible:

Stacks

emptyp

toph tops
topd topc

top settop

onegame

stack pushdown list

50 Chapter 4 Example: Solitaire

to top :suit
output thing word "top :suit
end

to settop :suit :value
make (word "top :suit) :value
end

foreach :suits [settop ? "]

(When would a rank be empty? The test is useful in the case of deciding whether
a card can be played onto an empty “top.” In general, the only card that can be played
onto a top is the rank after the one that’s already visible there; for example, if a five is
showing, then a six can be played. Treating an empty top as having a rank of zero means
that the following rank, an ace, is permitted, just as the rules require.)

In an actual solitaire game, a top is a pile of several cards of the same suit, with an
ace on the bottom and other cards over it in sequence. But in the program, there is no
need to represent any but the topmost card, since the lower cards have no further role
in the game. In this program, the tops are represented by four variables , ,

, and . (The last letter indicates the suit.) The value of each variable is the
empty word if that top is empty, or the rank of the topmost card if not. Instead of using
these variables directly, the program uses data abstraction procedures and
to examine and modify the values:

For example, part of the initialization in is to make all four tops empty:

A (also called a) is a data structure that is used to remember things
and recall them later. A stack uses the rule “Last In, First Out.” That is, when you take
something out of a stack, the one you get is the one you put in most recently. The
name “stack” is based on the metaphor of the spring-loaded stack of trays you find in a
self-service cafeteria. You add a tray to the stack by pushing down the trays that were
already there, adding the new tray at the top of the pile. When you remove a tray, you
take the one at the top of the pile—the one most recently added to the stack.

A pile of cards in a solitaire game works just like a pile of trays in a cafeteria. You
add cards to the top of the pile, and you remove cards from the top of the pile. I’ve used
the name “stack” for some of the piles of cards in this project partly because those groups
of cards are represented in the program by stacks in the technical sense.

push

pop

name

Stacks 51

push pop
fput

first

shown3 hidden3
push

push pop Push

Pop

make "hidden3 fput :card :hidden3

make "card first :hidden3
make "hidden3 butfirst :hidden3

push "hidden3 :card
make "card pop "hidden3

to push :stack :thing
make :stack fput :thing (thing :stack)
end

to pop :stack
local "result
make "result first thing :stack
make :stack butfirst thing :stack
output :result
end

Berkeley Logo provides primitive procedures and to implement stacks.
Each stack is represented as a list. To push something onto the stack, Logo uses ;
to pop something off the stack, it uses . (Actually, it’s slightly more complicated,
as you’ll see in a moment. But this is essentially true.) For example, each of the seven
numbered card stacks in the solitaire layout is represented by two lists, one for the shown
cards and one for the hidden cards. The lists for the third stack are kept in variables
named and . To a new card onto the hidden stack without using
the primitive, you could say

To a card from that stack, you’d say

In this case, the first instruction reads the top of the stack, while the second removes that
entry from the stack.

Berkeley Logo provides and as a data abstraction mechanism. is a
command that takes two inputs. The first input is a word, the of a stack. The second
input is any Logo datum. is an operation with one input, the name of a stack. Its
output is the first datum on the stack. It also has the effect of removing that datum from
the stack. Instead of the instructions above, you can say

If Berkeley Logo didn’t already provide these procedures, it would be easy to write
them:

52 Chapter 4 Example: Solitaire

?
?
AH
?
AH
?
AH

?
AH
?
5C
?
10S

to setempty :stack
make :stack []
end

push :stack
thing :stack make

stack
stack

Pop

pop

pop

pop
push pop

pop

make

make "cards [AH 5C 10S]
print first :cards

print first :cards

print first :cards

print pop "cards

print pop "cards

print pop "cards

Within the definition of , the expression represents the name of the stack,
while the expression represents the stack itself. The instruction is
an example of indirect assignment; it does not give a new value to the variable but
rather to the variable whose name is contained in .

is an unusual Logo procedure in that it’s an operation that also has an effect.
Most operations don’t have effects. They compute some value, but they don’t make any
permanent change in the state of the computer. Another way of looking at this is to say
that for most operations, if you apply the same operation to the same inputs repeatedly,
you’ll get the same result every time.

But if you apply to the same input repeatedly, you’ll get a different output each time.

The combination of output and effect in is a powerful technique, but a potentially
confusing one. It’s important for anyone who tries to read this program to be aware
that has an effect. Fortunately, the concept of a stack is a standard, well-known
convention in computer science, and the names and are the traditional ones
for this purpose, so is somewhat self-documenting.

Before a stack can be used, it must be initialized. Generally a stack starts out with
no data in it. That is, it’s initially an empty list. This initialization could be done with an
explicit instruction, but instead I invented a procedure for the purpose:

computed

name

Stacks 53

hidden3
"hidden3 :hidden3

thing

First doesn’t like [] as input

if not emptyp :hidden3 [make "card pop "hidden3]

word "hidden :num

to shown :num
output word "shown :num
end

to hidden :num
output word "hidden :num
end

push (shown 5) :card
make "card pop shown 5
setempty shown 5

I think this makes the program slightly more elegant.

It is an error to try to pop more items from a stack than you’ve pushed onto it. If
you try to do this, you’ll get an error message something like

Often the logic of a program ensures automatically that you never try to overpop a stack.
But in the solitaire program I sometimes have to check for this possibility explicitly, with
an instruction like

I’ve been using the name as an example in this discussion, typing
when the name of the stack was needed or when its value was

needed. In fact, such names do not appear explicitly in the program. There are no
instructions that are directed exclusively to the third stack. Instead, stack instructions
are applied either to all seven stacks or to a stack chosen by the user through keyboard
commands. The name of a stack must be using an expression like

The contents of the stack would be examined by applying to that expression. To
make the program cleaner I created procedures to generate these variable names.

Remember that these operations output the of a stack variable, not the contents of
a stack. So, for example, you can use them in instructions like these:

There are only a few places in the program where a procedure needs to refer to the entire
contents of a stack, rather than just pushing or popping a single datum at a time. (One

reverse

Program as Data

is

turn it over

54 Chapter 4 Example: Solitaire

remshown
thing

shown hidden

:hand
:pile emptyp

thing shown hidden stackemptyp
thing

reverse

emptyp thing shown :num

to stackemptyp :name
output emptyp thing :name
end

stackemptyp shown :num

to deal
if emptyp :hand [make "hand :pile setempty "pile]
if emptyp :hand [output []]
output pop "hand
end

such place, for example, is , which has the job of removing perhaps several
cards from a stack.) In those places, there is an explicit use of to examine the
contents of a stack selected by or . An expression that occurred often in
the program was

to see if a stack is empty; I cleaned up these expressions somewhat by inventing a special
procedure for this test.

This is used in an expression like

Note that when a stack mentioned explicitly by name in the program, like
or , it is tested for emptiness with the ordinary . In this case the colon
abbreviates the invocation of ; for the or names,
abbreviates the invocation of .

One small detail that’s easy to miss is that in a non-computer game of solitaire, when
a hand is completely dealt out, you pick up the pile from the table and to form
a new hand. What was the top card of the pile becomes the bottom card of the hand.
The program achieves the same effect while dealing cards:

The Berkeley Logo primitive operation is used to reverse the order of the cards
as they are moved from the pile to the hand.

In order for the program to move a card, it must first make sure that the requested move
is legal. The first step is to find the card’s current position. (That’s easy if the move

safe

Program as Data 55

P

parsecmd
playpile P playstack
play.by.name 7D

play.by.name

card
where
playcard

checktop checkonto

checktop

checkonto
. W

to playcard
setempty "onto
if not coveredp [checktop]
if and not :upping

or (emptyp :onto) (not upsafep rank :card)
[checkonto]

if emptyp :onto [bell]
run :where
run first :onto
end

is requested by position, using the command to play the card at the top of the pile,
or a shifted stack number to move the entire shown stack; it’s a little harder if the card
is requested by its rank and suit. Even then, in order to be playable the card must be
either on top of the pile or somewhere in a shown stack.) The next step is to look for
another position into which the card can be moved; the only possibilities are a stack or a
top. Only after both old and new positions have been verified can the program actually
modify its data structures (and the screen display) to move the card.

When you type a card-moving command, invokes one of three procedures:
for the command, for one of the shifted stack numbers (such

as for stack 3), or for a rank and suit (such as). The first two of
these must figure out which card is desired, and ensure that there is in fact a card in the
requested position; has the opposite job, since it already knows the card
and must determine that it’s in a playable position. But in either case, these procedures
do not actually move the card. They ensure that the variable has the desired card
as its value, and that the variable has as its value a representation of the card’s
current position. Then they call , whose job is to ensure that there is a valid
destination for the card, and if so, to move it:

Subprocedures and determine whether the requested card
can be moved to the top or to a stack. (Each of these is called only if certain conditions
are met. For , the condition is that the desired card must not be in the middle
of a shown stack; it must be either the bottommost card of a shown stack or visible on the
pile. The condition for calling is more complicated. If the user’s command
was or , then cards are played only into the top, so there is no need to check the stacks.
In other cases, to make the game move more quickly, the program will always move the
card to the top if it is both possible and to do so. Such a move is considered safe if
every card whose rank is less than that of the requested card by two or more is already in
the top, because then any card of rank one less than the chosen card can be played to
the top, and so the chosen card is not needed in the stacks.)

syntax

56 Chapter 4 Example: Solitaire

:where :onto
Checktop checkonto

:onto checktop checkonto

run

where

P
Parsecmd playpile

P

where

Rempile
playstack1

where

to playpile
if emptyp :pile [bell]
if not emptyp :digit [bell]
make "card first :pile
make "where [rempile]
carddis :card
playcard
end

[rempile]

make "where sentence "remshown :num

[remshown 4]

Just as identifies the card’s current position, will hold all of the
possible destination positions. and add possible positions to this
variable, which is a list. If is empty after and have been
invoked, then there is no legal way to move this card.

I want to focus attention on the two instructions. They are the ones that actually
do the work of moving a card from one place to another; the first removes the card from
its original position and the second inserts the card at its new position.

The value of the variable is not merely a number or word indicating where
the card is to be found, but a Logo instruction that invokes the procedure needed to
remove the card. For example, suppose you type the letter to play a card from the top
of the pile. then invokes :

The first two instructions check for errors. The first checks for trying to play a card from
the pile when there are no cards in the pile. The second checks for the error of
typing a rank and then typing instead of a suit. Having cleared those hurdles, the next
instruction finds the actual card (rank and suit) you want to play from the pile. The
interesting part for the present discussion is that the variable is given as its value
the list

is the name of a procedure with no inputs, so this list contains a valid Logo
instruction. The corresponding instruction in is

which gives a value like

instruction
datum.

list

Program as Data 57

playcard
run :where

coveredp

run
where

Playcard

onto

checktop
checkonto :onto

:onto

Playcard
M

:card :onto
:onto

:onto

if equalp :where [rempile] [output "false]

if :where = 0 [rempile]
if :where = 1 [remshown 1]
if :where = 2 [remshown 2]

[[playonto 3] [playonto 6] [playtop]]

to again
if not emptyp :digit [bell]
if emptyp :onto [bell]
make "where list "remshown last pop "onto
if emptyp :onto [bell]
carddis :card
run :where
run first :onto
end

if you’ve selected stack four. In either case, can later remove the card from its
original location just by ning . At the same time, this Logo can be
examined as a For example, contains the instruction

Most programming languages don’t have a facility like Logo’s command. In those
languages, the variable would have to contain, for example, a number indicating
where the card is to be found. would then use this number to choose a course
of action with a series of instructions like this:

... and so on.

The situation concerning the variable is similar, except that there is a slight
complication because there may be more than one legal destination for a card. (By
contrast, every card starts out in exactly one place!) Therefore, and

set up as a of Logo instructions, one for every possible destination.
If a card could be played onto stack 3, stack 6, or the top, will be

runs the first member of this list. Why bother saving the other members?
After a successful move, the user can type to move the same card to a different
destination. Here’s how that is done:

This procedure uses the values that are still left over in and from the last
move. The first member of is the instruction that moved the card onto a stack. (If
the card was moved to the top, it’s because there were no alternatives in , because

Multiple Branching

58 Chapter 4 Example: Solitaire

playtop
:onto

where

pop onto

M

if
stop

[[playonto 3] [playonto 6] [playtop]]

make "where list "remshown last pop "onto

[remshown 3]

[[playonto 6] [playtop]]

to parsecmd ;; abbreviated version
local "char
make "char uppercase readchar
if equalp :char "T [parsedigit 1 parsezero stop]
if memberp :char [1 2 3 4 5 6 7 8 9 A J Q K] [parsedigit :char stop]
if equalp :char "0 [parsezero stop]
if memberp :char :suits [play.by.name :char stop]
if equalp :char ". [allup stop]
if equalp :char "W [wingame stop]
if equalp :char "M [again stop]
; several more possibilities omitted...
bell
end

is always the last choice in the list.) That stack is now the card’s position of
origin! If was

then the instruction

will give the value

and, because removes the first datum from the stack, leaves with the value

The chosen card will be moved from stack three to stack six. If the user types again,
then the card will be moved from stack six to the top.

Consider the procedure that interprets what you type at the keyboard while running the
solitaire program:

This sort of thing is common in Logo programming: a string of s in which each
conditional instruction list ends with because the choices are mutually exclusive.

stop

if

ifelse

ifelse
stop

Branch

Branch

multiple
branching

Multiple Branching 59

to parsecmd
local "char
make "char uppercase readchar
ifelse equalp :char "T ~

[parsedigit 1 parsezero]
[ifelse memberp :char [1 2 3 4 5 6 7 8 9 A J Q K]

[parsedigit :char]
[ifelse equalp :char "0 [parsezero]

; ...
bell]]

end

to parsecmd
local "char
make "char uppercase readchar
branch [
[[equalp :char "T] [parsedigit 1 parsezero]]
[[memberp :char [1 2 3 4 5 6 7 8 9 A J Q K]] [parsedigit :char]]
[[equalp :char "0] [parsezero]]
[[memberp :char :suits] [play.by.name :char]]
[[equalp :char ".] [allup]]
[[equalp :char "W] [wingame]]
[[equalp :char "M] [again]]
; several more possibilities omitted...
[["true] [bell]]]

end

Some people find this use of offensive because it doesn’t make it graphically
apparent when reading the program that the choices are exclusive. The form of the
program makes it seem that each decision (that is, each instruction) is independent
of the others.

It would be possible to meet this objection by using , putting each new test
in the false part of the previous one:

It’s not clear that this is an improvement, although the use of makes more sense
as an alternative to when only a single decision is involved.

Some programming languages provide a special representation for such a
decision. A Logo equivalent might look like this:

is a hypothetical command that takes a single input, a list of lists. Each member
of the input is a list with two members. The first member must be a Logo predicate
expression; the second must be a Logo instruction. evaluates the first half of

Further Explorations

60 Chapter 4 Example: Solitaire

push "undo.list (list "pile :pile)

true branch

false branch Branch

branch

branch

to branch :conditions
if emptyp :conditions [stop]
if (run first first :conditions) [run last first :conditions stop]
branch butfirst :conditions
end

to rempile
make "cards (list (pop "pile))
dispile
end

to rempile

make "cards (list (pop "pile))
dispile
end

each pair. If the value is , then carries out the instruction in the second
half of that pair, and then stops without evaluating the remaining pairs. If the value is

, goes on to the next pair. is not a Logo primitive, but it can
easily be written in Logo:

Inventing control structures like this is the sort of thing Logo makes easy and other
languages make impossible.

The trouble with this particular control structure in Logo is that the input to
is typically a very long list, extending over several lines on the screen. Traditional Logo
dialects have not done a good job of presenting such long lists with clear formatting. More
recent versions can, however, handle instructions like that multi-line invocation.

I keep thinking of new features I’d like in this program. I think the most important is
an Undo command, which would undo the effect of the previous user command. This
should be pretty easy to implement; every time the program changes the value of a
variable that represents card positions, it should make a list of the variable’s name and
its old value, and push that onto a changes list. For example, here’s the procedure that
removes a card from the pile:

And here’s how I’d change it for the undo command:

Program Listing

Program Listing 61

redisplay
Playcard setempty

P
parsecmd playpile playcard rempile playtop

The undo command itself would go through the list, restoring the values of all the
variables it finds, and then call to make the display match the program’s
state. would the undo list before moving any cards.

Another possibility is to improve the display. One person who tried this program
commented that it’s not enough to indicate whether the hidden part of a stack is empty
or nonempty; he wanted to see exactly how many cards are present. Novice users might
be helped by keeping an abbreviated command list in the empty space toward the right
side of the screen.

A more ambitious direction you could pursue is to write a similar program for a
different solitaire game. There are books of card games that include several variations
on this kind of solitaire as well as versions of solitaire that are totally different in their
rules and layouts.

Another direction would be to try to have the program offer strategic suggestions, or
even play the game entirely by itself. As with any strategy game, you would have to choose
between determining the strategy for the program in advance and letting it learn from
its experience and modify its strategy. Which is better, playing cards to the top quickly
or saving them in the stacks as long as possible? Which is better, playing a card from the
pile or playing a card of the same rank and color from the stacks? You could research
these questions by writing versions of the program with different strategies and collecting
statistics on their performance.

Another possibility would be to abandon solitaire and program the computer to play
one side of a two-player game with you. Blackjack is a simple example; poker is a harder
one.

A different kind of exploration would be to try to speed up the running of this
program. Earlier I suggested the possibility that the program might benefit from
remembering explicitly the position of each card. You could find out whether or not that
would really help. (It would speed up the searching process for a card, but it would also
slow down the moving of cards because the program would have to remember the new
location instead of the old one. My guess is that the speedup would be substantial and
the slowdown minimal, but I’m not sure.) What other bottlenecks can you find in this
program, and how can you improve them?

If you trace the progress of a user command, let’s say to play from the pile, from
through and to and then either or

playonto
remshown playonto

62 Chapter 4 Example: Solitaire

, you’ll understand most of the program. There are a few slightly complicated
details in moving several cards from one stack to another (and)
but nothing really hard to understand.

to solitaire
print [Welcome to solitaire]
instruct
localmake "allranks [A 2 3 4 5 6 7 8 9 10 J Q K]
localmake "numranks map "ranknum :allranks
localmake "suits [H S D C]
localmake "reds [H D]
localmake "deckarray (listtoarray (crossmap "word :allranks :suits) 0)
localmake "upping "false
catch "exit [forever [onegame cleartext]]
cleartext
end

to s
solitaire
end

to onegame
print [Shuffling, please wait...]
local [card cards digit pile where]
localmake "onto []
local map [word "top ?] :suits
local cascade 9 [(sentence (word "shown #) (word "hidden #) ?)] []
localmake "ranks :allranks
localmake "numstacks 7
local map [word "num ?] :numranks
foreach :numranks [make word "num ? 4]
localmake "hand shuffle 52 :deckarray
setempty "pile
initstacks
foreach :suits [settop ? "]
redisplay
catch "endgame [forever [catch "bell [parsecmd]]]
end

Program Listing 63

;; Initialization

to instruct
print [] print [Here are the commands you can type:]
type "| | type (sentence standout "+ standout "=)
type "| | print [Deal three cards onto pile]
instruct1 "P [Play top card from pile]
instruct1 "R [Redisplay the board]
instruct1 "? [Retype these instructions]
instruct1 "card [Play that card]
instruct1 "M [Move same card again]
instruct1 "W [Play up as much as possible (Win)]
instruct1 "G [Give up (start a new game)]
instruct1 "X [Exit to Logo]
print [A card consists of a rank:]
type "| | print (sentence standout [A 2 3 4 5 6 7 8 9 10 J Q K]

"or standout "T [for 10])
print [followed by a suit:]
type "| | print standout [H S D C]
print (sentence [or followed by] standout ".

[to play all possible suits up])
print [] print [If you make a mistake, hit delete or backspace.]
print [] print [To move an entire stack,]
type "| | print [hit the shifted stack number:]
type "| | print (sentence standout [! @ # $ % ^ &] [for stacks])
type "| | print [1 2 3 4 5 6 7]
print []
end

to instruct1 :key :meaning
type "| |
type standout :key
repeat 5-count :key [type "| |]
print :meaning
end

to shuffle :len :array
if :len=0 [output arraytolist :array]
localmake "choice random :len
localmake "temp item :choice :array
setitem :choice :array (item :len-1 :array)
setitem :len-1 :array :temp
output shuffle :len-1 :array
end

64 Chapter 4 Example: Solitaire

to initstacks
for [num 1 7] [inithidden :num

turnup :num]
end

to inithidden :num
localmake "name hidden :num
setempty :name
repeat :num [push :name deal]
end

;; Reading and interpreting user commands

to parsecmd
if emptyp :digit [setcursor [1 22] type "| | setcursor [1 22]]
local "char
make "char uppercase readchar
if equalp :char "T [parsedigit 1 parsezero stop]
if memberp :char [1 2 3 4 5 6 7 8 9 A J Q K] [parsedigit :char stop]
if equalp :char "0 [parsezero stop]
if memberp :char :suits [play.by.name :char stop]
if equalp :char ". [allup stop]
if equalp :char "W [wingame stop]
if equalp :char "M [again stop]
if memberp :char [+ =] [hand3 stop]
if equalp :char "R [redisplay stop]
if equalp :char "? [helper stop]
if equalp :char "P [playpile stop]
if and equalp :char "|(| not emptyp :digit [cheat stop]
if and equalp :char "|)| not emptyp :digit [newstack stop]
if memberp :char [! @ # $ % ^ & * ()] ~

[playstack :char [! @ # $ % ^ & * ()] stop]
if memberp :char (list "| | char 8 char 127) [rubout stop]
if equalp :char "G [throw "endgame]
if equalp :char "X [throw "exit]
bell
end

to parsedigit :char
if not emptyp :digit [bell]
make "digit :char
type :digit
end

Program Listing 65

to parsezero
if not equalp :digit 1 [bell]
make "digit 10
type 0
end

to rubout
setcursor [1 22]
type "| |
setcursor [1 22]
setempty "digit
end

to bell
if not :upping [type char 7]
setempty "digit
throw "bell
end

;; Deal three cards from the hand

to hand3
if not emptyp :digit [bell]
if and emptyp :hand emptyp :pile [bell]
push "pile deal
repeat 2 [if not emptyp :hand [push "pile deal]]
dispile dishand
end

to deal
if emptyp :hand [make "hand reverse :pile setempty "pile]
if emptyp :hand [output []]
output pop "hand
end

;; Select card to play by position (pile or stack) or by name

to playpile
if emptyp :pile [bell]
if not emptyp :digit [bell]
make "card first :pile
make "where [rempile]
carddis :card
playcard
end

66 Chapter 4 Example: Solitaire

to playstack :which :list
if not emptyp :digit [bell]
foreach :list [if equalp :which ? [playstack1 # stop]]
end

to playstack1 :num
if greaterp :num :numstacks [bell]
if stackemptyp shown :num [bell]
make "card last thing shown :num
make "where sentence "remshown :num
carddis :card
playcard
end

to play.by.name :char
if emptyp :digit [bell]
if equalp :digit 1 [make "digit "a]
type :char
wait 0
make "card word :digit :char
setempty "digit
findcard
if not emptyp :where [playcard]
end

to findcard
if findpile [stop]
make "where findshown
if emptyp :where [bell]
end

to findpile
if emptyp :pile [output "false]
if equalp :card first :pile [make "where [rempile] output "true]
output "false
end

to findshown
for [num 1 :numstacks] ~

[if memberp :card thing shown :num [output sentence "remshown :num]]
output []
end

Program Listing 67

;; Figure out all possible places to play card, then pick one

to playcard
setempty "onto
if not coveredp [checktop]
if and not :upping ~

or (emptyp :onto) (not upsafep rank :card) ~
[checkonto]

if emptyp :onto [bell]
run :where
run first :onto
end

to coveredp
if equalp :where [rempile] [output "false]
output not equalp :card first thing shown last :where
end

to upsafep :rank
if memberp :rank [A 2] [output "true]
output equalp 0 thing word "num ((ranknum :rank)-2)
end

to checktop
if (ranknum rank :card) = 1 + (ranknum top suit :card) ~

[push "onto (list "playtop word "" suit :card)]
end

to checkonto
for [num :numstacks 1] ~

[ifelse stackemptyp shown :num
[checkempty :num]
[checkfull :num thing shown :num]]

end

to checkempty :num
if equalp rank :card "k [push "onto (list "playonto :num)]
end

to checkfull :num :stack
if equalp (redp :card) (redp first :stack) [stop]
if ((ranknum rank first :stack) = 1 + (ranknum rank :card)) ~

[push "onto (list "playonto :num)]
end

68 Chapter 4 Example: Solitaire

;; Play card, step 1: remove from old position

to rempile
make "cards (list (pop "pile))
dispile
end

to remshown :num
setempty "cards
remshown1 :num (count thing shown :num)
if stackemptyp shown :num [turnup :num disstack :num]
end

to remshown1 :num :length
do.until [push "cards (pop shown :num)] ~

[equalp :card first :cards]
for [i 1 [count :cards]] ~

[setcursor list (5*:num - 4) (5+:length-:i) type "| |]
end

to turnup :num
setempty shown :num
if stackemptyp hidden :num [stop]
push (shown :num) (pop hidden :num)
end

;; Play card, step 2: put in new position

to playtop :suit
localmake "var word "num ranknum rank :card
settop :suit rank :card
distop :suit
make :var (thing :var)-1
if (thing :var)=0 [make "ranks butfirst :ranks]
end

to playonto :num
localmake "row 4+count thing shown :num
localmake "col 5*:num-4
for [i 1 [count :cards]] ~

[localmake "card pop "cards
push (shown :num) :card
setcursor list :col :row+:i
carddis :card]

end

Program Listing 69

;; Update screen display

to redisplay
cleartext
for [num 1 :numstacks] [disstack :num]
foreach :suits "distop
dispile
dishand
setcursor [1 22]
setempty "digit
end

to disstack :num
setcursor list (-3 + 5 * :num) 4
type ifelse stackemptyp hidden :num ["| |] ["-]
if stackemptyp shown :num [setcursor list (-4 + 5 * :num) 5

type "| | stop]
localmake "stack (thing shown :num)
localmake "col 5*:num-4
for [i [count :stack] 1] ~

[setcursor list :col :i+4
carddis pop "stack]

end

to distop :suit
if emptyp top :suit [stop]
if equalp :suit "H [distop1 4 stop]
if equalp :suit "S [distop1 11 stop]
if equalp :suit "D [distop1 18 stop]
distop1 25
end

to distop1 :col
setcursor list :col 2
carddis word (top :suit) :suit
end

to dispile
setcursor [32 23]
ifelse emptyp :pile [type "| |] [carddis first :pile]
end

70 Chapter 4 Example: Solitaire

to dishand
setcursor [27 23]
type count :hand
type "| |
end

to carddis :card
ifelse memberp suit :card :reds [redtype :card] [blacktype :card]
type "| |
end

to redtype :word
type :word
end

to blacktype :word
type standout :word
end

;; Miscellaneous user commands

to again
if not emptyp :digit [bell]
if emptyp :onto [bell]
make "where list "remshown last pop "onto
if emptyp :onto [bell]
carddis :card
run :where
run first :onto
end

to allup
if emptyp :digit [bell]
if equalp :digit 1 [make "digit "a]
localmake "upping "true
type ". wait 0
foreach map [word :digit ?] [H S D C] ~

[catch "bell [make "card ?
findcard
if not emptyp :where [playcard]]]

setempty "digit
end

Program Listing 71

to helper
cleartext
instruct
print standout [type any key to continue]
ignore rc
redisplay
end

to wingame
type "W
localmake "cursor cursor
foreach :ranks [if not upsafep ? [stop]

make "digit ? ~
allup ~
setempty "digit ~
setcursor :cursor]

if equalp (map "top [H S D C]) [K K K K] ~
[ct print [you win!] wait 120 throw "endgame]

end

to newstack
localmake "num :numstacks+1
setcursor [1 22] type "| |
if not equalp :digit 9 [bell]
setempty hidden :num
setempty shown :num
make "numstacks :num
setempty "digit
end

to cheat
setcursor [1 22] type "| |
if not equalp :digit 8 [bell]
if and emptyp :hand emptyp :pile [bell]
push "pile deal
dispile
dishand
setempty "digit
end

;; Data abstraction (ranks)

to rank :card
output butlast :card
end

72 Chapter 4 Example: Solitaire

to ranknum :rank
if emptyp :rank [output 0]
if numberp :rank [output :rank]
if :rank = "A [output 1]
if :rank = "J [output 11]
if :rank = "Q [output 12]
if :rank = "K [output 13]
end

;; Data abstraction (suits)

to suit :card
output last :card
end

to redp :card
output memberp (suit :card) :reds
end

;; Data abstraction (tops)

to top :suit
output thing word "top :suit
end

to settop :suit :value
make (word "top :suit) :value
end

;; Data abstraction (card stacks)

to shown :num
output word "shown :num
end

to hidden :num
output word "hidden :num
end

;; Data abstraction (pushdown stacks)

to stackemptyp :name to setempty :stack
output emptyp thing :name make :stack []
end end

andText Define

run first :onto

5 Program as Data

run if

Run

Text
text

program data.

instruction;
procedures.

73

In most programming languages there is a sharp distinction between and
Data are the things you can manipulate in your program, things like numbers and letters.
These things live in variables, which can be given new values by your program. But the
program itself is not subject to manipulation; it’s something you write ahead of time, and
then it remains fixed.

In Logo the distinction is not so sharp. We’ve made extensive use of one mechanism
by which a program can manipulate itself: the instruction lists that are used as inputs
to , , and so on are data that can be computed by a program. For example, the
solitaire program in Chapter 4 constructs a list of Logo instruction lists, each of which
would move a card to some other legal position, and then says

to move the card to the first such position.

In this chapter we’ll use a pair of more advanced tools that allow a program to create
more program. deals with a single now we’ll be able to examine and
create

is an operation that takes one input, a word. That word must be the name of
a user-defined procedure. The output from is a list. The first member of that list
is a list containing the names of the inputs to the chosen procedure. (If the procedure

optional

not

74 Chapter 5 Program as Data

text
yes no opinion

end
end

text define
define

define
opinion

show text "opinion

define "opinion [[yes no] [print sentence :yes [is yummy.]]
[print sentence :no [is yucky.]]]

opinion [Ice cream] "Cheese

po "opinion

* Berkeley Logo allows user-defined procedures with inputs. For such a procedure, this
first sublist may contain lists, representing optional inputs, as well as words, representing required
inputs.

to opinion :yes :no
print sentence [I like] :yes
print sentence [I hate] :no
end

?
[[yes no] [print sentence [I like] :yes] [print sentence [I hate] :no]]

?

?
Ice cream is yummy.
Cheese is yucky.
?
to opinion :yes :no
print sentence :yes [is yummy.]
print sentence :no [is yucky.]
end

has no inputs, the list will be empty.)* The remaining members of the output list are
instruction lists, one for each line in the definition of the procedure.

Here is an example. Suppose we’ve defined the procedure

Here’s what the text of that procedure looks like:

In this example the output from is a list with three members. The first member is
a list containing the words and , the names of ’s inputs. (Note that the
colons that are used to indicate inputs in a title line are used here.) The second and
third members of the output list are instruction lists, one for each line in the definition.
(Note that there is no line in the definition; as I’ve remarked before, that line isn’t
an instruction in the procedure because isn’t a command.)

The opposite of is the command . This command takes two inputs.
The first must be a word and the second a list. The effect of is to define a
procedure whose name is the first input and whose text is the second input. You can
use to define a new procedure or to change the definition of an old one. For
example, I might redefine :

Automated Definition

variables,
procedures,

Automated Definition 75

define
text

opinion
strong.opinion

make
thing

define text
text thing

define text
po

edit Text define

second

third fourth

?

?
Logo is yummy.
Basic stinks!

?

to second :thing
output first butfirst :thing
end

to ordinals
ord1 [second third fourth fifth sixth seventh] [output first butfirst]
end

define "opinion lput [print sentence :no "stinks!] ~
butlast text "opinion

opinion "Logo "Basic

define "strong.opinion ~
lput [print sentence :no "stinks!] butlast text "opinion

Instead of replacing an old definition with an entirely new one, we can use
and together to change a procedure’s definition:

(Of course, I didn’t have to redefine the same procedure name. I could have said

and then I would have had two procedures, the unchanged and the new version
named .)

It may be instructive to consider the analogy between which hold data, and
which hold instructions. Variables are given values with the command

and examined with the operation . Procedures are given definitions with the
command and examined with the operation . (There is no abbreviation

for -quote, however, like the dots abbreviation for -quote.)

To illustrate and , I’ve used them in instructions typed in at top level.
In practice, you wouldn’t use them that way; it’s easier to examine a procedure with
and to change its definition with . and are meant to be used not at
top level but inside a program.

Early in the first volume I defined the operation this way:

Suppose I want more operations following this model, to be called , , and
so on. I could define them all by hand or I could write a program to do it for me:

ordinals
po "fifth

ordinals

second seventh
butfirst

F
B L R

A Single-Keystroke Program Generator

ordinal numbers,
cardinal numbers.

program-writing program

76 Chapter 5 Program as Data

to ord1 :names :instr
if emptyp :names [stop]
define first :names list [thing] (lput ":thing :instr)
ord1 (butfirst :names) (lput "butfirst :instr)
end

?
?
to fifth :thing
output first butfirst butfirst butfirst butfirst :thing
end

to onekey :name :list
local "text
make "text [[] [local "char] [print [Type ? for help]]

[make "char readchar]]
foreach :list [make "text lput (sentence [if equalp :char]

(word "" first ?)
butfirst ?)

:text]
make "text lput (lput (list "foreach :list ""print)

[if equalp :char "?]) ~
:text

make "text lput (list :name) :text
define :name :text
end

(The name comes from the phrase which is what things
like “third” are called. Regular numbers like “three” are called) This
procedure automatically defined new procedures named through ,
each with one more in its instruction line.

A fairly common thing to do in Logo is to write a little program that lets you type a
single character on the keyboard to carry out some instruction. For example, teachers of
very young children sometimes use a program that accepts to move the turtle forward
some distance, for back, and and for left and right. What I want to write is a

that will accept a name and a list of keystrokes and instructions as
inputs and define a procedure with that name that understands those instructions.

A Single-Keystroke Program Generator 77

define
sentence list lput

instant
onekey

instant

P instant
instant PU penup

P?

onekey "instant [[F [forward 20]] [B [back 20]]
[L [left 15]] [R [right 15]]]

to instant
local "char
print [type ? for help]
make "char readchar
if equalp :char "F [forward 20]
if equalp :char "B [back 20]
if equalp :char "L [left 15]
if equalp :char "R [right 15]
if equalp :char "? [foreach [[F [forward 20]] [B [back 20]]

[L [left 15]] [R [right 15]]]
"print]

instant
end

onekey "instant [[F [forward 20]] [B [back 20]]
[L [left 15]] [R [right 15]] [P [pens]]]

onekey "pens [[U [penup stop]] [D [pendown stop]] [E [penerase stop]]]

onekey "tinyturns [[F [forward 20]] [B [back 20]]
[L [left 5]] [R [right 5]] [H [hugeturns]]]

onekey "hugeturns [[F [forward 20]] [B [back 20]]
[L [left 45]] [R [right 45]] [T [tinyturns]]]

If we use this program with the instruction

then it creates the following procedure:

In addition to illustrating the use of , this program demonstrates how
, , and can all be useful in constructing lists, when you have to

combine some constant members with some variable members.

Of course, if we only want to make one program, it’s easier just to type
it in. An automatic procedure like is useful when you want to create several
different procedures like , each with a different “menu” of characters. For
example, consider these instructions:

With these definitions, typing to prepares to accept a pen command from
the second list. In effect, recognizes two-letter commands for and
so on, except that the sequence will display the help information for just the pen
commands. Here’s another example:

Procedure Cross-Reference Listings

A
B

text

X A B C
X

A X

instr
X

if X

A if X A

if X
X

submemberp
memberp true

cross-reference listing

sublist

78 Chapter 5 Program as Data

memberp "x :instr

[if emptyp :list [x :foo stop]]

to submemberp :thing :list
if emptyp :list [output "false]
if equalp :thing first :list [output "true]
if listp first :list ~

[if submemberp :thing first :list [output "true]]
output submemberp :thing butfirst :list
end

When you’re working on a very large project, it’s easy to lose track of which procedure
invokes which other one. We can use the computer to help solve this problem by creating
a for all the procedures in a project. For every procedure in the
project, a cross-reference listing tells which other procedures invoke that one. If you
write long procedures, it can also be helpful to list which instruction line in procedure
invokes procedure .

The general strategy will be to look through the of every procedure, looking for
the name of the procedure we’re interested in. Suppose we’re finding all the references
to procedure and we’re looking through procedures , , and . For each line of each
procedure, we want to know whether the word appears in that line. (Of course you
would not really name a procedure or . You’d use meaningful names. This is just an
example.) We can’t, however, just test

(I’m imagining that the variable contains an instruction line.) The reason is that
a procedure invocation can be part of a of the instruction list if is invoked by way
of something like . For example, the word is not a member of the list

But it’s a member of a member. (Earlier I made a big fuss about the fact that if that
instruction were part of procedure , it’s actually that invokes , not . That’s the true
story, for the Logo interpreter. But for purposes of a cross-reference listing, it does us no
good to know that invokes ; what we want to know is which procedure definition to
look at if we want to find the instruction that uses .)

So the first thing we need is a procedure that takes inputs like those
of but outputs if the first input is a member of the second, or a member
of a member, and so on.

instruction

list

Procedure Cross-Reference Listings 79

Reference butfirst text :examinee ref1

target
:examinee X

X "X :X

"foo foo
print

"foo

X

to reference :target :examinee
ref1 :target :examinee butfirst text :examinee 1
end

to ref1 :target :examinee :instrs :linenum
if emptyp :instrs [stop]
if submemberp :target first :instrs ~

[print sentence "| | (word :examinee "\(:linenum "\))]
ref1 :target :examinee butfirst :instrs :linenum+1
end

print "foo

[print "foo]

print [w x y z]

Now we want a procedure that will take two words as input, both of which are the
names of procedures, and will print a list of all the references to the first procedure in
the text of the second.

uses as the third input to to avoid the
list of inputs to the procedure we’re examining. That’s because one of those inputs might
have the same name as the procedure, and we’d get a false indication of success.
(In the body of the definition of , any reference to a variable named will
not use the word but rather the word or the word . You may find that statement
confusing. When you type an like

the Logo evaluator interprets as a request for the word , quoted (as opposed to
evaluated). So won’t print a quotation mark. But if we look at the

then we are not, right now, evaluating it as a Logo instruction. The second member of
that list is the word , quote mark and all.)

We can still get “false hits,” finding the word (or whatever procedure name we’re
looking for) in an instruction list, but not being used as a procedure name:

But cases like that will be relatively rare compared to the cases of variables and procedures
with the same name.

The reason I’m printing spaces before the information is that I’m working toward a
listing that will look like this:

all

long

80 Chapter 5 Program as Data

target1
proca procb procc target2 procb

xref

reference
reference

target1
proca(3)
procb(1)
procc(4)

target2
procb(3)
procb(4)

to xref :target :list
print :target
foreach :list [reference :target ?]
end

to xrefall :list
foreach :list [xref ? :list]
end

xrefall [xrefall xref reference ref1 submemberp]

xrefall procedures

This means that the procedure named is invoked in each of the procedures
, , and ; procedure is invoked by on two different

instruction lines.

Okay, now we can find references to one specific procedure within the text of another
specific procedure. Now we want to look for references to one procedure within the
procedures making up a project.

We’re almost done. Now we want to apply to every procedure in the project.
This involves another run through the list of projects:

To use this program to make a cross-reference listing of itself, you’d say

To cross-reference all of the procedures in your workspace, you’d say

If you try this program on a project with a large number of procedures, you should
expect it to take a time. If there are five procedures, we have to examine each of
them for references to each of them, so we invoke 25 times. If there are 10
procedures, we invoke 100 times! In general, the number of invocations is
the square of the number of procedures. The fancy way to say this is that the program
“takes quadratic time” or that it “behaves quadratically.”

basic

define

computer!

too

81

6 Example: BASIC Compiler

Program file for this chapter:

The BASIC programming language was designed by John Kemeny and Thomas Kurtz in
the late 1960s. (The name is an acronym for Beginner’s All-purpose Symbolic Instruction
Code.) It was first implemented on a large, central computer facility at Dartmouth; the
designers’ goal was to have a language that all students could use for simple problems, in
contrast to the arcane programming languages used by most experts at that time.

A decade later, when the microcomputer was invented, BASIC took on a new
importance. Kemeny and Kurtz designed a simple language for the sake of the users,
but that simplicity also made the language easy for the Every programming
language requires a computer program to translate it into instructions that the computer
can carry out. For example, the Logo programs you write are translated by a Logo
interpreter. But Logo is a relatively complex language, and a Logo interpreter is a
pretty big program. The first microcomputers had only a few thousand bytes of memory.
(Today’s home computers, by contrast, have several million bytes.) Those early personal
computers couldn’t handle Logo, but it was possible to write a BASIC interpreter that
would fit them. As a result, BASIC became the near-universal language for amateur
computer enthusiasts in the late 1970s and early 1980s.

Today’s personal computers come with translators for a wide variety of programming
languages, and also with software packages that enable many people to accomplish their
computing tasks without writing programs of their own at all. BASIC is much less widely
used today, although it has served as the core for Microsoft’s “Visual Basic” language.

In this chapter, I want to show how Logo’s command can be used in
a program-writing program. My program will translate BASIC programs into Logo
programs. I chose BASIC for the same reason the early microcomputers used it: It’s
a small language and the translator is relatively easy to write. (Kemeny and Kurtz, the
designers of BASIC, have criticized the microcomputer implementations as simple

5

A Short Course in BASIC

line number.

82 Chapter 6 Example: BASIC Compiler

10 print "Table of Squares"
20 print
30 print "How many values would you like?"
40 input num
50 for i=1 to num
60 print i, i*i
70 next i
80 end

Table of Squares

How many values would you like?

1 1
2 4
3 9
4 16
5 25

75 print "Have a nice day."

and as unfaithful to their original goals. My implementation will share that defect, to
make the project easier. Don’t use this version as a basis on which to judge the language!
For that you should investigate True Basic, the version that Kemeny and Kurtz wrote
themselves for personal computers.)

Here’s a typical short BASIC program:

And here’s what happens when we run it:

Each line in the sample BASIC program begins with a These numbers
are used for program editing. Instead of the modern screen editors with which you’re
familiar, the early versions of BASIC had a very primitive editing facility; you could replace
a line by typing a new line with the same number. There was no way to replace less than
an entire line. To delete a line completely, you’d enter a line containing just the number.
The reason the line numbers in this program are multiples of ten is to leave room for
inserting new lines. For example, I could say

to insert a new line between lines 70 and 80. (By the way, the earliest versions of Logo
used a similar line numbering system, except that each Logo procedure was separately

Logo
BASIC

to for
then if

let make

let

A Short Course in BASIC 83

LET variable = value
PRINT values
INPUT variables
FOR variable = value TO value
NEXT variable
IF value THEN command
GOTO linenumber
GOSUB linenumber
RETURN
END

10 print "Table of Squares":print
30 print "How many values would you like?":input num
50 for i=1 to num : print i, i*i : next i
80 end

make "x :y + 3 ()
let x = y + 3 ()

numbered. The editing technique isn’t really part of the language design; early systems
used “line editors” because they had typewriter-like paper terminals instead of today’s
display screens. I’m using a line editor in this project because it’s easy to implement!)

The BASIC language consists of one or two dozen commands, depending on the
version used. My BASIC dialect understands only these ten commands:

Unlike Logo procedure calls, which consist of the procedure name followed by inputs
in a uniform format, each BASIC command has its own format, sometimes including
internal separators such as the equal sign and the word in the command format,
or the word in the command format.

In some versions of BASIC, including this one, a single line can contain more than
one command, if the commands are separated with colons. Thus the same program
shown earlier could also be written this way:

The command assigns a value to a variable, like Logo’s procedure. Unlike
Logo, BASIC does not have the rule that all inputs are evaluated before applying the
command. In particular, the word after must be the name of the variable, not an
expression whose value is the name. Therefore the name is not quoted. Also, a variable
can’t have the same name as a procedure, so there is no need for anything like Logo’s
use of the colon to indicate a variable value. (This restricted version of BASIC doesn’t
have named procedures at all, like some early microcomputer versions.)

string

operations

84 Chapter 6 Example: BASIC Compiler

print "x = "; x, "y = "; y, "sum = "; x+y

input "Please enter x and y: " x,y

+ - * /

print
print

let

input print
input

readword readlist
make

input

type print

input

for next
for for

In my subset of BASIC, the value of a variable must be a number. More complete BASIC
dialects include string variables (like words in Logo) and arrays (like Logo’s arrays).

The value to be assigned to a variable can be computed using an arithmetic expression
made up of variables, numbers, the arithmetic operators , , , and , and parentheses
for grouping.

The command is similar to Logo’s print procedure in that it prints a line on
the screen. That line can include any number of values. Here is an example
command:

In this example two kinds of values are printed: arithmetic values (as in the command)
and strings. A is any sequence of characters surrounded by quotation marks.

Notice that the values in this example are separated by punctuation marks, either
commas or semicolons. When a semicolon is used, the two values are printed right next to
each other, with no space between them. (That’s why each of the strings in this example
ends with a space.) When a comma is used, BASIC prints a tab character between the
two values, so that values on different lines will line up to form columns. (Look again at
the table of squares example at the beginning of this chapter.)

The command is the opposite of ; it reads values from the keyboard
and assigns them to variables. There is nothing in Logo exactly like . Instead,
Logo has and that output the contents of a line; those
values can be assigned to variables using or can be used in some other way. The
Logo approach is more flexible, but the early versions of BASIC didn’t have anything like
Logo’s operations. The command will also accept a string in quotation marks
before its list of variables; that string is printed as a prompt before BASIC reads from the
keyboard. (BASIC does not start a new line after printing the prompt, so the effect is like
Logo’s command rather than like .) Here’s an example:

The user can type the values for x and y on the same line, separated by spaces, or on
separate lines. BASIC keeps reading lines until it has collected enough numbers for
the listed variables. Notice that the variable names in the command must be
separated by commas, not by semicolons.

The and commands work together to provide a numeric iteration
capability like Berkeley Logo’s procedure. The command format includes a

4

A Short Course in BASIC 85

for next

For
next

next j next i for next

if if
if

then
if goto

if = < >

10 input "Input size: " num
20 for i = 1 to num
30 for j = i to num
40 print i;" ";j
50 next j:next i
60 end

Input size:
1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3
3 4
4 4

let
make if equalp

* Notice that the equal sign has two meanings in BASIC. In the command, it’s like Logo’s
; in the command, it’s like Logo’s . In the early 1980s, Logo enthusiasts had

fierce arguments with BASIC fans, and this sort of notational inconsistency was one of the things
that drove us crazy! (More serious concerns were the lack of operations and of recursion in the
microcomputer versions of BASIC.)

variable name, a starting value, and an ending value. (The step value is always 1.) The
named variable is given the specified starting value. If that value is less than the ending
value, then all of the commands between the command and the matching
command (the one with the same named variable) are carried out. Then the variable
is increased by 1, and the process continues until the ending value is reached. and

pairs with different variables can be nested:

Notice that the must come before the so that the / pairs are
properly nested.

The command allows conditional execution, much like Logo’s command, but
with a different notation. Instead of taking an instruction list as an input, BASIC’s
uses the keyword to introduce a single conditional command. (If you want to make
more than one command conditional, you must combine with , described next.)
The value that controls the must be computed using one of the operators , , or
for numeric comparison.*

Using the BASIC Translator

only

86 Chapter 6 Example: BASIC Compiler

goto
if

gosub return

goto

end end

end
throw toplevel

basic
READY

10 input x
20 if x > 0 then goto 100
30 print "x is negative."
40 print "x = "; x
50 goto 200
100 print "x is positive."
200 end

10 let x=7
20 gosub 100
30 let x=9
40 gosub 100
50 goto 200
100 print x, x*x
110 return
200 end

The command transfers control to the beginning of a command line specified
by its line number. It can be used with to make a sequence of commands conditional:

The and commands provide a rudimentary procedure calling
mechanism. I call it “rudimentary” because the procedures have no inputs, and can only
be commands, not operations. Also, the command lines that make up the procedure are
also part of the main program, so you generally need a in the main program to skip
over them:

Finally, the command ends the program. There must be an at the end of a
BASIC program, and there should not be one anywhere else. (In this implementation of
BASIC, an stops the BASIC program even if there are more lines after it. It’s roughly
equivalent to a to in Logo.)

To start the translator, run the Logo procedure with no inputs. You will then see
the BASIC prompt, which is the word on a line by itself.

At the prompt you can do either of two things. If you type a line starting with a line
number, that line will be entered into your BASIC program. It is inserted in order by
line number. Any previous line with the same number will be deleted. If the line you
type contains a line number, then the line in the program with that number will be
deleted.

run
list

exit

Overview of the Implementation

immediate

source
target

machine language

another

batch

Overview of the Implementation 87

If your line does not start with a number, then it is taken as an command,
not as part of the program. This version of BASIC recognizes only three immediate
commands: The word means to run your program, starting from the smallest line
number. The word means to print out a listing of the program’s lines, in numeric
order. The word returns to the Logo prompt.

There are two kinds of translators for programming languages: compilers and interpreters.
The difference is that a compiler translates one language (the language) into
another (the language), leaving the result around so that it can be run repeatedly
without being translated again. An interpreter translates each little piece of source
language into one action in the target language and runs the result, but does not
preserve a complete translated program in the target language.

Ordinarily, the target language for both compilers and interpreters is the “native”
language of the particular computer you’re using, the language that is wired into the
computer hardware. This is the only form in which a program can
actually be run. The BASIC compiler in this chapter is quite unrealistic in that it uses
Logo as the target language, which means that the program must go through
translation, from Logo to machine language, before it can actually be run. For our
purposes, there are three advantages to using Logo as the target language. First, every
kind of computer has its own machine language, so I’d have to write several versions of
the compiler to satisfy everyone if I compiled BASIC into machine language. Second, I
know you know Logo, so you can understand the resulting program, whereas you might
not be familiar with any machine language. Third, this approach allows me to cheat by
leaving out a lot of the complexity of a real compiler. Logo is a “high level” language,
which means that it takes care of many details for us, such as the allocation of specific
locations in the computer’s memory to hold each piece of information used by the
program. In order to compile into machine language, I’d have to pay attention to those
details.

Why would anyone want an interpreter, if the compiler translates the program once
and for all, while the interpreter requires retranslation every time a command is carried
out? One reason is that an interpreter is easier to write, because (just as in the case
of a compiler with Logo as the target language) many of the details can be left out.
Another reason is that traditional compilers work using a method, which means
that you must first write the entire program with a text editor, then run the compiler to
translate the program into machine language, and finally run the program. This is okay

40
basic%40

run

incremental compiler,

88 Chapter 6 Example: BASIC Compiler

run (list (word "basic% first :linenumbers))

10 let x=3
20 let y=9
30 ...

to basic%10
make "%x 3
basic%20
end

for a working program that is used often, but not recompiled often. But when you’re
creating a program in the first place, there is a debugging process that requires frequent
modifications to the source language program. If each modification requires a complete
recompilation, the debugging is slow and frustrating. That’s why interpreted languages
are often used for teaching—when you’re learning to program, you spend much more
time debugging a program than running the final version.

The best of both worlds is an a compiler that can recompile only
the changed part when a small change is made to a large program. For example, Object
Logo is a commercial version of Logo for the Macintosh in which each procedure is
compiled when it is defined. Modifying a procedure requires recompiling that procedure,
but not recompiling the others. Object Logo behaves like an interpreter, because the
user doesn’t have to ask explicitly for a procedure to be compiled, but programs run
faster in Object Logo than in most other versions because each procedure is translated
only once, rather than on every invocation.

The BASIC translator in this chapter is an incremental compiler. Each numbered
line is compiled into a Logo procedure as soon as it is typed in. If the line number is
then the resulting procedure will be named . The last step in each of these
procedures is to invoke the procedure for the next line. The compiler maintains a list of
all the currently existing line numbers, in order, so the command is implemented
by saying

Actually, what I just said about each procedure ending with an invocation of the next
one is slightly simplified. Suppose the BASIC program starts

and we translate that into

Overview of the Implementation 89

show member "the [when in the course of human events]

basic%15 basic%20

nextline

Nextline member memberp
true

member

emptyp if

butfirst

to basic%20
make "%y 9
basic%30
end

to basic%10
make "%x 3
nextline 10
end

to basic%20
make "%y 9
nextline 20
end

to nextline :num
make "target member :num :linenumbers
if not emptyp :target [make "target butfirst :target]
if not emptyp :target [run (list (word "basic% first :target))]
end

?
[the course of human events]

Then what happens if the user adds a new line numbered 15? We would have to recompile
line 10 to invoke instead of . To avoid that, each line is compiled
in a way that defers the choice of the next line until the program is actually run:

This solution depends on a procedure that finds the next available line
number after its argument:

uses the Berkeley Logo primitive , which is like the predicate
except that if the first input is found as a member of the second, instead of giving
as its output, it gives the portion of the second input starting with the first input:

If the first input is not a member of the second, outputs an empty word or list,
depending on the type of the second input.

The two separate tests are used instead of a single because the desired
line number might not be in the list at all, or it might be the last one in the list, in which
case the invocation will output an empty list. (Neither of these cases should
arise. The first means that we’re running a line that doesn’t exist, and the second means

•

•

•

•

The Reader

10 let linenumbers = 100

end

basic%10 x
%x

linenumbers

%linenumbers

let x+1

if
then

nextline

reader

parser

code generator

runtime library

optimizer

reader

90 Chapter 6 Example: BASIC Compiler

that the BASIC program doesn’t end with an line. But the procedure tries to avoid
disaster even in these cases.)

Look again at the definition of . You’ll see that the variable named in the
BASIC program is named in the Logo translation. The compiler uses this renaming
technique to ensure that the names of variables and procedures in the compiled program
don’t conflict with names used in the compiler itself. For example, the compiler uses a
variable named whose value is the list of line numbers. What if someone
writes a BASIC program that says

This won’t be a problem because in the Logo translation, that variable will be named
.

The compiler can be divided conceptually into four parts:

The divides the characters that the user types into meaningful units. For
example, it recognizes that is a single word, but should be understood as
three separate words.

The recognizes the form of each of the ten BASIC commands that this dialect
understands. For example, if a command starts with , the parser expects an
expression followed by the word and another command.

The constructs the actual translation of each BASIC command into one
or more Logo instructions.

The contains procedures that are used while the translated program
is running, rather than during the compilation process. The procedure
discussed earlier is an example.

Real compilers have the same structure, except of course that the code generator produces
machine language instructions rather than Logo instructions. Also, a professional
compiler will include an that looks for ways to make the compiled program as
efficient as possible.

A is a program that reads a bunch of characters (typically one line, although not in
every language) and divides those characters into meaningful units. For example, every

The Reader 91

-

x x-3

first 555-2368
555

:

"

basicread

print :x-3

make "phones [555-2368 555-9827 555-8311]

+ - * / = < > () , ; :

Logo implementation includes a reader that interprets square brackets as indications
of list grouping. But some of the rules followed by the Logo reader differ among
implementations. For example, can the hyphen character () be part of a larger word,
or is it always a word by itself? In a context in which it means subtraction, we’d like it to
be a word by itself. For example, when you say

as a Logo instruction, you mean to print three less than the value of the variable named
, not to print the value of a variable whose name is the three-letter word ! On the

other hand, if you have a list of telephone numbers like this:

you’d like the of that list to be an entire phone number, the word ,
not just . Some Logo implementations treat every hyphen as a word by itself; some
treat every hyphen just like a letter, and require that you put spaces around a minus sign
if you mean subtraction. Other implementations, including Berkeley Logo, use a more
complicated rule in which the status of the hyphen depends on the context in which it
appears, so that both of the examples in this paragraph work as desired.

In any case, Logo’s reader follows rules that are not appropriate for BASIC. For
example, the colon () is a delimiter in BASIC, so it should be treated as a word by itself;
in Logo, the colon is paired with the variable name that follows it. In both languages,
the quotation mark () is used to mark quoted text, but in Logo it comes only at the
beginning of a word, and the quoted text ends at the next space character, whereas in
BASIC the quoted text continues until a second, matching quotation mark. For these
and other reasons, it’s desirable to have a BASIC-specific reader for use in this project.

The rules of the BASIC reader are pretty simple. Each invocation of
reads one line from the keyboard, ending with the Return or Enter character. Within
that line, space characters separate words but are not part of any word. A quotation mark
begins a quoted word that includes everything up to and including the next matching
quotation mark. Certain characters form words by themselves:

All other characters are treated like letters; that is, they can be part of multi-character
words.

The Parser

parser

92 Chapter 6 Example: BASIC Compiler

show basicread
30 print x;y;"foo,baz",z:print hello+4

basicread

Basicread readword Readword

Basicread

basicread

let

x (3 * y) + 7

let

?

[30 print x ; y ; "foo,baz" , z : print hello + 4]

let x = (3 * y) + 7

LET variable = value

Notice that the comma inside the quotation marks is not made into a separate word by
. The other punctuation characters, however, appear in the output sentence

as one-character words.

uses the Logo primitive to read a line. can be
thought of as a reader with one trivial rule: The only special character is the one that
ends a line. Everything else is considered as part of a single long word.
examines that long word character by character, looking for delimiters, and accumulating
a sentence of words separated according to the BASIC rules. The implementation of

is straightforward; you can read the procedures at the end of this chapter
if you’re interested. For now, I’ll just take it for granted and go on to discuss the more
interesting parts of the BASIC compiler.

The is the part of a compiler that figures out the structure of each piece of the
source program. For example, if the BASIC compiler sees the command

it must recognize that this is a command, which must follow the pattern

and therefore must be the name of a variable, while must be an
expression representing a value. The expression must be further parsed into its
component pieces. Both the variable name and the expression must be translated into
the form they will take in the compiled (Logo) program, but that’s the job of the code
generator.

In practice, the parser and the code generator are combined into one step; as each
piece of the source program is recognized, it is translated into a corresponding piece
of the object program. So we’ll see that most of the procedures in the BASIC compiler
include parsing instructions and code generation instructions. For example, here is the
procedure that compiles a command:

The Parser 93

queue

make let

let
compile.let

let

pop

let

pop
expression if

to compile.let :command
make "command butfirst :command
make "var pop "command
make "delimiter pop "command
if not equalp :delimiter "= [(throw "error [Need = in let.])]
make "exp expression
queue "definition (sentence "make (word ""% :var) :exp)
end

make "command butfirst :command

make "var pop "command

make "delimiter pop "command
if not equalp :delimiter "= [(throw "error [Need = in let.])]

make "exp expression

In this procedure, all but the last instruction (the line starting with) are parsing
the source command. The last line, which we’ll come back to later, is generating a Logo

instruction, the translation of the BASIC in the object program.

BASIC was designed to be very easy to parse. The parser can read a command from
left to right, one word at a time; at every moment, it knows exactly what to expect. The
command must begin with one of the small number of command names that make up
the BASIC language. What comes next depends on that command name; in the case
of , what comes next is one word (the variable name), then an equal sign, then
an expression. Each instruction in the procedure handles one of these
pieces. First we skip over the word by removing it from the front of the command:

Then we read and remember one word, the variable name:

(Remember that the operation removes one member from the beginning of a list,
returning that member. In this case we are removing the variable name from the entire

command.) Then we make sure there’s an equal sign:

And finally we call a subprocedure to read the expression; as we’ll see later, that procedure
also translates the expression to the form it will take in the object program:

The parsers for other BASIC commands have essentially the same structure as
this example. They repeatedly invoke to read one word from the command or

to read and translate an expression. (The command is a little more

split

Split
Split

94 Chapter 6 Example: BASIC Compiler

show split [30 print x ; y ; "foo,baz" , z : print hello + 4]?
[30 [print x ; y ; "foo,baz" , z] [print hello + 4]]

to basic
forever [basicprompt]
end

to basicprompt
print "READY
make "line basicread
if emptyp :line [stop]
ifelse numberp first :line [compile split :line] [immediate :line]
end

to compile :commands
make "number first :commands
ifelse emptyp butfirst :commands ~

[eraseline :number] ~
[makedef (word "basic% :number) butfirst :commands]

end

to makedef :name :commands
...
foreach :commands [run list (word "compile. first ?) ?]
...
end

complicated because it contains another command as a component, but that inner
command is just compiled as if it occurred by itself. We’ll look at that process in more
detail when we get to the code generation part of the compiler.)

Each compilation procedure expects a single BASIC command as its input. Remem-
ber that a line in a BASIC program can include more than one command. The compiler
uses a procedure named to break up each line into a list of commands:

outputs a list whose first member is a line number; the remaining members are
lists, each containing one BASIC command. works by looking for colons within
the command line.

Here is the overall structure of the compiler, but with only the instructions related
to parsing included:

The Code Generator

The Code Generator 95

Basic basicprompt
Basicprompt

split compile
Compile

makedef
makedef

compile.

if for

let make
print type print

nextline

define

10 let x = 3 : let y = 4 : print x,y+6

to basic%10
make "%x 3
make "%y 4
type :%x
type char 9
type :%y + 6
print []
nextline 10
end

define "basic%10 [[] [make "%x 3] [make "%y 4] ... [nextline 10]]

does some initialization (not shown) and then invokes repeatedly.
calls the BASIC reader to read a line; if that line starts with a number,

then is used to transform the line into a list of commands, and is
invoked with that list as input. remembers the line number for later use, and
then invokes with the list of commands as an input. I’ve left out most of
the instructions in because they’re concerned with code generation, but the
important part right now is that for each command in the list, it invokes a procedure
named something based on the first word of the command, which must be
one of the command names in the BASIC language.

Each line of the BASIC source program is going to be compiled into one Logo procedure.
(We’ll see shortly that the BASIC and commands are exceptions.) For example,
the line

will be compiled into the Logo procedure

Each of the three BASIC commands within the source line contributes one or more
instructions to the object procedure. Each command is translated into a
instruction; the command is translated into three instructions and a
instruction. (The last instruction line in the procedure, the invocation of ,
does not come from any of the BASIC commands, but is automatically part of the
translation of every BASIC command line.)

To generate this object procedure, the BASIC compiler is going to have to invoke
Logo’s primitive, this way:

show expression [3 + x * 4]

Beyond Programming.

96 Chapter 6 Example: BASIC Compiler

define :name :definition

queue "definition (sentence "make (word ""% :var) :exp)

?
[3 + :%x * 4]

define

name makedef
definition makedef

define
basic%10

definition
queue Queue

compile.let

make

expression

3+x*4
x

expression
x :%x

makedef

Of course, these actual inputs do not appear explicitly in the compiler! Rather, the inputs
to are variables that have the desired values:

The variable is an input to , as we’ve seen earlier. The variable
is created within . It starts out as a list containing just the empty

list, because the first sublist of the input to is the list of the names of the desired
inputs to , but it has no inputs. The procedures within the compiler that parse
each of the commands on the source line will also generate object code (that is, Logo
instructions) by appending those instructions to the value of using Logo’s

command. takes two inputs: the name of a variable whose value is a list,
and a new member to be added at the end of the list. Its effect is to change the value of
the variable to be the extended list.

Look back at the definition of above. Earlier we considered the
parsing instructions within that procedure, but deferred discussion of the last instruction:

Now we can understand what this does: It generates a Logo instruction and
appends that instruction to the object procedure definition in progress.

We can now also think about the output from the procedure. Its job is
to parse a BASIC expression and to translate it into the corresponding Logo expression.
This part of the compiler is one of the least realistic. A real compiler would have to think
about such issues as the precedence of arithmetic operations; for example, an expression
like must be translated into two machine language instructions, first one that
multiplies by 4, and then one that adds the result of that multiplication to 3. But the
Logo interpreter already handles that aspect of arithmetic for us, so all has
to do is to translate variable references like into the Logo form .

(We’ll take a closer look at translating arithmetic expressions in the Pascal compiler
found in the third volume of this series,)

We are now ready to look at the complete version of :

The Code Generator 97

nextline

nextline

define

goto gosub
goto goto gosub

goto

goto
nextline

stop

to makedef :name :commands
make "definition [[]]
foreach :commands [run list (word "compile. first ?) ?]
queue "definition (list "nextline :number)
define :name :definition
make "linenumbers insert :number :linenumbers
end

goto 40

basic%40 stop

stop
basic%40

* In fact, the Berkeley Logo interpreter is clever enough to notice that there is a instruction
after the invocation of , and it arranges things so that there is no “return” from that
procedure. This makes things a little more efficient, but doesn’t change the meaning of the
program.

I hope you’ll find this straightforward. First we create an empty definition. Then, for
each BASIC command on the line, we append to that definition whatever instructions
are generated by the code generating instructions for that command. After all the BASIC
commands have been compiled, we add an invocation of to the definition.
Now we can actually define the Logo procedure whose text we’ve been accumulating.
The last instruction updates the list of line numbers that uses to find the next
BASIC command line when the compiled program is running.

In a sense, this is the end of the story. My purpose in this chapter was to illustrate
how can be used in a significant project, and I’ve done that. But there are a
few more points I should explain about the code generation for some specific BASIC
commands, to complete your understanding of the compiler.

One such point is about the difference between and . Logo doesn’t
have anything like a mechanism; both and must be implemented by
invoking the procedure corresponding to the given line number. The difference is that
in the case of , we want to invoke that procedure and not come back! The solution
is to compile the BASIC command

into the Logo instructions

In effect, we are calling line 40 as a subprocedure, but when it returns, we’re finished.
Any additional Logo instructions generated for the same line after the (including
the invocation of that’s generated automatically for every source line) will be
ignored because of the .*

generated symbol,

98 Chapter 6 Example: BASIC Compiler

for next
next

for for
next

basic%N
for

for

make basic%30 let
for

i
%g1

g1
gensym gensym

g1 g2

%g1 type print
print

30 let x = 3 : for i = 1 to 5 : print i,x : next i

to basic%30
make "%x 3
make "%i 1
make "let%i 5
make "next%i [%g1]
%g1
end

to %g1
type :%i
type char 9
type :%x
print []
make "%i :%i + 1
if not greaterp :%i :let%i [run :next%i stop]
nextline 30
end

The next tricky part of the compiler has to do with the and commands.
Think first about . It must increment the value of the given variable, test that
value against a remembered limit, and, if the limit has not been reached, go to... where?
The loop continues with the BASIC command just after the command itself.
That might be in the middle of a line, so can’t just remember a line number and
invoke for line number N. To solve this problem, the line containing the

command is split into two Logo procedures, one containing everything up to and
including the , and one for the rest of the line. For example, the line

is translated into

The first instruction in is the translation of the command. The
remaining four lines are the translation of the command; it must give an initial value
to the variable , remember the limit value 5, and remember the Logo procedure to be
used for looping. That latter procedure is named in this example. The percent
sign is used for the usual reason, to ensure that the names created by the compiler don’t
conflict with names in the compiler itself. The part is a created by
invoking the Berkeley Logo primitive operation . Each invocation of
outputs a new symbol, first , then , and so on.

The first four instructions in procedure (three s and a) are the
translation of the BASIC command. The next two instructions are the translation

The Code Generator 99

next make i if
%g1

run :next%i %g1 %g1
for

next
for

next%i next
next%i

for
next

print input

if

if

20 print "hi there"

50 if x<6 then print x, x*x

to basic%50
if :%x < 6 [%g2]
nextline 50
end

to %g2
type :%x
type char 9
type :%x * :%x
print []
end

of the command; the instruction increments , and the instruction tests
whether the limit has been passed, and if not, invokes the looping procedure again.
(Why does this say instead of just ? Remember that the name was
created during the compilation of the command. When we get around to compiling
the command, the code generator has no way to remember which generated
symbol was used by the corresponding . Instead it makes reference to a variable

, named after the variable given in the command itself, whose value is the
name of the procedure to run. Why not just call that procedure itself instead of
using a generated symbol? The trouble is that there might be more than one pair of
and commands in the same BASIC program using the same variable, and each of
them must have its own looping procedure name.)

There is a slight complication in the and commands to deal with
quoted character strings. The trouble is that Logo’s idea of a word ends with a space, so
it’s not easy to translate

into a Logo instruction in which the string is explicitly present in the instruction. Instead,
the BASIC compiler creates a Logo global variable with a generated name, and uses that
variable in the compiled Logo instructions.

The trickiest compilation problem comes from the command, because it includes
another command as part of itself. That included command might be translated into
several Logo instructions, all of which should be made to depend on the condition that
the is testing. The solution is to put the translation of the inner command into a
separate procedure, so that the BASIC command line

is translated into the two Logo procedures

goto

stop %g3 %g3 basic%60
if

if

if

100 Chapter 6 Example: BASIC Compiler

60 if :foo < 10 then goto 200

to basic%60
if :%foo < 10 [%g3]
nextline 60
end

to %g3
basic%200 stop
end

to basic%60
if :%foo < 10 [basic%200 stop]
nextline 60
end

to compile.if :command
make "command butfirst :command
make "exp expression
make "delimiter pop "command
if not equalp :delimiter "then [(throw "error [Need then after if.])]
queue "definition (sentence "if :exp (list c.if1))
end

Unfortunately, this doesn’t quite work if the inner command is a . If we were
to translate

into

then the inside would stop only itself, not as desired. So the
code generator for checks to see whether the result of compiling the inner command
is a single Logo instruction line; if so, that line is used directly in the compiled Logo
rather than diverted into a subprocedure:

How does the code generator for divert the result of compiling the inner
command away from the definition of the overall BASIC command line? Here is the
relevant part of the compiler:

The Runtime Library

separate

The Runtime Library 101

if
then c.if1

definition

c.if1 c.if1

definition
compile.print compile.goto

nextline

readvalue
input BASIC

input
input

input Readvalue readline

to c.if1
local "definition
make "definition [[]]
run list (word "compile. first :command) :command
ifelse (count :definition) = 2 ~

[output last :definition] ~
[make "newname word "% gensym
define :newname :definition
output (list :newname)]

end

The first few lines of this are straightforwardly parsing the part of the BASIC command
up to the word . What happens next is a little tricky; a subprocedure is
invoked to parse and translate the inner command. It has to be a subprocedure because
it creates a local variable named ; when the inner command is compiled,
this local variable “steals” the generated code. If there is only one line of generated code,
then outputs that line; if more than one, then creates a subprocedure and
outputs an instruction to invoke that subprocedure. This technique depends on Logo’s
dynamic scope, so that references to the variable named in other parts of
the compiler (such as, for example, or) will refer to
this local version.

We’ve already seen the most important part of the runtime library: the procedure
that gets the compiled program from one line to the next.

There is only one more procedure needed as runtime support; it’s called
and it’s used by the BASIC command. In , data input is independent of
lines. If a single command includes two variables, the user can type the two
desired values on separate lines or on a single line. Furthermore, two
commands can read values from a single line, if there are still values left on the line after
the first has been satisfied. uses a global variable whose
value is whatever’s still available from the last data input line, if any. If there is nothing
available, it reads a new line of input.

A more realistic BASIC implementation would include runtime library procedures
to compute built-in functions (the equivalent to Logo’s primitive operations) such as
absolute value or the trigonometric functions.

list 100-200

define

102 Chapter 6 Example: BASIC Compiler

Further Explorations

Program Listing

to basic
make "linenumbers []
make "readline []
forever [basicprompt]
end

to basicprompt
print []
print "READY
print []
make "line basicread
if emptyp :line [stop]
ifelse numberp first :line [compile split :line] [immediate :line]
end

This BASIC compiler leaves out many features of a complete implementation. In a real
BASIC, a string can be the value of a variable, and there are string operations such
as concatenation and substring extraction analogous to the arithmetic operations for
numbers. The BASIC programmer can create an array of numbers, or an array of strings.
In some versions of BASIC, the programmer can define named subprocedures, just as
in Logo. For the purposes of this chapter, I wanted to make the compiler as simple as
possible and still have a usable language. If you want to extend the compiler, get a BASIC
textbook and start implementing features.

It’s also possible to expand the immediate command capabilities of the compiler.
In most BASIC implementations, for example, you can say to list only a
specified range of lines within the source program.

A much harder project would be to replace the code generator in this compiler with
one that generates machine language for your computer. Instead of using to
create Logo procedures, your compiler would then write machine language instructions
into a data file. To do this, you must learn quite a lot about how machine language
programs are run on your computer!

I haven’t discussed every detail of the program. For example, you may want to trace
through what happens when you ask to delete a line from the BASIC source program.
Here is the complete compiler.

Program Listing 103

to compile :commands
make "number first :commands
make :number :line
ifelse emptyp butfirst :commands ~

[eraseline :number] ~
[makedef (word "basic% :number) butfirst :commands]

end

to makedef :name :commands
make "definition [[]]
foreach :commands [run list (word "compile. first ?) ?]
queue "definition (list "nextline :number)
define :name :definition
make "linenumbers insert :number :linenumbers
end

to insert :num :list
if emptyp :list [output (list :num)]
if :num = first :list [output :list]
if :num < first :list [output fput :num :list]
output fput first :list (insert :num butfirst :list)
end

to eraseline :num
make "linenumbers remove :num :linenumbers
end

to immediate :line
if equalp :line [list] [foreach :linenumbers [print thing ?] stop]
if equalp :line [run] [run (list (word "basic% first :linenumbers))

stop]
if equalp :line [exit] [throw "toplevel]
print sentence [Invalid command:] :line
end

;; Compiling each BASIC command

to compile.end :command
queue "definition [stop]
end

to compile.goto :command
queue "definition (list (word "basic% last :command) "stop)
end

104 Chapter 6 Example: BASIC Compiler

to compile.gosub :command
queue "definition (list (word "basic% last :command))
end

to compile.return :command
queue "definition [stop]
end

to compile.print :command
make "command butfirst :command
while [not emptyp :command] [c.print1]
queue "definition [print []]
end

to c.print1
make "exp expression
ifelse equalp first first :exp "" ~

[make "sym gensym
make word "%% :sym butfirst butlast first :exp
queue "definition list "type word ":%% :sym] ~

[queue "definition fput "type :exp]
if emptyp :command [stop]
make "delimiter pop "command
if equalp :delimiter ", [queue "definition [type char 9] stop]
if equalp :delimiter "\; [stop]
(throw "error [Comma or semicolon needed in print.])
end

to compile.input :command
make "command butfirst :command
if equalp first first :command "" ~

[make "sym gensym
make "prompt pop "command
make word "%% :sym butfirst butlast :prompt
queue "definition list "type word ":%% :sym]

while [not emptyp :command] [c.input1]
end

to c.input1
make "var pop "command
queue "definition (list "make (word ""% :var) "readvalue)
if emptyp :command [stop]
make "delimiter pop "command
if not equalp :delimiter ", (throw "error [Comma needed in input.])
end

Program Listing 105

to compile.let :command
make "command butfirst :command
make "var pop "command
make "delimiter pop "command
if not equalp :delimiter "= [(throw "error [Need = in let.])]
make "exp expression
queue "definition (sentence "make (word ""% :var) :exp)
end

to compile.for :command
make "command butfirst :command
make "var pop "command
make "delimiter pop "command
if not equalp :delimiter "= [(throw "error [Need = after for.])]
make "start expression
make "delimiter pop "command
if not equalp :delimiter "to [(throw "error [Need to after for.])]
make "end expression
queue "definition (sentence "make (word ""% :var) :start)
queue "definition (sentence "make (word ""let% :var) :end)
make "newname word "% gensym
queue "definition (sentence "make (word ""next% :var)

(list (list :newname)))
queue "definition (list :newname)
define :name :definition
make "name :newname
make "definition [[]]
end

to compile.next :command
make "command butfirst :command
make "var pop "command
queue "definition (sentence "make (word ""% :var) (word ":% :var) [+ 1])
queue "definition (sentence [if not greaterp]

(word ":% :var) (word ":let% :var)
(list (list "run (word ":next% :var)

"stop)))
end

106 Chapter 6 Example: BASIC Compiler

to compile.if :command
make "command butfirst :command
make "exp expression
make "delimiter pop "command
if not equalp :delimiter "then [(throw "error [Need then after if.])]
queue "definition (sentence "if :exp (list c.if1))
end

to c.if1
local "definition
make "definition [[]]
run list (word "compile. first :command) :command
ifelse (count :definition) = 2 ~

[output last :definition] ~
[make "newname word "% gensym
define :newname :definition
output (list :newname)]

end

;; Compile an expression for LET, IF, PRINT, or FOR

to expression
make "expr []
make "token expr1
while [not emptyp :token] [queue "expr :token

make "token expr1]
output :expr
end

to expr1
if emptyp :command [output []]
make "token pop "command
if memberp :token [+ - * / = < > ()] [output :token]
if memberp :token [, \; : then to] [push "command :token output []]
if numberp :token [output :token]
if equalp first :token "" [output :token]
output word ":% :token
end

Program Listing 107

;; reading input

to basicread
output basicread1 readword [] "
end

to basicread1 :input :output :token
if emptyp :input [if not emptyp :token [push "output :token]

output reverse :output]
if equalp first :input "| | [if not emptyp :token [push "output :token]

output basicread1 (butfirst :input)
:output "]

if equalp first :input "" [if not emptyp :token [push "output :token]
output breadstring butfirst :input

:output "]
if memberp first :input [+ - * / = < > () , \; :] ~

[if not emptyp :token [push "output :token]
output basicread1 (butfirst :input) (fput first :input :output) "]

output basicread1 (butfirst :input) :output (word :token first :input)
end

to breadstring :input :output :string
if emptyp :input [(throw "error [String needs ending quote.])]
if equalp first :input "" ~

[output basicread1 (butfirst :input)
(fput (word "" :string "") :output)
"]

output breadstring (butfirst :input) :output (word :string first :input)
end

to split :line
output fput first :line split1 (butfirst :line) [] []
end

to split1 :input :output :command
if emptyp :input [if not emptyp :command [push "output reverse :command]

output reverse :output]
if equalp first :input ": [if not emptyp :command

[push "output reverse :command]
output split1 (butfirst :input) :output []]

output split1 (butfirst :input) :output (fput first :input :command)
end

108 Chapter 6 Example: BASIC Compiler

;; Runtime library

to nextline :num
make "target member :num :linenumbers
if not emptyp :target [make "target butfirst :target]
if not emptyp :target [run (list (word "basic% first :target))]
end

to readvalue
while [emptyp :readline] [make "readline basicread]
output pop "readline
end

7 Pattern Matcher

conversational

pattern

109

match

equalp
memberp

every is a

[Every # is a #]

[Every man is a mortal]
[Every computer programmer is a genius]
[Every is a word]
[Every datum is a word or a list]

Program file for this chapter:

In a program, one that carries on a conversation with the user, you may
often have occasion to compare what the user types with some expected response. For
example, a quiz program will compare the user’s response with the correct answer; if
you’ve just asked “how are you,” you might look for words like “fine” or “lousy” in the
reply. The main tools that Logo provides for such comparisons are , which
compares two values for exact equality, and , which compares one datum with a
list of alternatives. This project provides a more advanced comparison tool.

Most of the projects in this book are fairly complicated in their inner workings, but
relatively simple in the external appearance of what they do. This project is the reverse;
the actual program is not so complex, but it does quite a lot, and it will take a while to
explain all of it. Pattern matching is a powerful programming tool, and I hope you won’t
be put off by the effort required to learn how to use it.

A is a list in which some members are not made explicit. This definition is
best understood by considering an example. Consider the pattern

The words , , and represent themselves explicitly. The two number signs,
however, are symbols representing “zero or more arbitrary data.” Here are some lists that
would match the pattern:

not

would

110 Chapter 7 Pattern Matcher

every
an a everyone every

I think every

Match
true

false

match

Match

[Socrates is a man]
[Every man is an animal]
[Everyone I know is a friend]
[I think every list is a match]

[# every # is a #]

?
true
?
false

?
true
?
[Hay]
?
[horses]

print match [Every # is a #] [Every book is a joy to read]

print match [Every # is a #] [Every adolescent is obnoxious]

print match [#food is for #animal] [Hay is for horses]

show :food

show :animal

Here are some lists that would match the pattern:

The first of these examples doesn’t match the pattern because the word is missing.
The second has instead of , while the third has instead of . The
fourth has the extra words before the word . This last example
match the pattern

because this new pattern allows for extra words at the beginning.

is a predicate that takes two inputs. The first input is a pattern and the second
input is a sentence. The output is if the sentence matches the pattern, otherwise

.

Patterns can be more complicated than the ones I’ve shown so far. In the following
paragraphs I’ll introduce the many ways that you can modify patterns to control which
sentences they’ll match. As you read, you should make up sample patterns of your own
and try them out with .

Often, in a conversational program, it’s not good enough just to know whether or
not a sentence matches a pattern. You also want to know the pieces of the sentence that
match the variable parts of the pattern. meets this requirement by allowing you
to tell it the names of variables that you want to receive the matching words from the
sentence. Here is an example:

Chapter 7 Pattern Matcher 111

Here is a short conversational program using the parts of the pattern matcher we’ve
discussed so far.

print match [#food is for #animal] [C++ is for the birds]

show :food

show :animal

converse

My name is Brian and I like Chinese food

?
true
?
[C++]
?
[the birds]

to converse
local [response name like]
print [Hi, my name is Toby and I like ice cream]
print [Tell me about yourself]
make "response readlist
if match [# my name is #name] :response [do.name strip.and :name]
if match [# i like #like] :response [do.like strip.and :like]
print [Nice meeting you!]
end

to do.name :name
print sentence "Hello, :name
end

to do.like :like
print sentence [I’m glad you like] :like
end

to strip.and :text
local "short
if match [#short and #] :text [output :short]
output :text
end

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
I’m glad you like Chinese food
Nice meeting you!

112 Chapter 7 Pattern Matcher

converse

I like spaghetti and meat balls

zero or more
one or more
zero or one
exactly one

match false
Converse match

true

Converse
my name is I like

and

name

strip.and and

and

Match

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

I’m glad you like spaghetti
Nice meeting you!

My name is Brian and I like Chinese food

Brian and I like Chinese food

[# my name is #name and #]

my name is Mary

#
&
?
!

If outputs , there is no guarantee of what values will end up in the variables
mentioned in the pattern. uses the result of the match only if outputs

.

looks for each part of the sentence (the name and the thing the person
likes) in two steps: first it finds the keywords or and extracts
everything following those phrases, then it looks within what it extracted for the word

and removes anything following it. For example, when I typed

the result of matching the name pattern was to give the variable the value

Then used a second pattern to eliminate everything after the . You
might be tempted to extract the name in one step by using a pattern like

but I wanted to avoid that pattern because it won’t match a sentence that only contains

without expressing any likes or dislikes. The program as I’ve written it does accept these
shorter sentences also. Later we’ll see a more complicated pattern that accepts sentences
with or without using a single pattern.

The special symbol in a pattern represents zero or more words. recognizes
other symbols with different meanings:

any

Chapter 7 Pattern Matcher 113

converse

My name is Brian Harvey

ask.age

I will be 36 next month

converse

!name Brian
Brian Harvey

converse strip.and
do.name name

ask.age
numberp true

[# my name is !name #]

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
Nice meeting you!
?

to ask.age
local "age
print [How old are you?]
if match [# !age:numberp #] readlist ~

[print (sentence [You are] :age [years old.]]
end

?
How old are you?

You are 36 years old.

For example, if you’d like the program to recognize only the first name of
the person using it, you could change the relevant pattern to

Then a conversation with the program might look like this:

The word in the pattern matched just the single word , not the multiple
words that the original pattern would have selected. (If you modify

in this way, it should be possible to remove the invocation of in
computing the input to . The single word stored in the variable won’t
contain any other clauses.)

So far, the patterns we’ve seen allow two extremes: the pattern can include a single
word that must be matched exactly, or it can allow word at all to be matched. It is also
possible to write a pattern that calls for words in some specified category—that is, words
that satisfy some predicate. Here is an example:

This is a slightly silly example, but it does illustrate the use of a predicate to restrict which
words can match a variable part of a pattern. The pattern used in looks for
a single word for which is , that is, for a number. Any number of words
surrounding the number are allowed.

114 Chapter 7 Pattern Matcher

numberp

true match

colorp

the Ohio Turnpike

in memberp
in

the Mass Massachusetts Pike
Turnpike

and

to colorp :word
output memberp :word [red orange yellow blue green violet white black]
end

to ends.y :word
output equalp last :word "y
end

Mass Pike
the Massachusetts Turnpike
the Pike

[?:in [the] ?:in [Mass Massachusetts] !:in [Pike Turnpike]]

[# my name is #name and #]

Of course, a predicate used in a pattern need not be a primitive one like .
You may find it useful to write your own predicates that select categories of words. Such
a predicate might have a list built in:

Or you could check some inherent property of a word:

In either case, what is essential is that your predicate must take a word as its single input,
and must output if you want to accept the word to fill a slot in the pattern.

It is most common to want a predicate like above—one that tests its input
word for membership in a certain list. A special notation makes it possible to include
such a list in the pattern itself, instead of writing a predicate procedure. For example,
suppose you are writing a quiz program, and you want to ask the question, “What is the
quickest route from Boston to Framingham?” You’d like to accept answers like these:

but not ! Here is a pattern you could use.

The special predicate is a version of that knows to look in the pattern,
right after the element that invokes , for the list of acceptable words. This pattern
accepts zero or one , zero or one of or , and one of or

. That is, the first two words are optional and the third is required.

Earlier I rejected the use of a pattern

because I wanted also to be able to accept sentences without following the name. I
promised to exhibit a pattern that would accept both sentence forms. Here it is:

notand and

#

match

Match

sentence,

Chapter 7 Pattern Matcher 115

no variable, no predicate accept any word
set variable, no predicate
no variable, test predicate
set variable, test predicate

[# my name is #name:notand #]

to notand :word
output not equalp :word "and
end

()
#name
?:in
!age:numberp

?
true
?
[is [very much] like]
?
true
?
[and then]
?
false

print match [hello #middle goodbye] [hello is [very much] like goodbye]

show :middle

print match [hi #middle:wordp bye] [hi and then bye]

show :middle

print match [hi #middle:wordp bye] [hi and [then] bye]

This pattern uses a predicate that allows any word except . It’s easy to write
this predicate:

(By the way, the symbols indicating the number of words to match are meant to be
mnemonic. The question mark indicates that it’s questionable whether or not the word
will be in the sentence. The exclamation point looks a little like a digit 1, and also shouts
emphatically that the word is present. The number sign means that any number of words
(including zero) is okay, and the ampersand indicates that more words are required,
namely at least one instead of at least zero.)

We’ve seen various combinations of quantifiers (that’s what I’ll call the characters
like that control how many words are matched), variable names, and predicates:

We are now about to discuss some of the more esoteric features of the
program. So far, we have always compared a pattern against a a list of words. It
is also possible to match a pattern against a structured list, with smaller lists among its
members. treats a sublist just like a word, if you don’t want to examine the inner
structure of the sublist. Here are some examples.

together

116 Chapter 7 Pattern Matcher

match

! ?

all
some

match
!:

#:predicate

@

?
true
?
[and]
[[then]]

?
true
?
false

?
true
?
[[x 111 y] [x 222 y]]
[222]

?
true
?
[3 2 1]
[blastoff!]

print match [hi #mid:wordp #dle:listp bye] [hi and [then] bye]

show :mid show :dle

print match [a #:[x # y] b] [a [x 111 y] [x 222 y] b]

print match [a #:[x # y] b] [a [x 333 zzz] b]

print match [a #all:[x #some y] b] [a [x 111 y] [x 222 y] b]

show :all show :some

print match [#nums:numberp #rest] [3 2 1 blastoff!]

show :nums show :rest

A more interesting possibility is to ask to apply a sub-pattern to a sublist. This is
done by using the pattern (that is, a list) in place of the name of a predicate. Here is an
example:

It is possible to include variable names in the subpattern, but this makes sense only if the
quantifier outside the pattern is or because otherwise you may be trying to assign
more than one value to the same variable. Here’s what I mean:

The variable is properly set to contain both of the lists that matched the subpattern,
but the variable only contains the result of the second match.

If a list appears in a pattern without a quantifier before it, treats it as if it were
preceded by “ ”; in other words, it tries to match the subpattern exactly once.

A pattern element like can match several members of the target
sentence; the predicate is applied to each candidate member separately. For example:

Sometimes you may want to match several members of a sentence, but apply the predicate
to all of the candidates in one list. To do this, use the quantifier :

match
headtailp

xx
xx front back

xx front back

nature
number

ambiguous;

Chapter 7 Pattern Matcher 117

print match [@begin:threep #rest] [a b c d e]

show :begin show :rest

print match [#front @good:headtailp #back] [a b c x d e f g x h i]

show :front show :good show :back

to threep :list
output equalp count :list 3
end

?
true
?
[a b c]
[d e]

to headtailp :list
if (count :list) < 2 [output "false]
output equalp first :list last :list
end

?
true
?
[a b c]
[x d e f g x]
[h i]

match [#front xx #back] [a b c d xx e f g xx h i]

In this example, I haven’t used the predicate to examine the of the matching
words, but rather to control the of words that are matched. Here is another
example that looks “inside” the matching words.

Think about all the different tests that has to make to find this match! Also, do
you see why the first instruction of is needed?

Some patterns are that is, there might be more than one way to associate
words from the matched sentence with quantifiers in the pattern. For example, what
should the following do?

The word appears twice in the matched sentence. The program could choose to use
everything up to the first as , leaving six words for , or it could choose to
use everything up to the second as , leaving only two words for . In fact,
each quantifier, starting from the left, matches as many words as it can:

^ #

^ converse

strip.and
and xx #

few

118 Chapter 7 Pattern Matcher

print match [#front xx #back] [a b c d xx e f g xx h i]

show :front show :back

print match [^front xx #back] [a b c d xx e f g xx h i]

show :front show :back

converse

My name is Brian and I like bacon and eggs

converse

My name is Brian and I like bacon and eggs

If that’s not what you want, the quantifier behaves like except that it matches as
words as possible.

We can use the quantifier to fix a bug in the program on page 111:

The problem here is that the pattern used by divided the sentence at the
second , just as the earlier example chose the second when I used as the
quantifier. We can fix it this way:

?
true
?
[a b c d xx e f g]
[h i]

?
true
?
[a b c d]
[e f g xx h i]

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian and I like bacon
I’m glad you like bacon
Nice meeting you!

to strip.and :text
local "short
if match [^short and #] :text [output :short]
output :text
end

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
I’m glad you like bacon
Nice meeting you!

list of patterns

Chapter 7 Pattern Matcher 119

match
in anyof anyof

Match
anyof

@
converse

notand
and

converse

My name is Brian and I hate cheese

converse

I like wings and my name is Jonathan

to converse
local [response name like rest]
print [Hi, my name is Toby and I like ice cream]
print [Tell me about yourself]
make "response readlist
while match [@:anyof [[My name is #name:notand]

[I like #like:notand]
[&:notand]]
?:in [and] #rest] ~

:line ~
[make "response :rest]

if not emptyp :name [print sentence "Hello, :name]
if not emptyp :like [print sentence [I’m glad you like] :like]
print [Nice meeting you!]
end

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Brian
Nice meeting you!

?
Hi, my name is Toby and I like ice cream
Tell me about yourself

Hello, Jonathan
I’m glad you like wings
Nice meeting you!

There is just one more special feature of left to describe. It is another special
predicate, like , but this one is called . When you use , the next member
of the pattern should be a to test. tries each pattern in turn, applied
to list members as determined by the quantifier used. In practice, though, only
makes sense when applied to several members as a group, so the quantifier should
always be used. An example may make this clear. I’m going to rewrite the
program to check for names and likes all at once.

This program uses the predicate I wrote earlier. It checks for clauses separated
by the word . Each clause can match any of three patterns, one for the name, one for
the liking, and a general pattern that matches any other clause. The clauses can appear
in any order.

Equalp

words

sentences

120 Chapter 7 Pattern Matcher

Reinventing for Lists

A Simple Pattern Matcher

Match equalp
match

equalp
equalp

wordequalp listequalp
butfirst

output "false
output "true

listequalp wordequalp

listequalp
#

to listequalp :a :b
if emptyp :a [output emptyp :b]
if emptyp :b [output "false]
if wordequalp first :a first :b ~

[output listequalp butfirst :a butfirst :b]
output "false
end

to match :pat :sen
if emptyp :pat [output emptyp :sen]
if emptyp :sen [if equalp first :pat "#

[output match butfirst :pat :sen]
[output "false]]

if equalp first :pat "# [output or match butfirst :pat :sen
match :pat butfirst :sen]

if equalp first :pat first :sen ~
[output match butfirst :pat butfirst :sen]

output "false
end

is a kind of fancy with a complicated understanding of what equality
means. One way to approach an understanding of is to begin with this question:
Suppose Logo’s primitive only worked for comparing two for equality. (For
the remainder of this section, I won’t use the word at all; I’ll call this imaginary
primitive instead.) How would you write a to compare two
lists? This is basically a -style recursive operation, but you have to be a little
careful about the fact that either input might be smaller than the other.

(This procedure contains the instruction twice, but it never says
. How can it ever say that two lists are equal?)

There is one deficiency in the procedure as I’ve defined it. The problem is that it
only works for —lists whose members are words. If either list contains a sublist,

will try to apply to that sublist. If you enjoy the exercise of
reinventing Logo primitives, you may want to fix that. But for my purposes, the version
here is good enough as a basis for further development of the pattern matcher.

We can extend the idea of slightly to make a pattern matcher that only
recognizes the special word to mean “match zero or more words.” We won’t do any of
the fancy things like storing the matching words in a variable.

A Simple Pattern Matcher 121

listequalp

[#]

#
true

#

true #

true

#

ice

match butfirst :pat :sen

match [# cream] [cream]

match butfirst :pat :sen

match [cream] [cream]

match :pat butfirst :sen

match [# cream] [ice cream]

match :pat butfirst :sen

match [# cream] [cream]

The end test is more complicated in this program than in because the
combination of an empty sentence and a nonempty pattern can still be a match, if the
pattern is something like that matches zero or more words.

The really interesting part of this procedure is what happens if a is found in the
pattern. The match succeeds (outputs) if one of two smaller matches succeeds.
The two smaller matches correspond to two possible conditions: the can match zero
words, or more than zero. The first case is detected by the expression

For example, suppose you want to evaluate

This expression should yield the value , with the matching no words in the
sentence. In this example the expression

is equivalent to

which straightforwardly outputs .

On the other hand, the expression

comes into play when the has to match at least one word. For example, consider the
expression

Here the should match the word . The expression

is here equivalent to

Efficiency and Elegance

both

either

122 Chapter 7 Pattern Matcher

true

match
butfirst

true

match false
or true

true match

or

match [# cream] [vanilla ice cream]

match :pat butfirst :sen match [# cream] [ice cream]
match :pat butfirst :sen match [# cream] [cream]
match butfirst :pat :sen match [cream] [cream]

match butfirst :pat :sen

match :pat butfirst :sen

if equalp first :pat "# [output or match butfirst :pat :sen
match :pat butfirst :sen]

But this is the example that was just above.

If the has to match more than one word, several recursive invocations of are
required, each one taking the of the sentence once. For example, suppose
we start with

Here is the sequence of recursive invocations leading to a match:

I have been talking as if Logo only evaluated whichever of the two expressions

and

is appropriate for the particular inputs used. Actually, expressions are evaluated each
time, so there are many recursive invocations of that come out . However,
the purpose of the primitive operation is to output if of its inputs is

. To understand fully how works, you’ll almost certainly have to trace a few
examples carefully by hand.

Pattern matching is a complicated task, and even the best-written programs are not
blindingly fast. But what is the “best-written” program? In the simple pattern matcher of
the last section, the instruction

is extremely compact and elegant. It packs a lot of power into a single instruction, by
combining the results of two recursive invocations with . The similarity of the inputs
to the two invocations is also appealing.

true

match

#

Efficiency and Elegance 123

if equalp first :pat "# ~
[if match butfirst :pat :sen

[output "true]
[output match :pat butfirst :sen]]

match butfirst :pat :sen

match [cat # bat] [cat rat bat]

match [cat # bat] [cat rat bat] [cat # bat] [cat rat bat]
match butfirst :pat butfirst :sen [# bat] [rat bat]
match butfirst :pat :sen [bat] [rat bat]
match :pat butfirst :sen [# bat] [bat]
match butfirst :pat :sen [bat] [bat]
match butfirst :pat butfirst :sen [] []

* match :pat butfirst :sen [# bat] []
* match butfirst :pat :sen [bat] []

The trouble with this instruction is that it is much slower than necessary, because it
always tries both recursive invocations even if the first one succeeds. A more efficient way
to program the same general idea would be this:

This new version is much less pleasing to the eye, but it’s much faster. The reason is that
if the expression

outputs , then the other recursive invocation is avoided.

It’s a mistake to make efficiency your only criterion for program style. Sometimes
it’s worth a small slowdown of your program to achieve a large gain in clarity. But this is
a case in which the saving is quite substantial. Here is a partial trace of the evaluation of

using the original version of the procedure:

The two invocations marked with asterisks are avoided by using the revised version. These
represent 25% of the invocations of , a significant saving. (Don’t think that the
program necessarily runs 25% faster. Not all invocations take the same amount of time.
This is just a rough measure.) If there were more words after the in the pattern, the
saving would be even greater.

In this situation we achieve a large saving of time by reorganizing the flow of control
in the program. This is quite different from a more common sort of concern for
efficiency, the kind that leads people to use shorter variable names so that the program

Logo’s Evaluation of Inputs

fput sentence

match

#
[#a #b]

a :b

true

match

or
match or true

analysis of algorithms;

evaluates

124 Chapter 7 Pattern Matcher

match [# #] [any old list of words]

if equalp first :pat "# ~
[if match :pat butfirst :sen

[output "true]
[output match butfirst :pat :sen]]

will be a little smaller, or to worry about whether to use or in a case
where either would do. These small “bumming” kinds of optimization are rarely worth
the trouble they cause. Figuring out how many times is invoked using each version
is a simple example of the branch of computer science called a more
profound analysis might use mathematical techniques to compare the two versions in
general, rather than for a single example.

In the full version of the pattern matcher, listed at the end of this project description,
I’ve taken some care to avoid unnecessary matching. On the other hand, the full version
has less flexibility than the simple version because of its ability to assign matching words
to variables. Consider a case like

Which matches how many words? It doesn’t matter if you don’t store the result of the
match in variables. But if the pattern is instead, there has to be a uniform rule
about which part of the pattern matches what. (In my pattern matcher, all of the words
would be assigned to , and would be empty. In general, pattern elements toward the
left match as many words as possible when there is any ambiguity.) The simple pattern
matcher doesn’t have this problem, and can be written to match the ambiguous pattern
whichever way gives a result most quickly.

By the way, what if the two expressions that invoke recursively were reversed
in the revised instruction? That is, what if the instruction were changed again, to read

Would this be more or less efficient than the previous version?

The discussion about efficiency started because Logo the inputs to the primitive
operation before invoking the procedure. That is, in the example in question, Logo
invokes twice before using to check whether either invocation output .
This is consistent with the way Logo does things in general: To evaluate an expression
that uses some procedure, Logo first evaluates all the inputs for that procedure, and then
invokes the procedure with the evaluated inputs. Logo’s rule is extremely consistent

not

Logo’s Evaluation of Inputs 125

to

set make

setq setq

to

doit

edit

edit

edit

(set ’var 27)

make "var 27

(setq var 27)

edit "doit

edit doit

(except for the command), but it isn’t the only possible way. In Lisp, a language that’s
like Logo in many ways, each procedure can choose whether or not its inputs should be
evaluated in advance.

An example may make it clearer what I mean by this. Lisp has a procedure called
that’s equivalent to the Logo . You say

as the equivalent of

But Lisp also has a version called whose first input is evaluated before is
invoked. It’s as if there were an automatic quote mark before the first input, so you just
say

with the same effect as the other examples.

Except for the special format of the command that forms the title line of a
procedure, Berkeley Logo and many other Logo dialects do not have any form of
automatically-quoted inputs. The design principle was that consistency of evaluation
would make the rules easier to understand. Some other versions of Logo do use auto-
quoting for certain procedures. For example, in Berkeley Logo, to edit the definition of
a procedure named you type the instruction

But in some other versions of Logo you instead say

because in those versions, the command auto-quotes its input. One possible reason
for this design decision is that teachers of young children like to present Logo without
an explicit discussion of the evaluation rules. They teach the command as a special
case, rather than as just the invocation of a procedure like everything else. Using this
approach, auto-quoting the input avoids having to explain what that quotation mark
means.

The advantage of the non-auto-quoting version of isn’t just in some abstract
idea of consistency. It allows us to take advantage of composition of functions. Suppose
you are working on a very large project, a video game, with hundreds of procedures. You

would

126 Chapter 7 Pattern Matcher

speed shipspeed asteroidspeed
speedcontrol

Procedures
substringp

edit

or and
or true and

false

and if
print

if

:list

and
first

and or

edit filter [substringp "speed ?] procedures

if not emptyp :list [if equalp first :list 1 [print "one]]

if and (not emptyp :list) (equalp first :list 1) [print "one]

(equalp first :list 1)

want to edit all the procedures having to do with the speed of the spaceships, or whatever
moves around the screen in this game. Luckily, all the procedures you want have the
word as part of their names; they are called or or

. You can say

(is a Berkeley Logo primitive operation that outputs a list of all procedures
defined in the workspace; is a predicate that checks whether one word
appears as part of a longer word.) An auto-quoting command wouldn’t have this
flexibility.

The reason all this discussion is relevant to the pattern matcher is that the Lisp
versions of and have auto-quoted inputs, which get evaluated one by one. As
soon as one of the inputs to turns out to be (or one of the inputs to is

), the evaluation stops. This is very useful not only for efficiency reasons, as in
the discussion earlier, but to prevent certain kinds of errors. For example, consider this
Logo instruction:

It would be pleasant to be able to rewrite that instruction this way:

The use of , I think, makes the program structure clearer than the nested s. That
is, it’s apparent in the second version that something (the) is to be done if two
conditions are met, and that that’s all that happens in the instruction. In the first version,
there might have been another instruction inside the range of the first (outer) ; you
have to read carefully to see that that isn’t so.

Unfortunately, the second version won’t work in Logo. If is in fact empty, the
expression

is evaluated before is invoked; this expression causes an error message because
doesn’t accept an empty input. In Lisp, the corresponding instruction

work, because the two predicate expressions would be evaluated serially and the second
wouldn’t be evaluated if the first turned out to be false.

The serial evaluation of inputs to and is so often useful that some people
have proposed it for Logo, even at the cost of destroying the uniform evaluate-first rule.

Indirect Assignment

Indirect Assignment 127

and or

serial.and if

serial.or or

serial.and serial.or

match

But if you want a serial or , it’s easy enough to write them, if you explicitly quote
the predicate expressions that are its inputs:

Here’s how you would use to solve the problem with the nested s:

Similarly, you could use instead of to solve the efficiency problem in the
first version of the pattern matcher:

These procedures depend on the fact that the predicate expressions that are used as
their inputs are presented inside square brackets; that’s why they are not evaluated before

or is invoked.

From now on, I’ll be talking about the big pattern matcher, not the simple one I
introduced to illustrate the structure of the problem. Here is the top-level procedure

:

to serial.and :pred1 :pred2
if not run :pred1 [output "false]
output run :pred2
end

to serial.or :pred1 :pred2
if run :pred1 [output "true]
output run :pred2
end

if (serial.and [not emptyp :list] [equalp first :list 1]) [print "one]

output serial.or [match butfirst :pat :sen] [match :pat butfirst :sen]

to match :pat :sen
local [special.var special.pred special.buffer in.list]
if or wordp :pat wordp :sen [output "false]
if emptyp :pat [output emptyp :sen]
if listp first :pat [output special fput "!: :pat :sen]
if memberp first first :pat [? # ! & @ ^] [output special :pat :sen]
if emptyp :sen [output "false]
if equalp first :pat first :sen ~

[output match butfirst :pat butfirst :sen]
output "false
end

data

another
value name

128 Chapter 7 Pattern Matcher

[foo [some # pattern] baz]

[foo !:[some # pattern] baz]

?howmany:numberp

make "howmany ...

make :special.var ...

?howmany:numberp

if emptyp
if memberp if emptyp if equalp

memberp #

if

match listp

match
match special

special

special
howmany

match
special.var howmany

make

Special

As you’d expect, there are more cases to consider in this more featureful version, but the
basic structure is similar to the simple matcher. The instructions starting ,

, , and play the same roles as similar instructions in
the other version. (The test replaces the comparison against the word with a
wider range of choices.)

The first instruction tests for errors in the format of the pattern or the sentence
to be matched, in which a word is found where a list was expected. It’s not important if
you use well-formed inputs to . The test essentially converts a pattern like

to the equivalent form

The interesting new case comes when sees a word in the pattern that starts with
one of the six special quantifier characters. In this case, invokes to
check for a match.

One of the interesting properties of is that it has to be able to assign a
value to a variable whose name is not built into the program, but instead is part of the

used as input to the program. That is, if the word

appears in the pattern, (or one of its subprocedures) must assign a value to the
variable named , but there is no instruction of the form

anywhere in the program. Instead, has variable, whose name is
, whose is the . The assignment of the matching

words to the pattern-specified variable is done with an instruction like

Here the first input to is not a quoted word, as usual, but an expression that must
be evaluated to figure out which variable to use.

, then, has two tasks. First it must divide a word like

Defaults

meaning

syntax semantics

parse

default

Defaults 129

Special

Parse.special

set.special
special.var

howmany special.pred numberp

Set.special

special.buffer

special.buffer
match match

to special :pat :sen
set.special parse.special butfirst first :pat "
output run word "match first first :pat
end

[howmany numberp]

?:numberp

if emptyp :special.var [make "special.var "special.buffer]

[a # b # c]

into its component parts; then it must carry out the matching tasks that are the
of those parts. These two tasks are like a smaller version of what a programming language
interpreter like Logo does. Finding the meaningful parts of an instruction is called the

of a language, and understanding what the parts mean is called the of the
language. has two instructions, one for the syntax and one for the semantics:

To something is to divide it into its pieces. outputs a list of the
form

for the example we’re considering. Then assigns the two members of this
list as the values of two variables. The variable named is given the value

, and the variable named is given the value . This
preliminary work is what makes possible the indirect assignment described earlier.

What happens if the pattern has a word like

without a variable name? What happens when the program tries to assign a value to the
variable named in the pattern? contains the instruction

The effect of this instruction is that if you do not mention a variable in the pattern, the
variable named will be used to hold the results of the match. This
variable is the variable, the one used if no other is specified.

It’s important, by the way, that the variable is declared to be local
in procedure . What makes it important is that is recursive; if you use a
pattern like

won’t

130 Chapter 7 Pattern Matcher

print match [a #x b &y ! c] [a i b j c b k c]

show :x show :y

print match [a #x b &x ! c] [a i b j c b k c]

?
true
?
[i]
[j c b]
?
false

?howmany

if emptyp :word [output list :var "always]

to always :x
output "true
end

#
Match special match# #test
match butfirst butfirst #

special.buffer

match
match

x
match

match !

first

parse.special

always Always

then the matching of the second is a subproblem of the matching of the first one.
invokes , which invokes , which invokes , which invokes
on the of the pattern. That contains another . Each of

these uses the variable to remember the words it is trying as a match;
since the variable is declared local, the two don’t get confused. (This means, by the way,
that you can really confuse by using the same variable name twice in a pattern. It
requires a fairly complicated pattern to confuse , but here is an example. The first
result is correct, the second incorrect.

The only change is that the variable name is used twice in the second pattern, and as a
result, doesn’t find the correct match. You’ll know that you really understand how

works if you can explain why it fail if the is removed from the pattern.)

When writing a tool to be used in other projects, especially if the tool will be used
by other people, it’s important to think about defaults. What should the program do if
some piece of information is missing? If you don’t provide for a default explicitly, the
most likely result is a Logo error message; your program will end up trying to take
of an empty list, or something like that.

Another default in the pattern matcher is for the predicate used to test matches. For
example, what happens when the word

appears in the pattern, without a predicate? This case is recognized by ,
in the instruction

The special predicate is used if no other is given in the pattern. has a
very simple definition:

Parsing Rules 131

Program as Data

Parsing Rules

special

?
match?

run special match?

match try.pred

true false

output run word "match first first :pat

?howmany:numberp

output run list :special.pred quoted first :sen

[begin !:[smaller # pattern] end]

[begin !: [smaller # pattern] end]

The instruction in that carries out the semantics of a special pattern-matching
instruction word is

If the pattern contains the word

then this instruction extracts the quantifier character (the first character of the first
word of the pattern) and makes from it a procedure name . That name is then

as a Logo expression; that is, invokes a procedure whose name is .

Most programming languages do not allow the invocation of a procedure based on
finding the name of the procedure in the program’s data. Generally there is a very strict
separation between program and data. Being able to manipulate data to create a Logo
instruction, and then run it, is a very powerful part of Logo. It is also used to deal with
the names of predicates included in the pattern; to see if a word in the sentence input
to is a match for a piece of the pattern, the predicate contains the
instruction

This instruction generates a list whose first member is the name of the predicate found
in the pattern and whose second and last member is a word from the sentence. Then
this list is run as a Logo expression, which should yield either or as output,
indicating whether or not the word is acceptable.

When you are reading the program, remember that the kind of pattern that I’ve written
as

is read by Logo as if I’d written

Further Explorations

but

132 Chapter 7 Pattern Matcher

!

set.special

listp parse.special
Set.special

match

match

in notin

threep

converse while
rest

@@

emptyp :special.pred

[@begin:3 #rest]

[@@: [@:anyof [[my name is #name:notand]
[i like #like:notand]
[&:notand]]

?:in [and]]]

That is to say, this pattern is a list of four members. I think of the middle two as a unit,
representing a single thing to match. The sublist takes the place of a predicate name
after the quantifier. But for Logo, there is no predicate name in the word starting with
the exclamation point; the pattern is a separate member of the large list. That’s why

uses the expression

to test for this situation, rather than . After does its work, all it
has found is a colon with nothing following it. has to look at the next
member of the pattern list in order to find the subpattern.

Chapter 9 is a large program that uses . It may give you ideas for the ways in which
this tool can be used in your own programs. Here, instead of talking about applications
of , I’ll discuss some possible extensions or revisions of the pattern matcher itself.

There are many obvious small extensions. For example, to complement the special
primitive, you could write , which would accept all the members of the

following list. You could allow the use of a number as the predicate, meaning that exactly
that many matching words are required. That is, in the example for which I invented the
predicate , I would instead be able to use

as the pattern.

There is no convenient way to say in a pattern that some subpattern can be repeated
several times, if the subpattern is more than a single word. That is, in the second version
of , instead of having to use to chop off pieces of the matched sentence
into a variable , I’d like to be able to say in the pattern something like

Here the doubled atsign () means that the entire pattern that follows should be
matched repeatedly instead of only once.

Program Listing

Program Listing 133

For other approaches to pattern matching, you might want to read about the
programming languages Snobol and Icon, each of which includes pattern matching as
one of its main features.

to match :pat :sen
local [special.var special.pred special.buffer in.list]
if or wordp :pat wordp :sen [output "false]
if emptyp :pat [output emptyp :sen]
if listp first :pat [output special fput "!: :pat :sen]
if memberp first first :pat [? # ! & @ ^] [output special :pat :sen]
if emptyp :sen [output "false]
if equalp first :pat first :sen

[output match butfirst :pat butfirst :sen]
output "false
end

;; Parsing quantifiers

to special :pat :sen
set.special parse.special butfirst first :pat "
output run word "match first first :pat
end

to parse.special :word :var
if emptyp :word [output list :var "always]
if equalp first :word ": [output list :var butfirst :word]
output parse.special butfirst :word word :var first :word
end

to set.special :list
make "special.var first :list
make "special.pred last :list
if emptyp :special.var [make "special.var "special.buffer]
if memberp :special.pred [in anyof] [set.in]
if not emptyp :special.pred [stop]
make "special.pred first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

134 Chapter 7 Pattern Matcher

to set.in
make "in.list first butfirst :pat
make "pat fput first :pat butfirst butfirst :pat
end

;; Exactly one match

to match!
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var first :sen
output match butfirst :pat butfirst :sen
end

;; Zero or one match

to match?
make :special.var []
if emptyp :sen [output match butfirst :pat :sen]
if not try.pred [output match butfirst :pat :sen]
make :special.var first :sen
if match butfirst :pat butfirst :sen [output "true]
make :special.var []
output match butfirst :pat :sen
end

;; Zero or more matches

to match#
make :special.var []
output #test #gather :sen
end

to #gather :sen
if emptyp :sen [output :sen]
if not try.pred [output :sen]
make :special.var lput first :sen thing :special.var
output #gather butfirst :sen
end

to #test :sen
if match butfirst :pat :sen [output "true]
if emptyp thing :special.var [output "false]
output #test2 fput last thing :special.var :sen
end

Program Listing 135

to #test2 :sen
make :special.var butlast thing :special.var
output #test :sen
end

;; One or more matches

to match&
output &test match#
end

to &test :tf
if emptyp thing :special.var [output "false]
output :tf
end

;; Zero or more matches (as few as possible)

to match^
make :special.var []
output ^test :sen
end

to ^test :sen
if match butfirst :pat :sen [output "true]
if emptyp :sen [output "false]
if not try.pred [output "false]
make :special.var lput first :sen thing :special.var
output ^test butfirst :sen
end

;; Match words in a group

to match@
make :special.var :sen
output @test []
end

to @test :sen
if @try.pred [if match butfirst :pat :sen [output "true]]
if emptyp thing :special.var [output "false]
output @test2 fput last thing :special.var :sen
end

136 Chapter 7 Pattern Matcher

to @test2 :sen
make :special.var butlast thing :special.var
output @test :sen
end

;; Applying the predicates

to try.pred
if listp :special.pred [output match :special.pred first :sen]
output run list :special.pred quoted first :sen
end

to quoted :thing
if listp :thing [output :thing]
output word "" :thing
end

to @try.pred
if listp :special.pred [output match :special.pred thing :special.var]
output run list :special.pred thing :special.var
end

;; Special predicates

to always :x
output "true
end

to in :word
output memberp :word :in.list
end

to anyof :sen
output anyof1 :sen :in.list
end

to anyof1 :sen :pats
if emptyp :pats [output "false]
if match first :pats :sen [output "true]
output anyof1 :sen butfirst :pats
end

name
value:

137

8 Property Lists

print thing "book

french

Butfirst

thing

[[book livre] [computer ordinateur] [window fenetre]]

make "paper "papier
make "chair "chaise
make "computer "ordinateur
make "book "livre
make "window "fenetre

?
livre

In the first volume of this series, I wrote a procedure named that translates words
from English to French using a dictionary list like this:

This technique works fine with a short word list. But suppose we wanted to undertake a
serious translation project, and suppose we wanted to be able to translate English words
into several foreign languages. (You can buy hand-held machines these days with little
keyboards and display panels that do exactly that.) ing through a list of tens of
thousands of words would be pretty slow, and setting up the lists in the first place would
be very difficult and error-prone.

If we were just dealing with English and French, one solution would be to set up
many variables, with each an English word as its and the corresponding French
word as its

Once we’ve done this, the procedure to translate from English to French is just :

Naming Properties

property list.
names, values.

138 Chapter 8 Property Lists

make "book.french "livre
make "book.spanish "libro

to spanish :word
output thing word :word ".spanish
end

make "book [livre libro buch libro liber]

to spanish :word
output item 2 thing :word
end

[French livre Spanish libro German buch Italian libro Latin liber]

The advantage of this technique is that it’s easy to correct a mistake in the translation;
you just have to assign a new value to the variable for the one word that is in error, instead
of trying to edit a huge list.

But we can’t quite use this technique for more than one language. We could create
variables whose names contained both the English word and the target language:

This is a perfectly workable technique but a little messy. Many variables will be needed.
A compromise might be to collect all the translations for a single English word into one
list:

The only thing wrong with this technique is that we have to remember the correct order
of the foreign languages. This can be particularly tricky because some of the words are
the same, or almost the same, from one language to another. And if we happen not to
know the translation of a particular word in a particular language, we have to take some
pains to leave a gap in the list. Instead we could use a list that tells us the languages as
well as the translated words:

A list in this form is called a The odd-numbered members of the list are
property and the even-numbered members are the corresponding property

You can see that this solution is a very flexible one. We can add a new language to
the list later, without confusing old procedures that expect a particular length of list. If
we don’t know the translation for a particular word in a particular language, we can just
leave it out. The order of the properties in the list doesn’t matter, so we don’t have to

print gprop "book "German

Writing Property List Procedures in Logo

Writing Property List Procedures in Logo 139

book part.of.speech
noun

pprop

pprop

remprop

remprop
gprop

gprop
gprop

?
buch

to pprop :list :name :value
if not namep :list [make :list []]
make :list pprop1 :name :value thing :list
end

to pprop1 :name :value :oldlist
if emptyp :oldlist [output list :name :value]
if equalp :name first :oldlist ~

[output fput :name (fput :value (butfirst butfirst :oldlist))]
output fput (first :oldlist) ~

(fput (first butfirst :oldlist)
(pprop1 :name :value (butfirst butfirst :oldlist)))

end

remember it. The properties need not all be uniform in their significance; we could,
for example, give a property whose name is and whose value is

.

To make this work, Berkeley Logo (along with several other dialects) has procedures
to create, remove, and examine properties. The command (Put PROPerty) takes
three inputs; the first two must be words, and the third can be any datum. The first input
is the name of a property list; the second is the name of a property; the third is the value
of that property. The effect of is to add the new property to the named list. (If
there was already a property with the given name, its old value is replaced by the new
value.) The command (REMove PROPerty) takes two inputs, which must be
words: the name of a property list and the name of a property in the list. The effect
of is to remove the property (name and value) from the list. The operation

(Get PROPerty) also takes two words as inputs, the name of a property list and
the name of a property in the list. The output from is the value of the named
property. (If there is no such property in the list, outputs the empty list.)

It would be possible to write Logo procedures that would use ordinary variables to hold
property lists, which would work just like the ones I’ve described. Since Berkeley Logo
provides property lists as a primitive capability, you won’t need to load these into your
computer, but later parts of the discussion will make more sense if you understand how
they work. Here they are:

list

thing

thing book

Property Lists Aren’t Variables

name

not

third

140 Chapter 8 Property Lists

Note that the input called in each of these procedures is not a property list itself
but the of a property list. That’s why each of the superprocedures evaluates

to pass down as an input to its subprocedure.

The primitive procedures that support property lists in Berkeley Logo, however, do
use to find the property list. Just as the same word can independently name a
procedure and a variable, a property list is a kind of named entity, which is separate
from the with the same name. For example, if we gave the property list
shown with a series of instructions like

to remprop :list :name
if not namep :list [make :list []]
make :list remprop1 :name thing :list
end

to remprop1 :name :oldlist
if emptyp :oldlist [output []]
if equalp :name first :oldlist [output butfirst butfirst :oldlist]
output fput (first :oldlist) ~

(fput (first butfirst :oldlist)
(remprop1 :name (butfirst butfirst :oldlist)))

end

to gprop :list :name
if not namep :list [output []]
output gprop1 :name thing :list
end

to gprop1 :name :props
if emptyp :props [output []]
if equalp :name first :props [output first butfirst :props]
output gprop1 :name (butfirst butfirst :props)
end

thing :list

pprop "book "French "livre
pprop "book "Spanish "libro

print :book

How Language Designers Earn Their Pay

book

book make

plist Plist

plist

map map

memberp

variable

a property.

pairs

nodes.

How Language Designers Earn Their Pay 141

?
book has no value

[[French livre] [Spanish libro] [German buch]
[Italian libro] [Latin liber]]

and so on, we would not be creating a named .

(Of course, we could give a value with a instruction, but that value would
have nothing to do with the property list.) Instead there is a fourth primitive procedure
called that can be used to examine a property list. takes one input, a
word. It outputs the property list associated with that word. If there is no such property
list, outputs the empty list.

If you’re like me, you may have some questions about why this Logo feature works the
way it does. The form of a property list, for example, may seem arbitrary to you. Why
should it be a flat list, with names as the odd-numbered members and values as the
even-numbered ones? Wouldn’t it be more sensible to structure the list this way:

In this scheme each member of a property list is A property has two parts,
a name and a value. A list structured in this way would be easier to use with iterative
tools like . (Try to figure out a way to redefine so that it could map a function
over of members of its input list. Your goal is to find a way that isn’t a kludge.) You
wouldn’t have to think “What if the list has an odd number of members” when writing
procedures to manipulate property lists.

So why does Logo use the notation it does? I’m afraid the real answer is “It’s
traditional.” Logo property lists are the way they are because that’s what property lists
look like in Lisp, the language from which Logo is descended. Now, why was that decision
made in the design of Lisp? I’m not sure of the answer, but one possible reason is that
the flat property lists take up less room in the computer’s memory than the list-of-lists
that I’d find more logical. (Logo measures its available memory in It takes two
overhead nodes per property, not including the ones that actually contain the name and
the value, for the flat property list; it would take three overhead nodes per property for
the list-of-lists.)

Another minor advantage is that if you want to live dangerously, you can use
to see if a particular property name exists in a property list. It’s living dangerously because

Fast Replacement

Defaults

make "myprops plist "myself

value

copy

142 Chapter 8 Property Lists

memberp

pprop1 fput
pprop

pprop remprop myself
myprops plist

plist
myprops

gprop

the property name might, by coincidence, be the of some other property. (In
the dictionary example, this would be the situation if the German word for “book” were
“Greek”!) The advantage is that is a primitive procedure, so it’s faster than
one you could write yourself that would check just the odd-numbered members of the
property list.

Another question you might ask is this one: Why have property list primitives at all? The
list is a very general data structure, which can be organized in many ways. Why single out
this particular way of using lists as the one to support with special primitive procedures?
After all, it’s easy enough to implement property lists in Logo, as I’ve done in this chapter.

One answer is that the primitives can be much faster than the versions I’ve written in
Logo because they can replace a value inside a property list without recopying the rest of
the list. My procedure , for example, has to do two s for each property in
the list every time you want to change a single property. The primitive version of
doesn’t reconstruct the entire list; it just rips out the old value from inside the list and
sticks in a new value.

Aside from the question of speed, the difference between changing something inside
a list and making a modified copy of the list may not seem like a big deal. But it does
raise a subtle question. If you say

and then, later, use or to change some of the properties of ,
does the value of the variable change? The answer is no; really outputs a

of the property list as it exists at the moment you invoke . That copy becomes
the value of , and it doesn’t change if the property list itself is changed later.
(Berkeley Logo, like Lisp, does have primitives that allow you to change things inside
lists in general, and this possibility of a variable magically changing in value because you
change something else really does arise!)

Another language design question you might be wondering about is why outputs
the empty list if you ask for a property that doesn’t exist. How do you say “book” in Urdu?

show gprop "book "urdu?
[]

book has no urdu property

thing

if not namep

thing

first first

variable

default.

origin

teachers
implementors

Defaults 143

If you ask for a that doesn’t exist, you get an error message. Why doesn’t Logo
print something like

in this situation?

The name for “what you get when you haven’t provided an answer” is a There
aren’t very many situations in which Logo provides defaults. One obscure example in
Berkeley Logo is the of an array—the number used to select its first member. By
default the first member is number one, but it’s possible to set up an array that begins
with some other number (most commonly zero).

The question of what should be considered an error is always a hot one among
language designers. The issue is one of programming convenience versus ease of
debugging. Suppose output the empty list if asked for a nonexistent variable. It
would have been easier for me to write the property list procedures in this chapter; I
could have left out the instructions. This is a situation in which I might
ask for a variable that hasn’t been given a value “on purpose,” with a perfectly clear idea
of what result I want. On the other hand, if were permissive in this way, what
would happen if I gave it an input that wasn’t a variable name because I made a spelling
error? Instead of getting an error message right away, my program would muddle on with
an empty list instead of whatever value was really needed. Eventually I’d get a different
error message or an incorrect result, and it would be much harder to find the point in
the program that caused the problem.

The same issue arises, by the way, about operations like . What should
do if you give it an empty list as input? Logo considers this an error, as do most versions
of Lisp. Some versions of Lisp, though, output an empty list in this situation.

It’s most common to need “permissive” primitives when working on extensions to
Logo itself, such as property lists, as opposed to specific application programs. An
application programmer has complete control over the inputs that procedures will be
given; an implementor of a programming language (or an extension to it) has to handle
anything that comes up. I think that’s why, traditionally, it’s always been the of
Logo who vote in favor of error messages and the who prefer permissive
primitives.

Abraham Ann Albert Amelia

Bill Betty Bob Barbara Brian Boris

Colin Cathy Chris CecilCharlie Carol

An Example: Family Trees

144 Chapter 8 Property Lists

gprop

mother
father kids sex kids

sex male female

to family :mom :dad :girls :boys
catch "error [pprop :mom "sex "female]
catch "error [pprop :dad "sex "male]
foreach :girls [pprop ? "sex "female]
foreach :boys [pprop ? "sex "male]
localmake "kids sentence :girls :boys
catch "error [pprop :mom "kids :kids]
catch "error [pprop :dad "kids :kids]
foreach :kids [pprop ? "mother :mom pprop ? "father :dad]
end

family "Ann "Abraham [Betty] [Bill Bob]
family "Amelia "Albert [Barbara] [Brian Boris]
family "Betty [] [Cathy] [Colin]
family "Barbara "Bob [Carol] [Charlie]
family [] "Boris [] [Chris Cecil]

So why is permissive when all other Logo primitives are not? Well, the others
were designed early in the history of the language when teachers were in charge at the
design meetings. Property lists were added to Logo more recently; the implementors
showed up one day and said, “Guess what? We’ve put in property lists.” So they did it
their way!

Here is an example program using property lists. My goal is to represent this family tree:

Each person will be represented as a property list, containing the properties ,
, , and . The first two will have words (names) as their values, will

be a list of names, and will be or . Note that this is only a partial family
tree; we don’t know the name of Betty’s husband or Boris’s wife. Here’s how I’ll enter all
this information:

father

An Example: Family Trees 145

The instructions that catch errors do so in case a family has an unknown mother or
father, which is the case for two of the ones in our family tree.

Now the idea is to be able to get information out of the tree. The easy part is to get
out the information that is there explicitly:

Of course several more such procedures can be written along similar lines.

The more interesting challenge is to deduce information that is not explicitly in the
property lists. The following procedures make use of the ones just defined and other
obvious ones like .

to mother :person
output gprop :person "mother
end

to kids :person
output gprop :person "kids
end

to sons :person
output filter [equalp (gprop ? "sex) "male] kids :person
end

to grandfathers :person
output sentence (father father :person) (father mother :person)
end

to grandchildren :person
output map.se [gprop ? "kids] (kids :person)
end

to granddaughters :person
output justgirls grandchildren :person
end

to justgirls :people
output filter [equalp (gprop ? "sex) "female] :people
end

to aunts :person
output justgirls sentence (siblings mother :person) ~

(siblings father :person)
end

or

146 Chapter 8 Property Lists

siblings
aunts cousins siblings

grandfathers

father

sentence grandfathers

cousins
sentence

person26
familyname givenname name

father cousins
person26

realnames

to cousins :person
output map.se [gprop ? "kids] sentence (siblings mother :person) ~

(siblings father :person)
end

to siblings :person
local "parent
if emptyp :person [output []]
make "parent mother :person
if emptyp :parent [make "parent father :person]
output remove :person kids :parent
end

to father :person
if emptyp :person [output []]
output gprop :person "father
end

In writing , I’ve been careful to have it output an empty list if its input is empty.
That’s because and may invoke with an empty input if we’re
looking for the cousins of someone whose father or mother is unknown.

You’ll find, if you try out these procedures, that similar care needs to be exercised
in some of the “easy” procedures previously written. For example, will
give an error message if applied to a person whose mother father is unknown, even if
the other parent is known. One solution would be a more careful version of :

The reason for choosing an empty list as output for a nonexistent person rather than
an empty word is that the former just disappears when combined with other things
using , but an empty word stays in the resulting list. So , for
example, will output a list of length 1 if only one grandfather is known rather than a list
with an empty word in addition to the known grandfather. Procedures like also
rely heavily on the flattening effect of .

This is rather an artificial family tree because I’ve paid no attention to family names,
and all the given names are unique. In practice, you wouldn’t be able to assume that.
Instead, each property list representing a person would have a name like and
would include properties and or perhaps just a property
whose value would be a list. All the procedures like and would
output lists of these funny -type names, and you’d need another procedure

that would extract the real names from the property lists of people in a list.
But I thought it would be clearer to avoid that extra level of naming confusion here.

147

doctor

doctor

9 Example: Doctor

doctor

My spirits are low.

I’m really depressed.

It’s because nobody likes me.

That’s right.

I’m lonely.

Of course.

Program file for this chapter:

This is the beginning of a dialogue with a program called . The program
simulates the behavior of a psychotherapist. People who interact with this program are

?
Hello, I am the doctor. What can i do for you?
Please end your remarks with an empty line.

Your spirits are low?

I’m sorry to hear you are depressed.

Really, nobody?

I am not sure I understand you fully.

Is it because you are lonely that you came to me?

Earlier you said your spirits are low.

rules;

Pygmalion

148 Chapter 9 Example: Doctor

[# !a:in [everyone everybody nobody noone] #]

[[Really, :a?]
[Surely not :a.]
[Can you think of anyone in particular?]
[Who, for example?]
[You are thinking of a very special person.]
[Who, may I ask?]
[Someone special perhaps.]
[You have a particular person in mind, don’t you?]
[Who do you think you’re talking about?]
[I suspect you’re exaggerating a little.]]

often fooled into thinking that the program understands what they are saying, although
in fact the program does not understand at all. Instead, the program recognizes certain
key words in a sentence, words like “problem” or “nobody.” For each of these words,
there is a list of a rule consists of a pattern (of the sort used by the pattern matcher
of Chapter 7) and a set of possible responses. For example, associated with the word
“nobody” is the pattern

Corresponding to that pattern is a list of responses:

The program has so many possible responses so that each time you use the word “nobody”
(or “everybody,” etc.) you get a different answer. Even though many of the answers have
the same meaning, the variety in the wording helps to convince you that it’s a real person
at the other end of the conversation.

Many versions of this program have been written, but the first was written in 1966
by Joseph Weizenbaum, a professor of computer science at MIT. He called his program
Eliza after Eliza Doolittle, a character in the play by George Bernard Shaw.
Eliza started life poor and uneducated, with rough speech, but in the play she is taught
to speak better. The program, too, can be taught rules to help it speak better.

Because conversations must be about something, that is, because they must
take place within some context, the program was constructed in a two-tier
arrangement, the first tier consisting of the language analyzer and the second
of a script. The script is a set of rules rather like those that might be given to an
actor who is to use them to improvise around a certain theme. Thus Eliza could
be given a script to enable it to maintain a conversation about cooking eggs or
about managing a bank checking account, and so on. Each specific script thus
enabled Eliza to play a specific conversational role.

doctor

doctor

Eliza and Artificial Intelligence

Computer Power and Human Reason

Apple
Logo

artificial intelligence:

Eliza and Artificial Intelligence 149

For my first experiment, I gave Eliza a script designed to permit it to play (I
should really say parody) the role of a Rogerian psychotherapist engaged in an
initial interview with a patient. The Rogerian psychotherapist is relatively easy
to imitate because much of his technique consists of drawing his patient out by
reflecting the patient’s statements back to him...

[Joseph Weizenbaum, (Freeman, 1976),
page 3.]

It has long been a popular Logo programming project to implement a small subset
of ’s conversational ability through a program that embodies directly a few of the
rules in Weizenbaum’s Doctor script for Eliza. (See, for example, Harold Abelson,

(BYTE Publications, 1982), page 158.) Home computers now have enough memory
to permit the implementation in Logo of Weizenbaum’s original two-tier approach. The
program presented here is not a line-for-line translation of Eliza into Logo, but does
embody the same fundamental strategy (namely pattern matching) as the original. The
script is a close adaptation of Weizenbaum’s version, via a Lisp version by Jon L. White.

You should try conversing with yourself a few times. Whenever you get a
response that seems linguistically bizarre, make a note of it. Later, as I’m talking about
the way the program works, you can ask yourself how you would modify the script to
eliminate the bad responses you’ve noted.

When Eliza was first unveiled, many people considered it a major advance in the pursuit
of the search for ways to make computers as intelligent as people.
Especially to a person unfamiliar with computer programming, a conversation with
the Doctor can seem very real indeed. But as Weizenbaum himself points out, the
underlying techniques used in the program do not involve any real understanding of the
conversation. The program “cheats.”

Today there are language-understanding programs that use techniques much more
sophisticated than the simple pattern matching of Eliza. The authors of some such
programs maintain that they really do understand what they are saying and hearing, in
a sense in which Eliza does not. Other people, including Weizenbaum, suggest that
even these state-of-the-art artificial intelligence programs are merely cheating in more
complex ways. What would it mean for a program “really” to understand a conversation?
This is a deep question that would take too long to explore here. (I’ll come back to it
in the discussion of artificial intelligence in the third volume of this series.) If you’re

Eliza’s Linguistic Strategy

Computer Power and Human
Reason cannot

should not

memory

another

150 Chapter 9 Example: Doctor

interested, you should begin by reading Weizenbaum’s book,
, from which I quoted a passage earlier. He argues not only that computers

do certain things, but also that people use computers for certain purposes
even if it were possible. In particular, he is horrified at the suggestion, made even by
some psychiatrists, that programs like Eliza should be used to provide therapy to actual
patients.

The program allows the user to enter one or more sentences, typing several lines if
necessary. The first step in processing the user’s remarks is to string the several lines into
one long list. This list is a “sentence” in the Logo technical sense; that is, it’s a list of
words with no sublist structure. It may, however, contain one or more English sentences.
The generation of a response involves several steps:

1. Find the punctuation in the input and use it to extract a single sentence to answer.
2. Find keywords in the sentence for which the script includes rules.
3. Apply word-for-word translations as specified by the script; these are primarily to

convert first person (“I”) to second person (“you”) and vice versa.
4. Pick the highest priority keyword.
5. Find a rule for that keyword whose pattern matches the input sentence.
6. Choose a response according to that rule.

These steps are not really quite sequential; for example, the first two are done in parallel
because, if there is more than one sentence, the program chooses a sentence that contains
one or more keywords.

I have omitted from this list several possible complications. One important one is
that there is a second kind of rule (besides the response rules) called a rule.
These rules do not generate immediate responses to what the user types. Instead, they
generate sentences that are appropriate for later use, like “Earlier you said your spirits
are low” in the sample dialogue earlier. That response was not generated from the user’s
comment just before it, but was instead added to memory at the time of the user’s first
remark. Because the user’s comment “Of course” contained no keywords, the program
chose to use a response from memory at that time.

Other complications have to do with the nature of the rules associated with a
keyword. Instead of patterns and responses, a keyword can just have keyword
as its rules, meaning that the rules for that keyword should be used for this one also.
Alternatively, another keyword can be used in place of a response for a particular pattern,

doctor

analyze

loop

checkrules

dorule memory

reconstruct

reword

addpunct

capitalize

decapitalize

match

tokenizegetstuff

tokenword

choosing a rule and replying

reading and preparing
the input

usememory

lastresort

norules

getsentence

translatecheckpriority

getsentence1

if

doctor loop

Eliza’s Linguistic Strategy 151

so the alternate keyword is used only if that pattern is matched. Another alternative
to a response is the word “newkey,” which means that the program should abandon
this keyword and try another one in the same sentence. Yet another alternative is an
instruction to rearrange the sentence and try matching patterns again with the new
version. As you read the procedures shown below, try not to get caught up in these
complications the first time through. Just forget about the instructions that check for
these special cases and concentrate on the usual situation.

I’ll explain how each part of the linguistic strategy is carried out by the procedures
in the project. Here is a diagram of the subprocedure/superprocedure relationships.
The top-level does some initialization and then invokes , which does the
real work.

token

152 Chapter 9 Example: Doctor

Loop getstuff

tokenize tokenword

reader

uses to read several lines of the user’s typing into a long list. This list is
processed by several procedures in turn.

The first step in my numbered list is to find the punctuation and use it to extract
a single sentence from the list. The first part, finding the punctuation, is the job of

and its subprocedure . (These procedures get their name from
the computer scientist’s term , which means the smallest possible meaningful string
of characters. In the BASIC compiler of Chapter 6, the procedure called
separates a line of text into tokens.)

to doctor
local [text sentence stuff a b c rules keywords memory]
make "memory []
print [Hello, I am the doctor. What can I do for you?]
print [Please end your remarks with an empty line.]
print []
loop
end

to loop
make "text tokenize getstuff []
make "sentence getsentence :text
analyze :sentence :keywords
print []
loop
end

to getstuff :stuff
localmake "line readlist
if emptyp :line [output :stuff]
output getstuff sentence :stuff :line
end

to tokenize :text
output map.se [tokenword ? "] :text
end

to tokenword :word :out
if emptyp :word [output :out]
if memberp first :word [, "] [output tokenword butfirst :word :out]
if memberp first :word [. ? ! |;|] [output sentence :out ".]
output tokenword butfirst :word word :out first :word
end

Eliza’s Linguistic Strategy 153

tokenword why? [why .]

getsentence
checkpriority translate

decapitalize

capitalize

to getsentence :text
make "keywords []
output getsentence1 decapitalize :text []
end

to getsentence1 :text :out
if emptyp :text [output :out]
if equalp first :text ". ~

[ifelse emptyp :keywords
[output getsentence1 decapitalize butfirst :text []]
[output :out]]

checkpriority first :text
output getsentence1 butfirst :text sentence :out translate first :text
end

to decapitalize :text
if emptyp :text [output []]
output fput lowercase first :text butfirst :text
end

to checkpriority :word
localmake "priority gprop :word "priority
if emptyp :priority [stop]
if emptyp :keywords [make "keywords (list :word) stop]
ifelse :priority > (gprop first :keywords "priority) ~

[make "keywords fput :word :keywords] ~
[make "keywords lput :word :keywords]

end

The program’s understanding of punctuation is very simple. Some punctuation, like a
quotation mark, is just ignored completely. Periods, question marks, and semicolons
are all treated as having the same meaning, namely, they mark the end of a sentence.

turns a word like into the two-word list so that the period as
a separate word serves as the separator between sentences in the long list.

Extracting a single sentence is done at the same time as steps 2 and 3, finding
keywords and applying translations. All of these are done by , which uses

and as subprocedures for tasks 2 and 3 respectively. (The
version of Doctor in the first edition worked with all capital letters. In this new version,
I’ve added a procedure that turns the first letter of each sentence
to lower case, and when the program prints a response it uses the inverse procedure

to capitalize the first word. This is necessary because the first word of the
user’s sentence might end up in the middle of the program’s response, and vice versa.)

untranslated

154 Chapter 9 Example: Doctor

getsentence1

getsentence1

checkpriority translate
doctor

my
My

dreamed computer Checkpriority

translation my your

checkpriority
you I

first
checkpriority

analyze checkrules Analyze

to translate :word
localmake "new gprop :word "translation
output ifelse emptyp :new [:word] [:new]
end

pprop "my "priority 2
pprop "my "translation "your

to analyze :sentence :keywords
local [rules keyword]
if emptyp :keywords [norules stop]
make "keyword first :keywords
make "rules gprop :keyword "rules
if wordp first :rules ~

[make "keyword first :rules make "rules gprop :keyword "rules]
checkrules :keyword :rules
end

At each sentence separator (a word containing only a period), checks
whether any keywords have been found yet. If so, the sentence before the separator is
the one the program uses. If not, goes on to examine the next sentence
in the list. If the last sentence ends without any keywords found, that last sentence is
chosen anyway.

Both and work through the use of property lists that
are associated with words. The script part of (Weizenbaum’s second tier) consists
of these property lists. For example, here’s part of the script setup:

The first of these means that is a keyword, with priority 2. In the Doctor script,
most keywords have priority 0. is a little more important than most words, but not
as important as (priority 4) or (priority 50)!
arranges the list of keywords so that the word with highest priority is first in the list.
The property means that the word is changed to in generating
responses. For example, at the beginning of the sample dialogue above, the sentence
“My spirits are low” is echoed as “Your spirits are low?” (The keyword list created by

has keywords. That’s why the patterns associated with the
keyword , for example, all contain the word instead; the patterns deal with the
translated version.)

Step 4, finding the highest priority keyword, is simply a matter of choosing the
keyword in the list because of the way has done its job. This selection
is made by , which then invokes as a subprocedure. (
also recognizes the special situation in which one keyword refers to the rules of another.)

the name of a property

Eliza’s Linguistic Strategy 155

Checkrules
checkrules match

[#]
checkrules dorule

dorule

dorule
reconstruct

dorule

my

to checkrules :keyword :rules
if not match first :rules :sentence ~

[checkrules :keyword butfirst butfirst :rules stop]
dorule first butfirst :rules
end

to dorule :rule
localmake "print first gprop :keyword :rule
pprop :keyword :rule lput :print butfirst gprop :keyword :rule
if equalp :print "newkey [analyze :sentence butfirst :keywords stop]
if wordp :print [checkrules :print gprop :print "rules stop]
if equalp first :print "pre ~

[analyze reconstruct first butfirst :print
butfirst butfirst :print

stop]
print capitalize reconstruct :print
memory :keyword :sentence
end

My spirits are low.

[# your # !a:familyp #b]
[# your &stuff]
[#]

handles step 5, finding an applicable rule for the chosen keyword.
That is, invokes to match the selected sentence against each pattern
associated with the given keyword. (The program assumes that the script is written so that
there will always be at least one matching pattern. Most keywords have as the pattern
in the last rule.) When finds a matching pattern, it invokes to
examine the corresponding list of responses. (One complication in understanding these
procedures is that the input to is whose value is the list
of responses. I’ll get back to discussing why it’s done this way later; for now, all that’s
really important is that chooses one of the responses and uses it as the input to

.)

The usual task of is to carry out step 6, the generation of a response. For
example, when the user typed

the highest priority keyword found was . There are three patterns associated with this
keyword:

after

156 Chapter 9 Example: Doctor

your my
Familyp mother

brother Match
stuff

tokenize

Dorule reconstruct

reconstruct

stuff stuff?

[spirits are low]

[[Your :stuff?]
[Why do you say your :stuff?]
[Does that suggest anything else which belongs to you?]
[Is it important to you that your :stuff?]]

to reconstruct :sentence
if emptyp :sentence [output []]
if not equalp ": first first :sentence ~

[output fput first :sentence reconstruct butfirst :sentence]
output sentence reword first :sentence reconstruct butfirst :sentence
end

to reword :word
if memberp last :word [. ? ,] ~

[output addpunct reword butlast :word last :word]
output thing butfirst :word
end

to addpunct :stuff :char
if wordp :stuff [output word :stuff :char]
if emptyp :stuff [output :char]
output sentence butlast :stuff word last :stuff :char
end

(Again, the pattern is matched against the sentence translation, so the patterns
contain the word even though the actual keyword is .) The first of these patterns
does not match the sentence. (is a predicate that’s true for words like
and .) The second pattern, however, does match the sentence. gives
the variable the list

as its value. (The period that ended what the user typed was removed by .)

Associated with that second pattern is this list of responses:

chooses the first of these, and invokes to substitute the actual
value of the variable into the response. By the way, although I’ve used Logo’s notation
of colon to mean “the value of the variable,” isn’t exactly like the Logo
interpreter. For one thing, it recognizes punctuation marks; it knows that this response
refers to a variable named , not .

Stimulus-Response Psychology

people

model

not
behavior

mechanism

behaviorism, stimulus-response

can
stimulus

response

conditioning

Stimulus-Response Psychology 157

Historically, there have been two ways of looking at the purpose of artificial intelligence
research. One way is to see it as research into what computers can do, and into the
meaning of intelligence in general, without any special reference to how think.
Researchers who take this approach are willing to use any technique that will solve a
problem, even if it’s perfectly obvious that people don’t think that way. The second
approach is to see artificial intelligence as a way to shed light on human intelligence. In
this approach, the idea is to use the computer as a for the human mind. Researchers
who follow this path try to write their programs to mimic human behavior and, they hope,
even the inner mechanisms of human brains. Recently there has been a tendency for
researchers to declare themselves as wholly in one camp or the other. People who want to
solve problems even if by non-human methods are part of the “knowledge engineering”
field; the programs they develop are called “expert systems.” People who want to use
the computer to help build theories of human intelligence are in the field of “cognitive
science.”

Weizenbaum’s work on Eliza is an early example of the former approach. He was
emphatically claiming that his program worked the way people work. Indeed, one of
the purposes of the program was to demonstrate how realistic the of a computer
program can be, even when we are quite sure that the underlying is completely
unrealistic.

Nevertheless, Eliza could be taken as a computer model of a certain theory of human
psychology. It may not be obvious what it means for a computer program to model a
theory about people, so it may be worthwhile to examine Eliza from this point of view.
One theory about how people think is called or the theory.
According to this theory, a person’s mind is a “black box,” and we can’t know what’s
inside. What we know, however, is how a person reacts to different situations and
events. Whatever situation presents itself to you is called a . A stimulus can be
something very abrupt like an electric shock, or it can be something more subtle like
a particular sentence spoken by a particular person. When you are presented with a
given stimulus, you produce a certain : you say something back, or you jump, or
you fall asleep. People learn to associate certain responses with certain stimuli. People
can be trained to change the response associated with a stimulus by using
techniques. If you are rewarded for producing a certain response, you’ll produce it more
often.

The behaviorist theory was very influential several years ago, although hardly anyone
believes it any more. What would it mean to write a computer model for this theory? Well,
the model would have two main parts: one that recognizes stimuli, and one that produces

Property Lists

match
doctor

dorule reconstruct

my

learning

and

158 Chapter 9 Example: Doctor

[priority 2
translation your
rules [[# your # !a:familyp #b] g1 [# your &stuff] g2 [#] g3]

a response for a given stimulus. In Eliza, the first part is the pattern matcher. I haven’t
spoken much about that part of the program in this description because I discussed it at
length in the last project. But in fact and its subprocedures are a substantial part
of the complete program. The second part, the one that produces responses, is

and .

Eliza does not represent a very sophisticated form of stimulus-response theory
because it leaves out the idea of . In Eliza, the responses are all provided
in advance, as part of the script. People can develop new responses over time, and
behaviorist theory has a lot to say about exactly what the rules are that govern such
learning. (That’s what education is, to a behaviorist: learning new responses to stimuli.)
Since the script for Eliza is stored in lists, and those lists can be manipulated by the
program, it would be possible to modify the rules of the program so that it can learn
new rules while it’s running. For example, if the user types something like “What
are you talking about?” then the program could decide that its previous response was
inappropriate. It would learn to avoid that response next time. You might like to think
about how to design such an extension to the project as presented here.

Researchers who, unlike Weizenbaum, are deliberately trying to model theories of
human psychology generally use a more complicated program structure. For example,
experiments measuring the reaction time of human beings in different situations seem
to indicate that people have a short-term memory and a long-term memory. The
former may hold the telephone number you’re dialing right now, for instance, while the
latter holds all the telephone numbers of all your friends. Short-term memory is faster
than long-term, but much smaller; you can only remember a few things at a time in
it. Computers do not inherently have these two kinds of memory; they’re really good
at remembering many things finding them quickly. But cognitive scientists write
programs that deliberately limit the computer’s ability to remember things quickly, trying
to model the inner structure of the brain in this way.

The response rules, memory rules, translations, and priorities that make up the script are
all stored in the form of property lists. Each keyword has a property list. For example,
the property list for the word looks like this:

Property Lists 159

my priority translation rules g1 g2 g3
memr g4 priority translation

rules memr

pprop

Remember that a property list contains pairs of members; the odd numbered members are
names of properties, and the even numbered members are the values of those properties.
The word has properties named , , , , , ,

, and . The and properties are straightforward.
The and properties have as their values lists in which the odd numbered
members are patterns and the even numbered members are names of other properties.
These other properties contain the lists of responses. The names of these secondary
properties are arbitrary and are generated by the program.

To create these property lists, I used directly for some of the properties,
but wrote setup procedures to help with the more complicated parts. Here are the
instructions that contribute to this property list.

g1 [[Tell me more about your family.]
[Who else in your family :b?]
[Your :a?]
[What else comes to mind when you think of your :a?]]

g2 [[Your :stuff?]
[Why do you say your :stuff?]
[Does that suggest anything else which belongs to you?]
[Is it important to you that your :stuff?]]

g3 [newkey]
memr [[# your &stuff] g4]
g4 [[Earlier you said your :stuff.]

[But your :stuff.]
[Does that have anything to do with your statement about :stuff?]]]

pprop "my "priority 2
pprop "my "translation "your
addrule "my [# your # !a:familyp #b]
[[Tell me more about your family.]
[Who else in your family :b?]
[Your :a?]
[What else comes to mind when you think of your :a?]]

addrule "my [# your &stuff]
[[Your :stuff?]
[Why do you say your :stuff?]
[Does that suggest anything else which belongs to you?]
[Is it important to you that your :stuff?]]

addrule "my [#] [newkey]
addmemr "my [# your &stuff]
[[Earlier you said your :stuff.]
[But your :stuff.]
[Does that have anything to do with your statement about :stuff?]]

does

gensym.

160 Chapter 9 Example: Doctor

Generated Symbols

Modification of List Structure

addrule
checkrules

addrule addmemr rules memr

propname
g3

pprop
rules memr

Gensym

rules

to addrule :word :pattern :results
localmake "propname gensym
pprop :word "rules (sentence gprop :word "rules list :pattern :propname)
pprop :word :propname :results
end

to addmemr :word :pattern :results
localmake "propname gensym
pprop :word "memr (sentence gprop :word "memr list :pattern :propname)
pprop :word :propname :results
end

In general, the order in which properties are added to the list doesn’t matter. However,
the order of the instructions matter, because the rule that’s added first is
the one that tries first. It’s important, therefore, that the rules go from
most specific pattern to least specific pattern. In this case, the first pattern checks for a
remark about a member of the user’s family; the second checks for a remark about some
other object or characteristic belonging to the user; and the third is a catch-all pattern
just in case the other two fail.

The procedures and are very similar, since the and
properties are similar in format.

Each of these procedures uses a local variable to contain the name of the
response property, a “generated symbol” or These are the words like in the
example above. Each procedure carries out two instructions. The first appends
a new pattern and a new gensym to the previous value of the or property;
the second creates a new property with the gensym as its name and the response (or
memory) list as its value. is a Berkeley Logo library procedure.

Why are generated symbols needed in this program at all? In the Lisp version of Doctor,
property lists are still used, but the entire collection of rules is one big list, the value of
the property . It’s as if the Logo property list looked like this:

dorule

Modification of List Structure 161

[priority 2
translation your
rules
[[# your # !a:familyp #b]

[[Tell me more about your family.]
[Who else in your family :b?]
[Your :a?]
[What else comes to mind when you think of your :a?]]

[# your &stuff]
[[Your :stuff?]
[Why do you say your :stuff?]
[Does that suggest anything else which belongs to you?]
[Is it important to you that your :stuff?]]

[#]
[newkey]]

memr
[[# your &stuff]

[[Earlier you said your :stuff.]
[But your :stuff.]
[Does that have anything to do with your statement
about :stuff?]]]

]

localmake "print first gprop :keyword :rule
pprop :keyword :rule lput :print butfirst gprop :keyword :rule

I chose not to use one big list of rules in the Logo version. In Lisp (and in Berkeley
Logo, but not in the versions of Logo I had available when writing the first edition), it’s
possible to change one of the members of a list without recopying the rest of the list.
Without that capability, it’s better to divide the rules into separate, smaller lists, so that
only a little recopying is needed to change one.

Each pattern has several responses associated with it. When the program matches a
particular pattern, it does not choose a response at random. Instead, it rotates through
the list of responses in order. That is, it uses the first response first, then the second,
and so on until the end of the list; if another response is needed, it starts over at the
beginning of the list. This strict rotation is sometimes important because some of the
responses say things like “I already told you that...”

The way the program keeps track of the rotation of the responses for a given rule
is that it actually changes the response list so that what used to be the first response is
moved to the end. Thus, contains the instructions

lput

rules

2
D 2
rules

2

list sentence
entire

162 Chapter 9 Example: Doctor

[1 [A B C] 2 [D E F] 3 [G H I]]

[1 [A B C] 2 [E F D] 3 [G H I]]

to rotate :keyword :pattern
pprop :keyword "rules (rotate1 :pattern gprop :keyword "rules)
end

to rotate1 :pattern :rules
if emptyp :rules [output []]
if equalp :pattern first :rules

[output sentence (list :pattern rotate2 first butfirst :rules)
(butfirst butfirst :rules)]

output sentence (list first :rules first butfirst :rules) ~
(rotate1 :pattern butfirst butfirst :rules)

end

to rotate2 :list
output lput first :list butfirst :list
end

rotate "word 2

The first of these instructions extracts the first response from the list of responses. The
second one replaces the list of responses with a new list, in which the old first response is

behind the remaining ones.

What if the rules were one big list? To see what would be required, let’s look at a
smaller list, in which it will be easier to follow what needs to be changed. Suppose some
word’s property had as its value this list:

In this example, the numbers represent patterns, while the letters represent responses.
Now suppose that the program finds a match for pattern number . It should then issue
the response . Then it should rotate the three responses associated with pattern so
that the new property is

The only way to do this in most versions of Logo is to construct a new copy of the entire
list. Here is a way you could write such a program:

You’d use this program with an instruction like

where represents the pattern in the example above.

The trouble with this approach is that it’s slow. It does a lot of and
operations to reconstruct the modified list. More importantly, the list must be
copied, even though only one rule is to be modified.

copy

Modification of List Structure 163

.setfirst .setbutfirst rotate

rotate2

rotate1 equalp true ifelse

butfirst
butfirst

butfirst
setfirst rules

word pprop

to rotate :keyword :pattern
rotate1 :pattern (gprop :keyword "rules)
end

to rotate1 :pattern :rules
if emptyp :rules [stop]
ifelse equalp :pattern first :rules ~

[.setfirst (butfirst :rules) (rotate2 first butfirst :rules)]
[rotate1 :pattern butfirst butfirst :rules]

end

rotate "word 2
rotate1 2 [1 [A B C] 2 [D E F] 3 [G H I]]
rotate1 2 [2 [D E F] 3 [G H I]]

.setfirst [[D E F] 3 [G H I]] (rotate2 [D E F])

.setfirst [[D E F] 3 [G H I]] [E F D]

.setfirst [[D E F] 3 [G H I]] [E F D]

In Lisp, and in Berkeley Logo, there are primitive commands that can be used to
change the contents of a list without recopying the unchanged parts. In Berkeley Logo
they are called and ; using them, we could write
this way:

(I’ll leave the same as in the earlier version, for now.) This is a tricky sort of
procedure. Here’s a trace of how it might be used:

In the lower-level invocation of , the test outputs , so the
instruction evaluates its second input. This is equivalent to the instruction

or

To understand what this means, you must realize that the primitive operation
does not make a of the butfirst of its input. Instead, the list output by
is actually part of the list that is its input—they share the same cells in the

computer’s memory. Therefore, to change something in the also changes
the larger list. The instruction ends up changing the property of the
word even though there is no explicit to change the property.

If you’re not a Lisp programmer, this probably seems like magic. It certainly violates
some of the rules you’ve learned about the evaluation of Logo instructions. For example,
if you actually typed the instruction

not
not

is

circular list

164 Chapter 9 Example: Doctor

word
setfirst

setfirst
butfirst

.setfirst

.setfirst
:c

lput rotate1

rotate2 .setfirst
.setbutfirst

make "c [x y]
.setfirst (butfirst :c) (:c)

[x [x [x [x [x [x [x [x [x [x [x [x [x [x [x ...

to rotate1 :pattern :rules
if emptyp :rules [stop]
ifelse equalp :pattern first :rules ~

[rotate2 butfirst :rules]
[rotate1 :pattern butfirst butfirst :rules]

end

to rotate2 :rulelist
localmake "firstresponse first :rulelist
localmake "restresponses butfirst :firstresponse
.setfirst :rulelist :restresponses
.setbutfirst :firstresponse []
while [not emptyp butfirst :restresponses] ~

[make "restresponses butfirst :restresponses]
.setbutfirst :restresponses :firstresponse
end

explicitly at top level, it would change the property list of , because the list that
modifies would be part of that property list, even though it has the same

members. It’s only because ’s input is derived from that property list by a
series of operations that they share the same memory.

Do you find this confusing? The original designers of Logo chose not to include
in the language because it hard to understand, and because it can

produce some very strange results if you’re not careful with it. For example, consider
these instructions:

This instruction will produce a , one that contains itself as a
member. If you try to print , you’ll see something like

going on forever.

Once we have these list modification tools, even the implicit recopying done by
can be avoided. Here’s a more efficient version of , but it’s really tricky

to understand and it isn’t a technique that I recommend:

In , the instruction removes the first response from the head of the
list of responses; the two instructions “splice” that first response back
into the list at the end, following what used to be the last response.

Linguistic Structure

Linguistic Structure 165

.setfirst

.setfirst doctor
rules

dorule

I

you are I am

are !stuff
really

[# you are # !stuff:in [sad unhappy depressed sick] #]

I think I am really depressed because Susan doesn’t like me.

I’m sorry to hear you are depressed.

I am sure that I would be depressed if she left me.

Leaving out of Logo was a controversial decision. Some people take the
position that, as a “language for learners,” Logo should not include mechanisms for which
we can’t provide an easy-to-follow metaphor; it’s counterproductive for the language to
encourage you to think in terms of what’s where in memory. Other people refer to
this idea scornfully as “protecting the user from himself,” arguing that if a mechanism is
useful it should be provided even though it’s error-prone.

In any case, since Logo didn’t have and I didn’t want the
program to be slowed down by having to recopy the property all the time, I
decided to make each response list a separate property, so that each response list can be
modified independently of the others. That’s the reason for the gensym property names:
so that can rotate the responses for a particular pattern without disturbing the
responses for other patterns. I could have changed this in the Berkeley Logo version, but
it didn’t seem worthwhile; using names for the rules is a little inelegant but doesn’t hurt
the program’s efficiency.

Because it treats a sentence as simply a string of words, Eliza is limited in its linguistic
sophistication. For example, the Doctor script has this pattern associated with the
keyword :

(Remember that the pattern is matched against the input sentence after translation, so
the words in the pattern really match a sentence containing the words .)
The purpose of the pattern is to match a sentence like

The response of the program might be

The between and in the pattern is meant to catch adverbs like
the word in the example I just gave. But it could also “absorb” some more
structurally important parts of a sentence:

depressed am

doctor

Further Explorations

166 Chapter 9 Example: Doctor

[[subject I] [predicate [[verb am] [nominative [[adjective sure]
[adverb [clause [[connective that] [subject I] [verb [would be] ...

This sentence matches the pattern, but it doesn’t really fit the intent of the pattern. The
person who types this sentence is not saying “I am depressed” at all.

The trouble is that the string of words “sure that I would be” is not equivalent to
an adverb. In fact, these words do not form a phrase at all. The program is making a
grammatical error by connecting the word with the word as a predicate
adjective. To avoid such errors, it’s not good enough to have more and more detailed
patterns to match. You can’t anticipate every possible string of words by that technique.
Instead, the program would have to impose a tree structure on the sentence, sort of like
what you did in diagraming sentences in elementary school. The true structure of this
sentence is something like

and so on. (Actually, I’ve just made up this structure to illustrate the idea, and it’s not very
realistic. I’ve tried too hard to preserve the order of the words in the original sentence.
A more practical structure would probably center on the verb in each clause, and have
subordinate slots for the subject, object, and so on. A connective like “that” might just
be thrown away completely; the purpose served by such words in spoken text would
instead be filled by the very sublist organization itself.) People have in fact written several
computer programs that transform English sentences into a structured representation.
It’s very hard to do a perfect job, though, because of problems like homonyms: the word
“like” can be a verb (I like ice cream) or a preposition (I want to be like my big brother).

There are three main directions in which you can explore the territory that this project
begins. First, you can try to refine the existing Doctor script, so that it does a better job
within the same general framework. Whenever you get an inappropriate response from

, see if you can think of a new rule that would solve that case without messing up
other sentences.

A second possibility would be to write an entirely new Eliza script, so that instead of
being a doctor the program can carry on some different sort of conversation. How about
taking orders in a fast food restaurant? Answering questions from some data base about
presidents or baseball players?

The third direction would be to abandon Eliza and look into some of the other
approaches to understanding and generating English sentences that have been developed.

Program Listing

Program Listing 167

The procedures from the pattern matcher of Chapter 7 are included in this program,
but they are not listed again here.

to doctor
local [text sentence stuff a b c rules keywords memory]
make "memory []
print [Hello, I am the doctor. What can I do for you?]
print [Please end your remarks with an empty line.]
print []
loop
end

;; Controlling the conversation

to loop
make "text tokenize getstuff []
make "sentence getsentence :text
analyze :sentence :keywords
print []
loop
end

;; Reading and preparing the input

to getstuff :stuff
localmake "line readlist
if emptyp :line [output :stuff]
output getstuff sentence :stuff :line
end

to tokenize :text
output map.se [tokenword ? "] :text
end

to tokenword :word :out
if emptyp :word [output :out]
if memberp first :word [, "] [output tokenword butfirst :word :out]
if memberp first :word [. ? ! |;|] [output sentence :out ".]
output tokenword butfirst :word word :out first :word
end

to getsentence :text
make "keywords []
output getsentence1 decapitalize :text []
end

168 Chapter 9 Example: Doctor

to getsentence1 :text :out
if emptyp :text [output :out]
if equalp first :text ". ~

[ifelse emptyp :keywords ~
[output getsentence1 decapitalize butfirst :text []] [output :out]]

checkpriority first :text
output getsentence1 butfirst :text sentence :out translate first :text
end

to decapitalize :text
if emptyp :text [output []]
output fput lowercase first :text butfirst :text
end

to checkpriority :word
localmake "priority gprop :word "priority
if emptyp :priority [stop]
if emptyp :keywords [make "keywords (list :word) stop]
ifelse :priority > (gprop first :keywords "priority) ~

[make "keywords fput :word :keywords] ~
[make "keywords lput :word :keywords]

end

to translate :word
localmake "new gprop :word "translation
output ifelse emptyp :new [:word] [:new]
end

;; Choosing the rule and replying

to analyze :sentence :keywords
local [rules keyword]
if emptyp :keywords [norules stop]
make "keyword first :keywords
make "rules gprop :keyword "rules
if wordp first :rules ~

[make "keyword first :rules make "rules gprop :keyword "rules]
checkrules :keyword :rules
end

to checkrules :keyword :rules
if not match first :rules :sentence ~

[checkrules :keyword butfirst butfirst :rules stop]
dorule first butfirst :rules
end

Program Listing 169

to dorule :rule
localmake "print first gprop :keyword :rule
pprop :keyword :rule lput :print butfirst gprop :keyword :rule
if equalp :print "newkey [analyze :sentence butfirst :keywords stop]
if wordp :print [checkrules :print gprop :print "rules stop]
if equalp first :print "pre ~

[analyze reconstruct first butfirst :print butfirst butfirst :print stop]
print capitalize reconstruct :print
memory :keyword :sentence
end

to reconstruct :sentence
if emptyp :sentence [output []]
if not equalp ": first first :sentence ~

[output fput first :sentence reconstruct butfirst :sentence]
output sentence reword first :sentence reconstruct butfirst :sentence
end

to reword :word
if memberp last :word [. ? ,] [output addpunct reword butlast :word last :word]
output thing butfirst :word
end

to addpunct :stuff :char
if wordp :stuff [output word :stuff :char]
if emptyp :stuff [output :char]
output sentence butlast :stuff word last :stuff :char
end

to capitalize :text
if emptyp :text [output []]
output fput (word uppercase first first :text butfirst first :text) butfirst :text
end

to memory :keyword :sentence
local [rules rule name]
make "rules gprop :keyword "memr
if emptyp :rules [stop]
if not match first :rules :sentence [stop]
make "name last :rules
make "rules gprop :keyword :name
make "rule first :rules
pprop :keyword :name lput :rule butfirst :rules
make "memory fput reconstruct :sentence :memory
end

to norules
ifelse :memflag [usememory] [lastresort]
make "memflag not :memflag
end

170 Chapter 9 Example: Doctor

to lastresort
print first :lastresort
make "lastresort lput first :lastresort butfirst :lastresort
end

to usememory
if emptyp :memory [lastresort stop]
print capitalize first :memory
make "memory butfirst :memory
end

;; Predicates for patterns

to beliefp :word
output not emptyp gprop :word "belief
end

to familyp :word
output not emptyp gprop :word "family
end

;; Procedures for adding to the script

to addrule :word :pattern :results
localmake "propname gensym
pprop :word "rules (sentence gprop :word "rules list :pattern :propname)
pprop :word :propname :results
end

to addmemr :word :pattern :results
localmake "propname gensym
pprop :word "memr (sentence gprop :word "memr list :pattern :propname)
pprop :word :propname :results
end

;; data

make "gensym.number 80

make "lastresort [[I am not sure I understand you fully.] [Please go on.]
[What does that suggest to you?]
[Do you feel strongly about discussing such things?]]

make "memflag "false

pprop "alike "priority 10
pprop "alike "rules [dit]

Program Listing 171

pprop "always "priority 1
pprop "always "rules [[#] g69]
pprop "always "g69 [[Can you think of a specific example?] [When?]

[What incident are you thinking of?]
[Really, always?] [What if this never happened?]]

pprop "am "priority 0
pprop "am "translation "are
pprop "am "rules [[# are you #stuff] g18 [#] g19]
pprop "am "g18 [[Do you believe you are :stuff?] [Would you want to be :stuff?]

[You wish I would tell you you are :stuff.]
[What would it mean if you were :stuff?] how]

pprop "am "g19 [[Why do you say "am"?] [I don’t understand that.]]

pprop "are "priority 0
pprop "are "rules [[#a there are #b you #c] g20 [# there are &stuff] g21

[# are I #stuff] g22 [are #] g23 [# are #stuff] g24]
pprop "are "g20 [[pre [:a there are :b] are]]
pprop "are "g21 [[What makes you think there are :stuff?]

[Do you usually consider :stuff?]
[Do you wish there were :stuff?]]

pprop "are "g22 [[Why are you interested in whether I am :stuff or not?]
[Would you prefer if I weren’t :stuff?]
[Perhaps I am :stuff in your fantasies.]
[Do you sometimes think I am :stuff?] how]

pprop "are "g23 [how]
pprop "are "g24 [[Did you think they might not be :stuff?]

[Would you like it if they were not :stuff?]
[What if they were not :stuff?] [Possibly they are :stuff.]]

pprop "ask "priority 0
pprop "ask "rules [[# you ask #] g77 [# you ! asking #] g78 [# I #] g79 [#] g80]
pprop "ask "g77 [how]
pprop "ask "g78 [how]
pprop "ask "g79 [you]
pprop "ask "g80 [newkey]

pprop "because "priority 0
pprop "because "rules [[#] g64]
pprop "because "g64 [[Is that the real reason?]

[Don’t any other reasons come to mind?]
[Does that reason seem to explain anything else?]
[What other reasons might there be?]
[You’re not concealing anything from me, are you?]]

pprop "believe "belief "true

pprop "bet "belief "true

pprop "brother "family "true

172 Chapter 9 Example: Doctor

pprop "can "priority 0
pprop "can "rules [[# can I #stuff] g58 [# can you #stuff] g59 [#] g60]
pprop "can "g58 [[You believe I can :stuff, don’t you?] how

[You want me to be able to :stuff.]
[Perhaps you would like to be able to :stuff yourself.]]

pprop "can "g59 [[Whether or not you can :stuff depends more on you than on me.]
[Do you want to be able to :stuff?]
[Perhaps you don’t want to :stuff.] how]

pprop "can "g60 [how newkey]

pprop "cant "translation "can’t

pprop "certainly "priority 0
pprop "certainly "rules [yes]

pprop "children "family "true

pprop "computer "priority 50
pprop "computer "rules [[#] g17]
pprop "computer "g17 [[Do computers worry you?]

[Why do you mention computers?]
[What do you think machines have to do with your problem?]
[Don’t you think computers can help people?]
[What about machines worries you?]
[What do you think about machines?]]

pprop "computers "priority 50
pprop "computers "rules [computer]

pprop "dad "translation "father
pprop "dad "family "true

pprop "daddy "translation "father
pprop "daddy "family "true

pprop "deutsch "priority 0
pprop "deutsch "rules [[#] g15]
pprop "deutsch "g15 [[I’m sorry, I speak only English.]]

pprop "dit "rules [[#] g72]
pprop "dit "g72 [[In what way?] [What resemblance do you see?]

[What does that similarity suggest to you?]
[What other connections do you see?]
[What do you suppose that resemblance means?]
[What is the connection, do you suppose?]
[Could there really be some connection?] how]

pprop "dont "translation "don’t

Program Listing 173

pprop "dream "priority 3
pprop "dream "rules [[#] g9]
pprop "dream "g9 [[What does that dream suggest to you?] [Do you dream often?]

[What persons appear in your dreams?]
[Don’t you believe that dream has something to do
with your problem?]

[Do you ever wish you could flee from reality?] newkey]

pprop "dreamed "priority 4
pprop "dreamed "rules [[# you dreamed #stuff] g7 [#] g8]
pprop "dreamed "g7 [[Really :stuff?]

[Have you ever fantasied :stuff while you were awake?]
[Have you dreamed :stuff before?] dream newkey]

pprop "dreamed "g8 [dream newkey]

pprop "dreams "translation "dream
pprop "dreams "priority 3
pprop "dreams "rules [dream]

pprop "dreamt "translation "dreamed
pprop "dreamt "priority 4
pprop "dreamt "rules [dreamed]

pprop "espanol "priority 0
pprop "espanol "rules [deutsch]

pprop "everybody "priority 2
pprop "everybody "rules [everyone]

pprop "everyone "priority 2
pprop "everyone "rules [[# !a:in [everyone everybody nobody noone] #] g68]
pprop "everyone "g68 [[Really, :a?] [Surely not :a.]

[Can you think of anyone in particular?]
[Who, for example?]
[You are thinking of a very special person.]
[Who, may I ask?] [Someone special perhaps.]
[You have a particular person in mind, don’t you?]
[Who do you think you’re talking about?]
[I suspect you’re exaggerating a little.]]

pprop "father "family "true

pprop "feel "belief "true

pprop "francais "priority 0
pprop "francais "rules [deutsch]

pprop "hello "priority 0
pprop "hello "rules [[#] g16]
pprop "hello "g16 [[How do you do. Please state your problem.]]

174 Chapter 9 Example: Doctor

pprop "how "priority 0
pprop "how "rules [[#] g63]
pprop "how "g63 [[Why do you ask?] [Does that question interest you?]

[What is it you really want to know?]
[Are such questions much on your mind?]
[What answer would please you most?] [What do you think?]
[What comes to your mind when you ask that?]
[Have you asked such questions before?]
[Have you asked anyone else?]]

pprop "husband "family "true

pprop "i "priority 0
pprop "i "translation "you
pprop "i "rules [[# you !:in [want need] #stuff] g32

[# you are # !stuff:in [sad unhappy depressed sick] #] g33
[# you are # !stuff:in [happy elated glad better] #] g34
[# you was #] g35 [# you !:beliefp you #stuff] g36
[# you # !:beliefp # i #] g37 [# you are #stuff] g38
[# you !:in [can’t cannot] #stuff] g39
[# you don’t #stuff] g40 [# you feel #stuff] g41
[# you #stuff i #] g42 [#stuff] g43]

pprop "i "g32 [[What would it mean to you if you got :stuff?]
[Why Do you want :stuff?] [Suppose you got :stuff soon.]
[What if you never got :stuff?]
[What would getting :stuff mean to you?] [You really want :stuff.]
[I suspect you really don’t want :stuff.]]

pprop "i "g33 [[I’m sorry to hear you are :stuff.]
[Do you think coming here will help you not to be :stuff?]
[I’m sure it’s not pleasant to be :stuff.]
[Can you explain what made you :stuff?] [Please go on.]]

pprop "i "g34 [[How have I helped you to be :stuff?]
[Has your treatment made you :stuff?]
[What makes you :stuff just now?]
[Can you explain why you are suddenly :stuff?]
[Are you sure?] [What do you mean by :stuff?]]

pprop "i "g35 [was]
pprop "i "g36 [[Do you really think so?] [But you are not sure you :stuff.]

[Do you really doubt you :stuff?]]
pprop "i "g37 [you]
pprop "i "g38 [[Is it because you are :stuff that you came to me?]

[How long have you been :stuff?]
[Do you believe it normal to be :stuff?]
[Do you enjoy being :stuff?]]

pprop "i "g39 [[How do you know you can’t :stuff?] [Have you tried?]
[Perhaps you could :stuff now.]
[Do you really want to be able to :stuff?]]

pprop "i "g40 [[Don’t you really :stuff?] [Why don’t you :stuff?]
[Do you wish to be able to :stuff?] [Does that trouble you?]]

Program Listing 175

pprop "i "g41 [[Tell me more about such feelings.] [Do you often feel :stuff?]
[Do you enjoy feeling :stuff?]
[Of what does feeling :stuff remind you?]]

pprop "i "g42 [[Perhaps in your fantasy we :stuff each other.]
[Do you wish to :stuff me?] [You seem to need to :stuff me.]
[Do you :stuff anyone else?]]

pprop "i "g43 [[You say :stuff.] [Can you elaborate on that?]
[Do you say :stuff for some special reason?]
[That’s quite interesting.]]

pprop "i’m "priority 0
pprop "i’m "translation "you’re
pprop "i’m "rules [[# you’re #stuff] g31]
pprop "i’m "g31 [[pre [you are :stuff] I]]

pprop "if "priority 3
pprop "if "rules [[#a if #b had #c] g5 [# if #stuff] g6]
pprop "if "g5 [[pre [:a if :b might have :c] if]]
pprop "if "g6 [[Do you think it’s likely that :stuff?] [Do you wish that :stuff?]

[What do you think about :stuff?]]

pprop "is "priority 0
pprop "is "rules [[&a is &b] g61 [#] g62]
pprop "is "g61 [[Suppose :a were not :b.] [Perhaps :a really is :b.]

[Tell me more about :a.]]
pprop "is "g62 [newkey]

pprop "italiano "priority 0
pprop "italiano "rules [deutsch]

pprop "like "priority 10
pprop "like "rules [[# !:in [am is are was] # like #] g70 [#] g71]
pprop "like "g70 [dit]
pprop "like "g71 [newkey]

pprop "machine "priority 50
pprop "machine "rules [computer]

pprop "machines "priority 50
pprop "machines "rules [computer]

pprop "maybe "priority 0
pprop "maybe "rules [perhaps]

pprop "me "translation "you

pprop "mom "translation "mother
pprop "mom "family "true

176 Chapter 9 Example: Doctor

pprop "mommy "translation "mother
pprop "mommy "family "true

pprop "mother "family "true

pprop "my "priority 2
pprop "my "translation "your
pprop "my "rules [[# your # !a:familyp #b] g55 [# your &stuff] g56 [#] g57]
pprop "my "g55 [[Tell me more about your family.] [Who else in your family :b?]

[Your :a?] [What else comes to mind when you think of your :a?]]
pprop "my "g56 [[Your :stuff?] [Why do you say your :stuff?]

[Does that suggest anything else which belongs to you?]
[Is it important to you that your :stuff?]]

pprop "my "g57 [newkey]
pprop "my "memr [[# your &stuff] g12]
pprop "my "g12 [[Earlier you said your :stuff.] [But your :stuff.]

[Does that have anything to do with your statement about :stuff?]]

pprop "myself "translation "yourself

pprop "name "priority 15
pprop "name "rules [[#] g14]
pprop "name "g14 [[I am not interested in names.]

[I’ve told you before I don’t care about names\;
please continue.]]

pprop "no "priority 0
pprop "no "rules [[no] g53 [#] g54]
pprop "no "g53 [xxyyzz [pre [x no] no]]
pprop "no "g54 [[Are you saying "no" just to be negative?]

[You are being a bit negative.] [Why not?] [Why "no"?] newkey]

pprop "nobody "priority 2
pprop "nobody "rules [everyone]

pprop "noone "priority 2
pprop "noone "rules [everyone]

pprop "perhaps "priority 0
pprop "perhaps "rules [[#] g13]
pprop "perhaps "g13 [[You don’t seem quite certain.] [Why the uncertain tone?]

[Can’t you be more positive?] [You aren’t sure.]
[Don’t you know?]]

Program Listing 177

pprop "problem "priority 5
pprop "problem "rules [[#a !b:in [is are] your !c:in [problem problems] #] g73

[# your !a:in [problem problems] !b:in [is are] #c] g74
[#] g75]

pprop "problem "g73 [[:a :b your :c.] [Are you sure :a :b your :c?]
[Perhaps :a :b not your real :c.]
[You think you have problems?]
[Do you often think about :a?]]

pprop "problem "g74 [[Your :a :b :c?] [Are you sure your :a :b :c?]
[Perhaps your real :a :b not :c.]
[You think you have problems?]]

pprop "problem "g75 [[Please continue, this may be interesting.]
[Have you any other problems you wish to discuss?]
[Perhaps you’d rather change the subject.]
[You seem a bit uneasy.] newkey]

pprop "problem "memr [[#stuff is your problem #] g76]
pprop "problem "g76 [[Earlier you mentioned :stuff.]

[Let’s talk further about :stuff.]
[Tell me more about :stuff.]
[You haven’t mentioned :stuff for a while.]]

pprop "problems "priority 5
pprop "problems "rules [problem]

pprop "remember "priority 5
pprop "remember "rules [[# you remember #stuff] g2

[# do I remember #stuff] g3 [#] g4]
pprop "remember "g2 [[Do you often think of :stuff?]

[Does thinking of :stuff bring anything else to mind?]
[What else do you remember?]
[Why do you remember :stuff just now?]
[What in the present situation reminds you of :stuff?]]

pprop "remember "g3 [[Did you think I would forget :stuff?]
[Why do you think I should recall :stuff now?]
[What about :stuff?] what [You mentioned :stuff.]]

pprop "remember "g4 [newkey]

pprop "same "priority 10
pprop "same "rules [dit]

pprop "sister "family "true

pprop "sorry "priority 0
pprop "sorry "rules [[#] g1]
pprop "sorry "g1 [[Please don’t apologize.] [Apologies are not necessary.]

[What feelings do you have when you apologize?]
[I’ve told you that apologies are not required.]]

pprop "svenska "priority 0
pprop "svenska "rules [deutsch]

178 Chapter 9 Example: Doctor

pprop "think "belief "true

pprop "was "priority 2
pprop "was "rules [[# was you #stuff] g26 [# you was #stuff] g27

[# was I #stuff] g28 [#] g29]
pprop "was "g26 [[What if you were :stuff?] [Do you think you were :stuff?]

[Were you :stuff?] [What would it mean if you were :stuff?]
[What does " :stuff " suggest to you?] how]

pprop "was "g27 [[Were you really?] [Why do you tell me you were :stuff now?]
[Perhaps I already knew you were :stuff.]]

pprop "was "g28 [[Would you like to believe I was :stuff?]
[What suggests that I was :stuff?] [What do you think?]
[Perhaps I was :stuff.] [What if I had been :stuff?]]

pprop "was "g29 [newkey]

pprop "we "translation "you
pprop "we "priority 0
pprop "we "rules [I]

pprop "were "priority 0
pprop "were "translation "was
pprop "were "rules [was]

pprop "what "priority 0
pprop "what "rules [[!:in [what where] #] g10 [# !a:in [what where] #b] g11]
pprop "what "g10 [how]
pprop "what "g11 [[Tell me about :a :b.] [:a :b?]

[Do you want me to tell you :a :b?]
[Really.] [I see.] newkey]

pprop "where "priority 0
pprop "where "rules [how]

pprop "why "priority 0
pprop "why "rules [[# why don’t I #stuff] g65

[# why can’t you #stuff] g66 [#] g67]
pprop "why "g65 [[Do you believe I don’t :stuff?]

[Perhaps I will :stuff in good time.]
[Should you :stuff yourself?] [You want me to :stuff?] how]

pprop "why "g66 [[Do you think you should be able to :stuff?]
[Do you want to be able to :stuff?]
[Do you believe this will help you to :stuff?]
[Have you any idea why you can’t :stuff?] how]

pprop "why "g67 [[Why indeed?] [Why "why"?] [Why not?] how newkey]

pprop "wife "family "true

pprop "wish "belief "true

pprop "wont "translation "won’t

Program Listing 179

pprop "xxyyzz "priority 0
pprop "xxyyzz "rules [[#] g50]
pprop "xxyyzz "g50 [[You’re being somewhat short with me.]

[You don’t seem very talkative today.]
[Perhaps you’d rather talk about something else.]
[Are you using monosyllables for some reason?] newkey]

pprop "yes "priority 0
pprop "yes "rules [[yes] g51 [#] g52]
pprop "yes "g51 [xxyyzz [pre [x yes] yes]]
pprop "yes "g52 [[You seem quite positive.] [You are sure.] [I see.]

[I understand.] newkey]

pprop "you "priority 0
pprop "you "translation "I
pprop "you "rules [[# I remind you of #] g44 [# I are # you #] g45

[# I # are #stuff] g46 [# I #stuff you] g47
[# I &stuff] g48 [#] g49]

pprop "you "g44 [dit]
pprop "you "g45 [newkey]
pprop "you "g46 [[What makes you think I am :stuff?]

[Does it please you to believe I am :stuff?]
[Perhaps you would like to be :stuff.]
[Do you sometimes wish you were :stuff?]]

pprop "you "g47 [[Why do you think I :stuff you?]
[You like to think I :stuff you, don’t you?]
[What makes you think I :stuff you?] [Really, I :stuff you?]
[Do you wish to believe I :stuff you?]
[Suppose I did :stuff you. what would that mean?]
[Does someone else believe I :stuff you?]]

pprop "you "g48 [[We were discussing you, not me.] [Oh, I :stuff?]
[Is this really relevant to your problem?] [Perhaps I do :stuff.]
[Are you glad to know I :stuff?] [Do you :stuff?]
[What are your feelings now?]]

pprop "you "g49 [newkey]

pprop "you’re "priority 0
pprop "you’re "translation "I’m
pprop "you’re "rules [[# I’m #stuff] g30]
pprop "you’re "g30 [[pre [I are :stuff] you]]

pprop "your "priority 0
pprop "your "translation "my
pprop "your "rules [[# my #stuff] g25]
pprop "your "g25 [[Why are you concerned over my :stuff?]

[What about your own :stuff?]
[Are you worried about someone else’s :stuff?]
[Really, my :stuff?]]

pprop "yourself "translation "myself

library

iteration

181

po "gensym

show gensym

po "gensym

gensym

gensym
gensym

for foreach
while

repeat

10 Iteration, Control Structures, Extensibility

?
I don’t know how to gensym
?
g1
?
to gensym
if not namep "gensym.number [make "gensym.number 0]
make "gensym.number :gensym.number + 1
output word "g :gensym.number
end

In this chapter we’re taking a tour “behind the scenes” of Berkeley Logo. Many of
the built-in Logo procedures that we’ve been using all along are not, strictly speaking,
primitive; they’re written in Logo itself. When you invoke a procedure, if the Logo
interpreter does not already know a procedure by that name, it automatically looks in a

of predefined procedures. For example, in Chapter 6 I used an operation called
that outputs a new, unique word each time it’s invoked. If you start up a fresh

copy of Logo you can try these experiments:

The first interaction shows that is not really a Logo primitive; the error message
indicates that there is no such procedure. Then I invoked , which made Berkeley
Logo read its definition automatically from the library. Finally, once Logo has read the
definition, I can print it out.

In particular, most of the tools we’ve used to carry out a computation repeatedly
are not true Logo primitives: for numeric iteration, for list iteration, and

for predicate-based iteration are all library procedures. (The word just
means “repetition.”) The only iteration mechanisms that are truly primitive in Logo are

and recursion.

Recursion as Iteration

repeat

repeat

:side+1 :side

exactly
almost

182 Chapter 10 Iteration, Control Structures, Extensibility

repeat 50 [setcursor list random 75 random 20 type "Hi]

repeat 360 [forward 1 right 1]

to polyspi :side :angle :number
if :number=0 [stop]
forward :side
right :angle
polyspi :side+1 :angle :number-1
end

repeat :number [forward :side right :angle]

to multiply :letters :number
if equalp :number 0 [stop]
print :letters
multiply (word :letters first :letters) :number-1
end

Computers are good at doing things over and over again. They don’t get bored or
tired. That’s why, in the real world, people use computers for things like sending out
payroll checks and telephone bills. The first Logo instruction I showed you, in the first
volume, was

When you were first introduced to turtle graphics, you probably used an instruction like

to draw a circle.

The trouble with is that it always does the same thing repeatedly. In a real
application, like those payroll checks, you want the computer to do the same thing
each time but with a different person’s name on each check. The usual way to program
an almost- in Logo is to use a recursive procedure, like this:

This is a well-known procedure to draw a spiral. What makes it different from

is that the first input in the recursive invocation is instead of just . We’ve
used a similar technique for almost-repetition in procedures like this one:

Numeric Iteration

Numeric Iteration 183

repeat

repeat

repeat

rep repeat
run

Polyspi

to fivesay.with.repeat :text
repeat 5 [print :text]
end

to fivesay.with.recursion :text
fivesay1 5 :text
end

to fivesay1 :times :text
if :times=0 [stop]
print :text
fivesay1 :times-1 :text
end

to rep :count :instr
if :count=0 [stop]
run :instr
rep :count-1 :instr
end

polyspi 50 60 4

Since recursion can express any repetitive computation, why bother inventing other
iteration tools? The answer is that they can make programs easier to read. Recursion is
such a versatile mechanism that the intention of any particular use of recursion may be
hard to see. Which of the following is easier to read?

or

The version using makes it obvious at a glance what the program wants to do;
the version using recursion takes some thought. It can be useful to invent mechanisms
that are intermediate in flexibility between and recursion.

As a simple example, suppose that Logo did not include as a primitive
command. Here’s how we could implement it using recursion:

(I’ve used the name instead of to avoid conflict with the primitive version.)
The use of to carry out the given instructions is at the core of the techniques we’ll
use throughout this chapter.

is an example of an iteration in which the value of a numeric variable changes
in a uniform way. The instruction

−

for repeat
repeat for

side 50 53

polyspi for

for

initial
final

step

184 Chapter 10 Iteration, Control Structures, Extensibility

forward 50 right 60
forward 51 right 60
forward 52 right 60
forward 53 right 60

for [side 50 53] [forward :side right 60]

to polyspi :start :angle :number
for [side :start [:start+:number-1]] [forward :side right :angle]
end

to for :values :instr
localmake "var first :values
local :var
localmake "initial run first butfirst :values
localmake "final run item 3 :values
localmake "step forstep
localmake "tester ~

ifelse :step < 0 [[:value < :final]] [[:value > :final]]
forloop :initial
end

is equivalent to the series of instructions

As you know, we can represent the same instructions this way:

The command takes two inputs, very much like . The second input, like
’s second input, is a list of Logo instructions. The first input to is different,

though. It is a list whose first member is the name of a variable; the second member of
the list must be a number (or a Logo expression whose value is a number), which will
be the value of that variable; and the third member must be another number (or
numeric expression), which will be the value of the variable. In the example above,
the variable name is , the initial value is , and the final value is . If there is a
fourth member in the list, it’s the amount to add to the named variable on each iteration;
if there is no fourth member, as in the example above, then the amount is either 1
or 1, depending on whether the final value is greater than or less than the initial value.

As an example in which expressions are used instead of constant numeric values,
here’s the procedure using :

Most of the work in writing is in evaluating the expressions that make up the
first input list. Here is the program:

loop,

that

Numeric Iteration 185

for
for

for forloop

local for for

for for

A foo
B for I for B

I for A

make forloop :var "var
var

var

to forstep
if (count :values)=4 [output run last :values]
if :initial > :final [output -1]
output 1
end

to forloop :value
make :var :value
if run :tester [stop]
run :instr
forloop :value+:step
end

local :var

to a
for [i 1 5] [b]
end

to b
for [i 1 3] [print "foo]
end

One slightly tricky part of this program is the instruction

near the beginning of . The effect of this instruction is to make whatever variable is
named by the first member of the first input local to . As it turns out, this variable
isn’t given a value in itself but only in its subprocedure . (A by the
way, is a part of a program that is invoked repeatedly.) But I’m thinking of these three
procedures as a unit and making the variable local to that whole unit. The virtue of this

instruction is that a program that uses can invent variable names for
freely, without having to declare them local and without cluttering up the workspace with
global variables. Also, it means that a procedure can invoke another procedure in the
instruction list of a without worrying about whether procedure uses itself.
Here’s the case I’m thinking of:

Invoking should print the word fifteen times: three times for each of the five
invocations of . If didn’t make a local variable, the invocation of within
would mess up the value of in the outer invoked by . Got that?

Notice that the instruction in has as its first input, not .
This instruction does not assign a new value to the variable ! Instead, it assigns a new
value to the variable whose name is the value of .

Logo: an Extensible Language

186 Chapter 10 Iteration, Control Structures, Extensibility

for

stop output

for

forloop forloop false
primep false

for

repeat

for
for

repeat

for

to primep :num
for [trial 2 [:num-1]] [if divisiblep :num :trial [output "false]]
output "true
end

to divisiblep :big :small
output equalp remainder :big :small 0
end

run :instr

The version of actually used in the Berkeley Logo library is a little more
complicated than this one. The one shown here works fine as long as the instruction
list input doesn’t include or , but it won’t work for an example like the
following. To check whether or not a number is prime, we must see if it is divisible by
anything greater than 1 and smaller than the number itself:

This example will work in the Berkeley Logo , but not in the version I’ve written in
this chapter. The trouble is that the instruction

in will make output if a divisor is found, whereas we really
want to output ! We’ll see in Chapter 12 how to solve this problem.

There are two ways to look at a program like . You can take it apart, as I’ve been doing
in these last few paragraphs, to see how it works inside. Or you can just think of it as an
extension to Logo, an iteration command that you can use as you’d use , without
thinking about how it works. I think both of these perspectives will be valuable to you. As
a programming project, demonstrates some rather advanced Logo techniques. But
you don’t have to think about those techniques each time you use . Instead you can
think of it as a primitive, as we’ve been doing prior to this chapter.

The fact that you can extend Logo’s vocabulary this way, adding a new way to control
iteration that looks just like the primitive , is an important way in which Logo
is more powerful than toy programming languages like C++ or Pascal. C++ has several
iteration commands built in, including one like , but if you think of a new one,
there’s no way you can add it to the language. In Logo this kind of language extension is
easy. For example, here is a preview of a programming project I’m going to develop later

−

Multifor

if repeat for

for

for

No Perfect Control Structures

and

control structure
data structure

No Perfect Control Structures 187

multifor [[size 50 100 5] [angle 50 100 10]] [forward :size right :angle]

forward 50 right 50
forward 55 right 60
forward 60 right 70
forward 65 right 80
forward 70 right 90
forward 75 right 100

in this chapter. Suppose you’re playing with spirals, and you’d like to see what happens
if you change the line length the turning angle at the same time. That is, you’d like
to be able to say

and have that be equivalent to the series of instructions

should step each of its variables each time around, stopping whenever any
of them hits the final value. This tool strikes me as too specialized and complicated to
provide in the Logo library, but it seems very appropriate for certain kinds of project. It’s
nice to have a language in which I can write it if I need it.

Among enthusiasts of the Fortran family of programming languages (that is, all the
languages in which you have to say ahead of time whether or not the value of some
numeric variable will be an exact integer), there are fierce debates about the “best”
control structure. (A is a way of grouping instructions together, just as a

is a way of grouping data together. A list is a data structure. A procedure is
a control structure. Things like , , and are special control structures that
group instructions in particular ways, so that a group of instructions can be evaluated
conditionally or repeatedly.)

For example, all of the Fortran-derived languages have a control structure for
numeric iteration, like my procedure. But they differ in details. In some languages
the iteration variable must be stepped by 1. In others the step value can be either 1 or

1. Still others allow any step value, as does. Each of these choices has its defenders
as the “best.”

Sometimes the arguments are even sillier. When Fortran was first invented, its
designers failed to make explicit what should happen if the initial value of an iteration
variable is greater than the final value. That is, they left open the interpretation of a

Iteration Over a List

do
for

do
for

do
do

do

do

primep

foreach

foreach [chocolate [rum raisin] pumpkin] [print sentence [I like] ?]

you your

188 Chapter 10 Iteration, Control Structures, Extensibility

for [var 10 5 1] [print :var]

?
I like chocolate
I like rum raisin
I like pumpkin

Fortran statement (that’s what its numeric iteration structure is called) equivalent to
this instruction:

In this instruction I’ve specified a positive step (the only kind allowed in the Fortran
statement), but the initial value is greater than the final value. (What will do in
this situation?) Well, the first Fortran compiler, the program that translates a Fortran
program into the “native” language of a particular computer, implemented so that
the statements controlled by the were carried out once before the computer noticed
that the variable’s value was already too large. Years later a bunch of computer scientists
decided that that behavior is “wrong”; if the initial value is greater than the final value,
the statements shouldn’t be carried out at all. This proposal for a “zero trip loop” was
fiercely resisted by old-timers who had by then written hundreds of programs that relied
on the original behavior of . Dozens of journal articles and letters to the editor carried
on the battle.

The real moral of this story is that there is no right answer. The right control
structure for to use is the one that best solves immediate problem. But only
an extensible language like Logo allows you the luxury of accepting this moral. The
Fortran people had to fight out their battle because they’re stuck with whatever the
standardization committee decides.

In the remainder of this chapter I’ll present various kinds of control structures, each
reflecting a different way of looking at the general idea of iteration.

Numeric iteration is useful if the problem you want to solve is about numbers, as in the
example, or if some arbitrary number is part of the rules of a game, like the

seven stacks of cards in solitaire. But in most Logo projects, it’s more common to want
to carry out a computation for each member of a list, and for that purpose we have the

control structure:

template

Iteration Over a List 189

foreach for
foreach for

foreach
for

for

run

foreach
run

apply

apply

apply run
apply foreach

named.foreach "flavor [lychee [root beer swirl]] ~
[print sentence [I like] :flavor]

apply [print ?+3] [5]

apply [print word first ?1 first ?2] [Peter Dickinson]

to named.foreach :var :data :instr
local :var
if emptyp :data [stop]
make :var first :data
run :instr
named.foreach :var (butfirst :data) :instr
end

?

I like lychee
I like root beer swirl

?
8
?
PD

to foreach :list :template
if emptyp :list [stop]
apply :template (list first :list)
foreach (butfirst :list) :template
end

In comparing with , one thing you might notice is the use of the
question mark to represent the varying datum in , while requires a user-
specified variable name for that purpose. There’s no vital reason why I used these
different mechanisms. In fact, we can easily implement a version of that takes
a variable name as an additional input. Its structure will then look similar to that of :

Just as in the implementation of , there is a recursive invocation for each member
of the data input. We assign that member as the value of the variable named in the first
input, and then we the instructions in the third input.

In order to implement the version of that uses question marks instead
of named variables, we need a more advanced version of that says “run these
instructions, but using this value wherever you see a question mark.” Berkeley Logo has
this capability as a primitive procedure called . It takes two inputs, a (an
instruction list with question marks) and a list of values. The reason that the second
input is a list of values, rather than a single value, is that can handle templates
with more than one slot for values.

It’s possible to write in terms of , and I’ll do that shortly. But first, let’s just
take advantage of Berkeley Logo’s built-in to write a simple version of :

190 Chapter 10 Iteration, Control Structures, Extensibility

Apply run

apply

foreach

foreach

foreach inputs
:inputs

foreach
inputs

(foreach [John Paul George Ringo] [rhythm bass lead drums]
[print (sentence ?1 "played ?2)]

(demo "alpha "beta "gamma)

?

John played rhythm
Paul played bass
George played lead
Ringo played drums

to foreach [:inputs] 2
foreach.loop (butlast :inputs) (last :inputs)
end

to foreach.loop :lists :template
if emptyp first :lists [stop]
apply :template firsts :lists
foreach.loop (butfirsts :lists) :template
end

to demo [:stuff]
print sentence [The first input is] first :stuff
print sentence [The others are] butfirst :stuff
end

?
The first input is alpha
The others are beta gamma

, like , can be either a command or an operation depending on whether its
template contains complete Logo instructions or a Logo expression. In this case, we are
using as a command.

The version of in the Berkeley Logo library can take more than one data
input along with a multi-input template, like this:

We can implement this feature, using a special notation in the title line of to
notify Logo that it accepts a variable number of inputs:

First look at the title line of . It tells Logo that the word is a formal
parameter—the name of an input. Because is inside square brackets, however,
it represents not just one input, but any number of inputs in the invocation of .
The values of all those inputs are collected as a list, and that list is the value of .
Here’s a trivial example:

default

list of lists

Iteration Over a List 191

show firsts [[a b c] [1 2 3] [y w d]]

show butfirsts [[a b c] [1 2 3] [y w d]]

?
[a 1 y]
?
[[b c] [2 3] [w d]]

to firsts :list.of.lists
output map "first :list.of.lists
end

to butfirsts :list.of.lists
output map "butfirst :list.of.lists
end

demo

sentence sum word local

Demo
foreach 2 foreach

Foreach
foreach foreach.loop

foreach.loop
firsts butfirsts first butfirst

firsts butfirsts

foreach map

firsts butfirsts
foreach.loop foreach

As you know, the Logo procedures that accept a variable number of inputs have
a number that they accept without using parentheses; if you want to use more
or fewer than that number, you must enclose the procedure name and its inputs in
parentheses, as I’ve done here with the procedure. Most Logo primitives that
accept a variable number of inputs have two inputs as their default number (for example,

, ,) but there are exceptions, such as , which takes one input
if parentheses are not used. When you write your own procedure with a single input
name in brackets, its default number of inputs is zero unless you specify another number.

, for example, has zero as its default number. If you look again at the title line of
, you’ll see that it ends with the number ; that tells Logo that expects

two inputs by default.

uses all but its last input as data lists; the last input is the template to be
applied to the members of the data lists. That’s why invokes
as it does, separating the two kinds of inputs into two variables.

Be careful when reading the definition of ; it invokes procedures
named and . These are not the same as and !
Each of them takes a as its input, and outputs a list containing the first members
of each sublist, or all but the first members, respectively:

It would be easy to write and in Logo:

but in fact Berkeley Logo provides these operations as primitives, because implementing
them as primitives makes the iteration tools such as and (which, as we’ll
see, also uses them) much faster.

Except for the use of and to handle the multiple data inputs,
the structure of is exactly like that of the previous version of
that only accepts one data list.

ApplyImplementing

show apply "first [Logo]

is

192 Chapter 10 Iteration, Control Structures, Extensibility

to app :template :input.value
run :template
end

to %
output :input.value
end

?
L

for foreach
stop output

apply

app apply %

app

App run

? apply % app

? %
app

% input.value app
% app

%
app

apply

app

Like , the version of presented here can’t handle instruction lists that
include or correctly.

Berkeley Logo includes as a primitive, for efficiency, but we could implement it in
Logo if necessary. In this section, so as not to conflict with the primitive version, I’ll use
the name for my non-primitive version of , and I’ll use the percent sign ()
as the placeholder in templates instead of question mark.

Here is a simple version of that allows only one input to the template:

This is so simple that it probably seems like magic. seems to do nothing but
its template as though it were an ordinary instruction list. The trick is that a template

an instruction list. The only unusual thing about a template is that it includes special
symbols (in the real , in) that represent the given value. We see now that
those special symbols are really just ordinary names of procedures. The question mark
() procedure is a Berkeley Logo primitive; I’ve defined the analogous procedure here
for use by .

The procedure outputs the value of a variable, , that is local to .
If you invoke in some context other than an template, you’ll get an error message
because that variable won’t exist. Logo’s dynamic scope makes it possible for to use

’s variable.

The real accepts a procedure name as argument instead of a template:

We can extend to accept named procedures, but the definition is somewhat messier:

optional input.

default value

Implementing 193

app [print word first (% 1) first (% 2)] [Paul Goodman]

app

app apply
app

app %
Index

foreach
%

%
index %

index

(% 1)

(% 1) ?1 apply

to app :template.or.name :input.value
ifelse wordp :template.or.name ~

[run list :template.or.name "%] ~
[run :template.or.name]

end

to app :template :input.values
run :template
end

to % [:index 1]
output item :index :input.values
end

?
PG

to %1 to %2 to %3
output (% 1) output (% 2) output (% 3)
end end end

Apply

If the first input is a word, we construct a template by combining that procedure name
with a percent sign for its input. However, in the rest of this section I’ll simplify the
discussion by assuming that accepts only templates, not procedure names.

So far, takes only one value as input; the real takes a list of values. I’ll
extend to match:

No change is needed to , but has been changed to use another new notation in
its title line. is the name of an Although this notation also uses
square brackets, it’s different from the notation used in because the brackets
include a as well as the name for the input. This version of accepts either
no inputs or one input. If is invoked with one input, then the value of that input will
be associated with the name , just as for ordinary inputs. If is invoked with no
inputs, then will be given the value 1 (its default value).

A percent sign with a number as input selects an input value by its position within the list
of values. A percent sign by itself is equivalent to .

The notation isn’t as elegant as the used in the real . You can solve
that problem by defining several extra procedures:

show runparse [print word first ?1 first ?2]

194 Chapter 10 Iteration, Control Structures, Extensibility

?2 (? 2)

runparse

apply app

catch

run
output

.maybeoutput

output

?
[print word first (? 1) first (? 2)]

to app.oper :template :input.values
output run :template
end

to app :template :input.values
catch "error [output run :template]
ignore error
end

to app :template :input.values
.maybeoutput run :template
end

Berkeley Logo recognizes the notation and automatically translates it to , as you
can see by this experiment:

(The primitive operation takes a list as input and outputs the list as it would
be modified by Logo when it is about to be run. That’s a handwavy description, but the
internal workings of the Logo interpreter are too arcane to explore here.)

Unlike the primitive , this version of works only as a command, not as an
operation. It’s easy to write a separate version for use as an operation:

It’s not so easy in non-Berkeley versions of Logo to write a single procedure that can serve
both as a command and as an operation. Here’s one solution that works in versions with

:

This isn’t an ideal solution, though, because it doesn’t report errors other than “
didn’t output to .” It could be improved by testing the error message more
carefully instead of just ignoring it.

Berkeley Logo includes a mechanism that solves the problem more directly, but it’s
not very pretty:

The primitive command is followed by a Logo expression that may or
may not produce a value. If so, that value is output, just as it would be by the ordinary

command; the difference is that it’s not considered an error if no value is
produced.

Mapping

Mapping 195

apply app
apply

map foreach

map

Map

fput sentence

fput

show map [?*?] [1 2 3 4]

show map [first ?] [every good boy does fine]

?
[1 4 9 16]
?
[e g b d f]
?

to squares :numbers
if emptyp :numbers [output []]
output fput ((first :numbers) * (first :numbers)) ~

(squares butfirst :numbers)
end

to map :template :values
if emptyp :values [output []]
output fput (apply :template (list first :values)) ~

(map :template butfirst :values)
end

From now on I’ll use the primitive . I showed you for two reasons. First,
I think you’ll understand better by seeing how it can be implemented. Second,
this implementation may be useful if you ever work in a non-Berkeley Logo.

So far the iteration tools we’ve created apply only to commands. As you know, we also
have the operation , which is similar to except that its template is an
expression (producing a value) rather than an instruction, and it accumulates the values
produced for each member of the input.

When implementing an iteration tool, one way to figure out how to write the program
is to start with a specific example and generalize it. For example, here’s how I’d write the
example about squaring the numbers in a list without using :

is very similar, except that it applies a template to each datum instead of squaring it:

You may be wondering why I used rather than in these procedures.
Either would be just as good in the example about squares of numbers, because each
datum is a single word (a number) and each result value is also a single word. But it’s
important to use in an example such as this one:

196 Chapter 10 Iteration, Control Structures, Extensibility

map.se sentence

list
map.list

foreach

foreach map
word fput

template.number map1
#

show map [swap ?] [[Sherlock Holmes] [James Pibble] [Nero Wolfe]]

show map.se [swap ?] [[Sherlock Holmes] [James Pibble] [Nero Wolfe]]

show map [list ? #] [a b c]

to swap :pair
output list last :pair first :pair
end

?
[[Holmes Sherlock] [Pibble James] [Wolfe Nero]]

?
[Holmes Sherlock Pibble James Wolfe Nero]

to map :map.template [:template.lists] 2
op map1 :template.lists 1
end

to map1 :template.lists :template.number
if emptyp first :template.lists [output first :template.lists]
output combine (apply :map.template firsts :template.lists)

(map1 bfs :template.lists :template.number+1)
end

to combine :this :those
if wordp :those [output word :this :those]
output fput :this :those
end

?
[[a 1] [b 2] [c 3]]

Berkeley Logo does provide an operation in which is used as the
combiner; sometimes that’s what you want, but not, as you can see, in this example. (A
third possibility that might occur to you is to use as the combiner, but that never
turns out to be the right thing; try writing a and see what results it gives!)

As in the case of , the program gets a little more complicated when we
extend it to handle multiple data inputs. Another complication that wasn’t relevant to

is that when we use a word, rather than a list, as the data input to , we must
use as the combiner instead of . Here’s the complete version:

This is the actual program in the Berkeley Logo library. One feature I haven’t discussed
until now is the variable used as an input to . Its purpose is to
allow the use of the number sign character in a template to represent the position of
each datum within its list:

Mapping as a Metaphor

print count [how now brown cow]

to #
output :template.number
end

?
4

implemented

data

you

Mapping as a Metaphor 197

?

map1

map

Count

count

equalp memberp

count

count

The implementation is similar to that of in templates:

It’s also worth noting the base case in . When the data input is empty, we must
output either the empty word or the empty list, and the easiest way to choose correctly is
to return the empty input itself.

In this chapter, we got to the idea of mapping by this route: iteration, numeric iteration,
other kinds of iteration, iteration on a list, iterative commands, iterative operations,
mapping. In other words, we started thinking about the mapping tool as a particular
kind of repetition in a computer program.

But when I first introduced as a primitive operation, I thought about it in a
different way. Never mind the fact that it’s through repetition. Instead think
of it as extending the power of the idea of a list. When we started thinking about lists, we
thought of the list as one complete entity. For example, consider this simple interaction
with Logo:

is a primitive operation. It takes a list as input, and it outputs a number that is a
property of the entire list, namely the number of members in the list. There is no need
to think of as embodying any sort of repetitive control structure. Instead it’s one
kind of handle on the structure called a list.

There are other operations that manipulate lists, like and . You’re
probably in the habit of thinking of these operations as “happening all at once,” not as
examples of iteration. And that’s a good way to think of them, even though it’s also
possible to think of them as iterative. For example, how does Logo know the of a
list? How would find out the number of members of a list? One way would be to count
them on your fingers. That’s an iteration. Logo actually does the same thing, counting
off the list members one at a time, as it would if we implemented recursively:

Other Higher Order Functions

map
map

map reduce
filter

apply
reduce

show 1+[5 10 15]

show map [1+?] [5 10 15]

198 Chapter 10 Iteration, Control Structures, Extensibility

to cnt :list
if emptyp :list [output 0]
output 1+cnt butfirst :list
end

?
[6 11 16]

?
[6 11 16]

to reduce :reduce.function :reduce.list
if emptyp butfirst :reduce.list [output first :reduce.list]
output apply :reduce.function (list (first :reduce.list)

(reduce :reduce.function
butfirst :reduce.list))

end

I’m showing you that the “all at once” Logo primitives can be considered as iterative
because, in the case of , I want to shift your point of view in the opposite direction.
We started thinking of as iterative; now I’d like you to think of it as happening all at
once.

Wouldn’t it be nice if we could say

That is, I’d like to be able to “add 1 to a list.” I want to think about it that way, not as “add
1 to each member of a list.” The metaphor is that we’re doing something to the entire
list at once. Well, we can’t quite do it that way, but we can say

Instead of thinking “Well, first we add 1 to 5, which gives us 6; then we add...” you should
think “we started with a list of three numbers, and we’ve transformed it into another list
of three numbers using the operation add-one.”

Along with , you learned about the higher order functions , which combines
all of the members of a list into a single result, and , which selects some of the
members of a list. They, too, are implemented by combining recursion with .
Here’s the Berkeley Logo library version of :

Other Higher Order Functions 199

filter
map #

map map1 template.number
filter template.number

filter filter

filter template.lists
map filter

template.lists
filter

?rest
?

to filter :template :data
if emptyp :data [output []]
if apply :template (list first :data) ~

[output fput (first :data)
(filter :template butfirst :data)]

output filter :template butfirst :data
end

to filter :filter.template :template.list [:template.number 1]
localmake "template.lists (list :template.list)
if emptyp :template.list [output :template.list]
if apply :filter.template (list first :template.list) ~

[output combine (first :template.list)
(filter :filter.template (butfirst :template.list)

:template.number+1)]
output (filter :filter.template (butfirst :template.list)

:template.number+1)
end

If there is only one member, output it. Otherwise, recursively reduce the butfirst of
the data, and apply the template to two values, the first datum and the result from the
recursive call.

The Berkeley Logo implementation of is a little more complicated, for some
of the same reasons as that of : the ability to accept either a word or a list, and the
feature in templates. So I’ll start with a simpler one:

If you understand that, you should be able to see the fundamentally similar structure of
the library version despite its extra details:

Where used a helper procedure to handle the extra input ,
uses an alternate technique, in which is declared as an

optional input to itself. When you invoke you always give it the default
two inputs, but it invokes itself recursively with three.

Why does need a local variable named ? There was a
variable with that name in because it accepts more than one data input, but
doesn’t, and in fact there is no reference to the value of within

. It’s there because of another feature of templates that I haven’t mentioned:
you can use the word in a template to represent the portion of the data input to
the right of the member represented by in this iteration:

Mapping Over Trees

?rest map filter

uppercase

tree,

200 Chapter 10 Iteration, Control Structures, Extensibility

to remove.duplicates :list
output filter [not memberp ? ?rest] :list
end

? show remove.duplicates [ob la di ob la da]
[di ob la da]

to ?rest [:which 1]
output butfirst item :which :template.lists
end

[[the [quick brown] fox] [[jumped] [over [the [lazy] dog]]]]

map [uppercase ?] ~
[[the [quick brown] fox] [[jumped] [over [the [lazy] dog]]]]

Since is allowed in templates as well as in templates, its implementa-
tion must be the same for both:

It’s time to move beyond the iteration tools in the Logo library and invent our own new
ones.

So far, in writing operations on lists, we’ve ignored any sublist structure within the
list. We do something for each top-level member of the input list. It’s also possible to
take advantage of the complex structures that lists make possible. For example, a list can
be used to represent a a data structure in which each branch can lead to further
branches. Consider this list:

My goal here is to represent a sentence in terms of the phrases within it, somewhat like
the sentence diagrams you may have been taught in elementary school. This is a list with
two members; the first member represents the subject of the sentence and the second
represents the predicate. The predicate is further divided into a verb and a prepositional
phrase. And so on. (A representation something like this, but more detailed, is used in
any computer program that tries to understand “natural language” interaction.)

Suppose we want to convert each word of this sentence to capital letters, using
Berkeley Logo’s primitive that takes a word as input. We can’t just say

Iteration and Tail Recursion

word

not

both

Iteration and Tail Recursion 201

show map.tree [uppercase ?]~
[[the [quick brown] fox] [[jumped] [over [the [lazy] dog]]]]

map.tree

Map.tree
map.tree

down countdown
one.per.line countdown for

one.per.line foreach Down

downup hanoi

?

[[THE [QUICK BROWN] FOX] [[JUMPED] [OVER [THE [LAZY] DOG]]]]

to map.tree :template :tree
if wordp :tree [output apply :template (list :tree)]
if emptyp :tree [output []]
output fput (map.tree :template first :tree) ~

(map.tree :template butfirst :tree)
end

because the members of the sentence-list aren’t words. What I want is a procedure
that applies a template to each within the input list but maintains the

shape of the list:

After our previous adventures in mapping, this one is relatively easy:

This is rather a special-purpose procedure; it’s only good for trees whose “leaves”
are words. That’s sometimes the case but not always. But if you’re dealing with sentence
trees like the one in my example, you might well find several uses for a tool like this.
For now, I’ve introduced it mainly to make the point that the general idea of iteration
can take many different forms, depending on the particular project you’re working on.
(Technically, this is an iteration, because it doesn’t have a two-part structure in which
the first part is to perform one step of a computation and the second part is to perform
all the rest of the steps. does have a two-part structure, but parts are
recursive calls that might carry out several steps. But does generalize the
broad idea of dividing a large computation into similar individual pieces. We’ll go into
the nature of iteration more carefully in a moment.)

If you look back at the introduction to recursion in the first volume, you’ll find that some
recursive commands seem to be carrying out an iteration, like , , or

. (In this chapter we’ve seen how to implement using ,
and you should easily be able to implement using . isn’t
exactly covered by either of those tools; can you see why I call it an iterative problem
anyway?) Other recursive commands don’t seem to be repeating or almost-repeating
something, like or . The difference is that these commands don’t do
something completely, then forget about it and go on to the next repetition. Instead,

ForMultiple Inputs to

tail

mean

teachers,

202 Chapter 10 Iteration, Control Structures, Extensibility

downup

poly polyspi
downup

multifor for
for

map foreach firsts butfirsts map
for multifor

the first invocation of , for example, still has work of its own to do after all the
lower-level invocations are finished.

It turns out that a command that is recursive is one that can be thought of
as carrying out an iteration. A command that invokes itself somewhere before the last
instruction is not iterative. But the phrase “tail recursive” doesn’t “equivalent to
an iteration.” It just happens to work out, for commands, that the two concepts are
equivalent. What “tail recursive” means, really, is “invokes itself just before stopping.”

I’ve said before that this isn’t a very important thing to worry about. The reason
I’m coming back to it now is to try to clear up a confusion that has been part of the
Logo literature. Logo implementors talk about tail recursion because there is a tricky
way to implement tail recursion that takes less memory than the more general kind of
recursion. Logo on the other hand, tend to say “tail recursive” when they really
mean “iterative.” For example, teachers will ask, “Should we teach tail recursion first and
then the general case?” What’s behind this question is the idea that iteration is easier to
understand than recursion. (By the way, this is a hot issue. Most Logo teachers would say
yes; they begin by showing their students an iterative command like or . I
generally say no; you may recall that the first recursive procedure I showed you is .
One reason is that I expect some of my readers have programmed in Pascal or C, and I
want to make it as hard as possible for such readers to convince themselves that recursion
is just a peculiar way to express the idea of iteration.)

There are two reasons people should stop making a fuss about tail recursion.
One is that they’re confusing an idea about control structures (iteration) with a Logo
implementation strategy (tail recursion). The second is that this way of thinking directs
your attention to commands rather than operations. (When people think of iterative
procedures as “easier,” it’s always commands that they have in mind. Tail recursive
operations are, if anything, less straightforward than versions that are non-tail recursive.)
Operations are more important; they’re what gives Logo much of its flexibility. And the
best way to think about recursive operations isn’t in implementation terms but in terms
of data transformation abstractions like mapping, reduction, and filters.

Earlier I promised you , a version of that controls more than one numeric
variable at a time. Its structure is very similar to that of the original , except that
we use or (or or , which are implicit uses of) in
almost every instruction to carry out ’s algorithm for each of ’s numeric
variables.

for

ForMultiple Inputs to 203

multifor [[a 10 100 5] [b 100 10 -10]] ~
[print (sentence :a "+ :b "= (:a + :b))]

This is a very dense program; I wouldn’t expect anyone to read and understand it
from a cold start. But if you compare it to the implementation of on page 184, you
should be able to make sense of how each line is transformed in this version.

Here is an example you can try:

to multifor :values.list :instr
localmake "vars firsts :values.list
local :vars
localmake "initials map "run firsts butfirsts :values.list
localmake "finals map [run item 3 ?] :values.list
localmake "steps (map "multiforstep :values.list :initials :finals)
localmake "testers map [ifelse ? < 0 [[?1 < ?2]] [[?1 > ?2]]] :steps
multiforloop :initials
end

to multiforstep :values :initial :final
if (count :values)=4 [output run last :values]
if :initial > :final [output -1]
output 1
end

to multiforloop :values
(foreach :vars :values [make ?1 ?2])
(foreach :values :finals :testers [if run ?3 [stop]])
run :instr
multiforloop (map [?1+?2] :values :steps)
end

?

10 + 100 = 110
15 + 90 = 105
20 + 80 = 100
25 + 70 = 95
30 + 60 = 90
35 + 50 = 85
40 + 40 = 80
45 + 30 = 75
50 + 20 = 70
55 + 10 = 65
?

grade 50

The Evaluation Environment Bug

run apply

forloop
final

for

midterm
grade forloop

final grade final

run

run
evaluation environment

204 Chapter 10 Iteration, Control Structures, Extensibility

to grade :final
for [midterm 10 100 10] [print (sum :midterm :final) / 2]
end

?

to map :template :inputs

to map :map.qqzzqxx.template :map.qqzzqxx.inputs

There’s a problem with all of these control structure tools that I haven’t talked about.
The problem is that each of these tools uses or to evaluate an expression
that’s provided by the calling procedure, but the expression is evaluated with the tool’s
local variables active, in addition to those of the calling procedure. This can lead to
unexpected results if the name of a variable used in the expression is the same as the
name of one of the local variables in the tool. For example, has an input
named . What happens if you try

Try this example with the implementation of in this chapter, not with the Logo
library version. You might expect each iteration to add 10 and 50, then 20 and 50, then
30 and 50, and so on. That is, you wanted to add the iteration variable to the
input to . In fact, though, the variable that contributes to the sum is ’s

, not ’s .

The way to avoid this problem is to make sure you don’t use variables in superproce-
dures of these tools with the same names as the ones inside the tools. One way to ensure
that is to rewrite all the tool procedures so that their local variables have bizarre names:

becomes

Of course, you also have to change the names wherever they appear inside the definition,
not just on the title line. You can see why I preferred not to present the procedures to
you in that form!

It would be a better solution to have a smarter version of , which would allow
explicit control of the —the variable names and values that should
be in effect while evaluating ’s input. Some versions of Lisp do have such a capability.

crypto

11 Example: Cryptographer’s Helper

cryptogram

simple substitution cipher. code

cipher
substitution

simple

205

Program file for this chapter:

A is a kind of word puzzle, like a crossword puzzle. Instead of definitions,
though, a cryptogram gives you the actual words of a quotation, but with each letter
replaced with a different letter. For example, each letter A in the original text might be
replaced with an F. Here is a sample cryptogram:

LB RA, BT YBL LB RA: LJGL CQ LJA FUAQLCBY: KJALJAT ’LCQ YBRXAT
CY LJA DCYP LB QUSSAT LJA QXCYWQ GYP GTTBKQ BS BULTGWABUQ
SBTLUYA, BT LB LGHA GTDQ GWGCYQL G QAG BS LTBURXAQ, GYP RM
BIIBQCYW AYP LJAD?

The punctuation marks and the spaces between words are the same in this cryptogram as
they are in the original (“clear”) text.

A cryptogram is a kind of secret code. The formal name for this particular kind
of code is a Strictly speaking, a is a method of disguising a
message that uses a dictionary of arbitrarily chosen replacements for each possible word.
A foreign language is like a code. A is a method in which a uniform algorithm or
formula is used to translate each word. A cipher is one in which every letter
(or sometimes every pair of letters, or some such grouping) is replaced by a disguised
equivalent. A substitution cipher is one in which each letter has a single equivalent
replacement, which is used throughout the message. (A more complicated substitution
cipher might be something like this: the first letter A in the message is replaced with F,
the second A is replaced with G, the third with H, and so on.)

Years ago, Arthur Conan Doyle and Edgar Allen Poe were able to write mystery
stories in which simple substitution ciphers were used by characters who really wanted to
keep a message secret. Today, partly because of those stories, too many people know how
to “break” such ciphers for them to be of practical use. Instead, these ciphers are used as
word puzzles.

crypto

crypto
cgram1 cgram4

Crypto

large

histogram

continuous
discrete

206 Chapter 11 Example: Cryptographer’s Helper

The technique used for decoding a cryptogram depends on the fact that some letters
are more common than others. The letter A is much more common in English words
than the letter Z. If, in a cryptogram, the letter F occurs many times, it’s more likely to
represent a letter like A in the original text than a letter like Z.

The most commonly used letter in English is E, by a wide margin. T is in second
place, with A and O nearly tied for third. I, N, and R are also very commonly used. These
rankings apply to texts. In the usual short cryptogram, the most frequent letter
doesn’t necessarily represent E. But the letter that represents E will probably be among
the two or three most frequent.

Before reading further, you might want to try to solve the cryptogram shown above.
Make a chart of the number of times each letter appears, then use that information to
make guesses about which letter is which. As you’re working on it, make a note of what
other kinds of information are helpful to you.

This project is a program to help you solve cryptograms. The program doesn’t solve
the puzzle all by itself; it doesn’t know enough about English vocabulary. But it does
some of the more boring parts of the job automatically, and can make good guesses about
some of the letters.

The top-level procedure is . It takes one input, a list whose members are the
words of the cryptogram. Since these lists are long and easy to make mistakes in, you’ll
probably find it easier to type the cryptogram into the Logo editor rather than directly at
a question mark prompt. You might make the list be the value of a variable, then use that
variable as the input to . (The program file for this project includes four such
variables, named through , with sample cryptograms.)

begins by going through the coded text, letter by letter. It keeps count of
how often each letter is used. You can keep track of this counting process because the
program draws a on the screen as it goes. A histogram is a chart like the one at
the top of the next page.

A histogram is a kind of graph, but it’s different from the graphs you use
in algebra. Histograms are used to show quantities of things, like letters of the
alphabet.

The main reason the program draws the histogram is that it needs to know the
frequencies of occurrence of the letters for later use. When I first wrote the program,
it counted the letters without printing anything on the screen. Since this counting is a
fairly slow process, it got boring waiting for the program to finish. The histogram display
is a sort of video thumb-twiddling to keep you occupied while the program is creating an
invisible histogram inside itself.

Chapter 11 Example: Cryptographer’s Helper 207

A-17-E B-18-

L-19-T

A E H T

LB RA, BT YBL LB RA: LJGT CQ LJA

FUAQLCBY: KJALJAT ’LCQ YBRXAT CY LJA

DCYP LB QUSSAT LJA QXCYWQ GYP GTTBKQ

BS BULTGWABUQ SBTLUYA, BT LB LGHA

GTDQ GWGCYQL G QAG BS LTBURXAQ, GYP

RM BIIBQCYW AYP LJAD?

L
B L
AB L
AB L
AB L
AB L
AB L Q
AB L Q Y
AB G L Q T Y
AB G L Q T Y
AB G L Q T Y
ABC G L Q T Y
ABC G J L Q T Y
ABC G J L Q TU Y
ABC G J L QRSTU Y
ABC G J L PQRSTU W Y
ABCD G J L PQRSTU WXY
ABCD G IJKL PQRSTU WXY
ABCD FGHIJKLM PQRSTU WXY

C-08- D-03- E
F-01- G-11-A H-01- I-02- J-07-H
K-02- M-01- N O
P-04- Q-13- R-05- S-05- T-11-
U-06- V W-04- X-03- Y-12-
Z

BCD FG IJKLMNOPQRS UVWXYZ

T E, T T E: THAT THE

E T : HETHE ’T E THE

T E THE A A

T A E T E, T TA E

A A A T A EA T E , A

E THE ?

Histogram Screen display

By the way, since there are only 24 lines on the screen, the top part of the histogram
may be invisible if the cryptogram is long enough to use some letters more than 24 times.

The shape of this histogram is pretty typical. A few letters are used many times, while
most letters are clumped down near the bottom. In this case, A, B, and L stand out. You
might guess that they represent the most commonly used letters: E, T, and either A or O.
But you need more information to be able to guess which is which.

After it finishes counting letters, the program presents a screen display like the one
shown above. The information provided in this display comes in three parts. At the
top is an alphabetical list of the letters in the cryptogram. For each letter, the program
displays the number of times that letter occurs in the enciphered text. For example,
the letter P occurs four times. The letter that occurs most frequently is highlighted by
showing it in reverse video characters, represented in the book with boldface characters.
In this example, the most frequently used letter is L, with 19 occurrences. Letters with
occurrence counts within two of the maximum are also highlighted. In the example, A
with 17 and B with 18 are highlighted. If a letter does not occur in the cryptogram at all,
no count is given. In the example, there is no E in the enciphered text.

T
something

208 Chapter 11 Example: Cryptographer’s Helper

The top part of the display shows one more piece of information: if either the
program or the person using it has made a guess as to the letter that a letter represents,
that guess is shown after the frequency count. For example, here the program has
guessed that the letter L in the cryptogram represents the letter T in the clear text. (You
can’t tell from the display that this guess was made by the program rather than by the
person using it. I just happen to know that that’s what happened in this example!)

The next section of the display is a single line showing all the letters of the alphabet.
In this line, a letter is highlighted if a guess has been made linking some letter in the
cryptogram with that letter in the clear text. In other words, this line shows the linkages
in the reverse direction from what is shown in the top section of the display. For example,
I just mentioned that L in the cryptogram corresponds to T in the clear text. In the top
part of the display, we can find L in alphabetical order, and see that it has a T linked to it.
But in the middle part of the display, we find , not L, in alphabetical order, and discover
that is linked to it. (It turns out that we don’t usually have to know which letter
corresponds to T.)

Here is the purpose of that middle section of the display: Suppose I am looking at
the second word of the cryptogram, RA. We’ve already guessed that A represents E, so
this word represents something-E. Suppose I guess that this word is actually HE. This just
happens to be the first two-letter word I think of that ends in E. So I’d like to try letting
R represent H. Now I look in the middle section of the display, and I see that H is already
highlighted. So some other letter, not R, already represents H. I have to try a different
guess.

The most important part of the display is the bottom section. Here, lines of
cryptogram alternate with their translation into clear text, based on the guesses we’ve
made so far. The cryptogram lines are highlighted, just to make it easy to tell which lines
are which. The program ensures that each word entirely fits on a single line; there is no
wrapping to a new line within a single word.

There is room on the screen for eight pairs of lines. If the cryptogram is too big to
fit in this space, only a portion of it will be visible at any time. In a few paragraphs I’ll talk
about moving to another section of the text.

The program itself is very limited in its ability to guess letters. For the most part, you
have to do the guessing yourself when you use it. There are three guessing rules in the
program:

1. The most frequently occurring single-letter word is taken to represent A.

2. Another single-letter word, if there is one, is taken to represent I.

D-03-

D-03-M

heuristic.
algorithm.

Chapter 11 Example: Cryptographer’s Helper 209

3. The most frequently occurring three-letter word is taken to represent THE, but only
if its last letter is one of the ones highlighted in the top part of the display.

In the example, the only single-letter word in the cryptogram is G, in the next-to-last line.
The program, following rule 1, has guessed that G represents A. Rule 2 did not apply,
because there is no second single-letter word. The most frequently used three-letter word
is LJA, which occurs three times. The last letter of that word, A, is highlighted in the top
section because it occurs 17 times. Therefore, the program guesses that L represents T, J
represents H, and A represents E.

Of course you understand that these rules are not infallible; they’re just guesses. (A
fancy name for a rule that works most of the time is a A rule that works all
the time is called an) For example, the three-letter word GYP appears twice in
the cryptogram, only once less often than LJA. Maybe GYP is really THE. However, the
appearance of the word THAT in the translation of the first line is a pretty persuasive
confirmation that the program’s rules have worked out correctly in this case.

If you didn’t solve the cryptogram on your own, at my first invitation, you might
want to take another look at it, based on the partial solution you now have available. Are
these four letters (A, E, I, and T) enough to let you guess the rest? It’s a quotation you’ll
probably recognize.

Once this display is on the screen, you can make further guesses by typing to the
program. For example, suppose you decide that the last word of the cryptogram, LJAD,
represents THEM. Then you want to guess that D represents M. To do that, type the
letters D and M in that order. Don’t use the RETURN key. Your typing will not be echoed
on the screen. Instead, three things will happen. First, the entry in the top section of the
display that originally said

will be changed to say

Second, the letter M will be highlighted in the alphabet in the second section of the
display. Finally, the program will type an M underneath every D in the cryptogram text.

If you change your mind about a guess, you can just enter a new guess about the
same cryptogram letter. For example, if you decide that LJAD is really THEY instead of
THEM, you could just type D and Y. Alternatively, if you decide a guess was wrong but

Program Structure

instead of

windowing

Compulsory
Miseducation

210 Chapter 11 Example: Cryptographer’s Helper

you don’t have a new guess, type the cryptogram letter (D in this example) and then the
space bar.

If you guess that D represents M, and then later you guess that R also represents
M, the program will complain at you by beeping or by flashing the screen, depending
on what your computer can do. If you meant that R should represent M D
representing M, you must first undo the latter guess by typing D, space bar, R, and M.

The process of redisplaying the clear text translation of the cryptogram after each
guess takes a fairly long time, since the program has to look up each letter individually.
Therefore, the program is written so that you don’t have to wait for this redisplay to
finish before guessing another letter representation. As soon as you type any key on the
keyboard, the program stops retyping the clear text. Whatever key you typed is taken as
the first letter of a two-letter guess command.

If the cryptogram is too long to fit on the screen, there are three other things you can
type to change which part of the text is visible. Typing a plus sign (+) eliminates the first
four lines of the displayed text (that is, four lines of cryptogram and four corresponding
lines of cleartext) and brings in four new lines at the end. Typing a minus sign (–) moves
backwards, eliminating the four lines nearest the bottom of the screen and bringing back
four earlier lines at the top. These commands have no effect if you are already
seeing the end of the text (for +) or the beginning of the text (for –).

The third command provided for long cryptograms is the atsign (@) character.
This is most useful after you’ve figured out all of the letter correspondences. It clears
the screen and displays only the clear text, without the letter frequencies, table of
correspondences, or the enciphered text. This display allows 23 lines of clear text to fit
on the screen instead of only eight. If you don’t have the solution exactly right, you can
type any character to return to the three-part display and continue guessing.

The program never stops; even after you have made guesses for all the letters, you
might find an error and change your mind about a guess. When you’re done, you stop
the program with control-C or command-period or whatever your computer requires.

In the complete listing at the end of this chapter, there are a few cryptograms for
you to practice with. They are excerpted from one of my favorite books,

by Paul Goodman.

There are about 50 procedures in this program. These procedures can be roughly
divided into several purposes:

•
•
•
•
•
•
•
•
•
•

Program Structure 211

Redisplay

fixtop light dark

Bind

qbind

crypto parseloop
parsekey bind

light dark

bind

initialization
frequency counting and displaying the histogram
guessing letters automatically
reading user commands
keeping track of guesses
top section of display (frequencies)
middle section of display (alphabet)
bottom section of display (cryptogram text and cleartext)
windowing and full-text displays
data abstraction and other helper procedures

The diagram on the next page shows superprocedure/subprocedure relationships
within the main categories. (Helper procedures aren’t shown, to make the diagram
more readable.) The bottom half of the diagram has the procedures that are concerned
primarily with presenting information on the screen. , near the center of
the diagram, is called whenever the entire screen display must be redrawn: when the
initialization part of the program is finished, and whenever the user chooses a new
portion of the text to display. When the display changes slightly, because a new guess
is made, procedures such as , , and are used instead of redrawing
everything.

is the most important procedure, because it records and displays each new
guess. As the diagram shows, it invokes several subprocedures to update the display;
more importantly, it changes the values of several variables to keep track of the new guess.
There is also a similar procedure that’s used when a guess is made by the program
rather than by the user. (The “Q” stands for either “quick” or “quiet,” since this version
never has to undo an old guess, omits some error checking, and can’t beep because
there are no errors in automatic guesses.) If you ignore initialization and displaying
information, the entire structure of the program is that calls , which
repeatedly calls , which calls to record a guess.

Unfortunately, it’s not so easy in practice to divide up the procedures into groups,
with a single purpose for each group. Several procedures carry out two tasks at once.
For example, and have those names because they switch individual letters
between normal and inverse video in the alphabet display in the middle part of the
screen. But those procedures also set variables to remember that a particular cleartext
letter has or hasn’t been guessed, so they are also carrying out part of ’s job, keeping
track of guesses.

crypto

histogram
parseloop

bind

histlet

light dark alphabetfixtop

redisplay

parsekey

qbind

prepare.guess

moretext

guess.single

lesstext

guess.triple

fullclear

tally

showtop

showrow

onetop

showcode showclear

showcode1 showclear1

codeword clearword

histogram

guessing letters reading user
commands

keeping track
of guesses

windowing

display top

display middle

display bottom
(code) (cleartext)

Guided Tour of Global Variables

Crypto

bound True false
cnt
posn

x

x x
x x cleartext
x x
x x

212 Chapter 11 Example: Cryptographer’s Helper

uses many global variables to hold the information it needs. This includes
information about individual letters, about words, and about the text as a whole.

There are several sets of 26 variables, one for each letter of the alphabet. For these
variables, the last letter of the variable name is the letter about which the variable holds
information. In the table that follows, the italic in each name represents any letter.

Cleartext letter that is guessed to match in the cryptogram.
if appears in the as guessed so far; otherwise.

Count of how many times appears in the cryptogram.
Screen cursor position where the frequency count and guess for is
shown in the top part of the display.

words

y

y y.
y y.

Guided Tour of Global Variables 213

initvars posn
showrow

showclear thing :letter

count.single
count.triple
list.single
list.triple
max.single
max.triple

single
triple

fulltext
text

moretext +
textstack text -
maxcount

:Maxcount
:Text showcode showclear

Fulltext moretext textstack
text fulltext textstack Moretext

moretext

These variables are set up initially by , except for the variables, which are
set by . The variables with single-letter names start out with a space character
as their value. This choice allows to use as the thing to
type for every letter in the cryptogram. If no guess has been made for a letter, it will be
displayed as a blank space in the partially-decoded version of the text.

Here are the variables that have to do with in the cryptogram text. These
variables are needed for the part of the program that automatically makes guesses,
by looking for words that might represent A, I, and THE in the cleartext. In the
following variable names, represents either a one-letter word or a three-letter word in
the cryptogram text.

The number of occurrences of the most frequent one-letter word.
The number of occurrences of the most frequent three-letter word.
List of one-letter words in the cryptogram text.
List of three-letter words in the cryptogram text.
The most frequent one-letter word in the cryptogram text.
The most frequent three-letter word in the cryptogram text.
The number of occurrences of the one-letter word
The number of occurrences of the three-letter word

These variables are used only during the initial histogram counting, to keep track of
which one-letter word and which three-letter word are the most frequent in each category.
Once the most frequently occurring words have been determined, the actual count is no
longer important.

Finally, there are some variables that contain information about the text as a whole:

The complete cryptogram text.
The part of the cryptogram that is displayed on the screen right now.
The part of the text that should be displayed after a command.
A list of old values of , to be restored if the command is used.
The number of occurrences of the most frequently used letter.

is used to know which letters should be highlighted in the top section of the
display. is used by and to maintain the bottom section of
the display. , , and are part of the windowing feature.
At first, is equal to , and is empty. contains the
portion of the text starting on the fifth line that is displayed, providing there is some text
at the end of the cryptogram that didn’t fit on the screen. If the end of the text is visible,
then is empty. Here is what happens if you type the plus sign:

What’s In a Name?

214 Chapter 11 Example: Cryptographer’s Helper

to moretext
if emptyp :moretext [beep stop]
push "textstack :text
make "text :moretext
redisplay "true
end

:moretext
:text

- text
:moretext

local

showhist fixhist
histogram histlet

hist

showhist showtop fixhist fixtop
hist top

If is empty, there is no more text to display, and the procedure stops with
a complaint. Otherwise, we want to remember what is now in in case of a later

command, and we want to change the value of to the version starting four lines
later that is already in .

In the solitaire project, I used a lot of instructions in the top-level procedures
to avoid creating global variables. In this project, I didn’t bother. There’s no good reason
why I was lazier here than there; you can decide for yourself whether you think it’s worth
the effort.

In revising this program for the second edition, I was struck by the ways in which bad
choices of procedure or variable names had made it needlessly hard to read. Changing
names was one of the three main ways in which I changed the program. (The other
two were an increased use of data abstraction and the introduction of iteration tools to
eliminate some helper procedures.)

I’ll start with a simple example. As I’ve mentioned, when I first wrote the program it
didn’t draw the histogram on the screen during the initial counting of letter frequencies.
Since the top part of the screen display is primarily a presentation of those frequencies,
I thought of that top part as the program’s “histogram” even though it doesn’t have the
form of a real histogram. That’s why, in the first edition, the procedures that maintain
the top part of the display were called , , and so on; when I added
the and procedures that draw the real histogram, it was hard to
keep track of which “ ” names were part of the initial histogram and which were part
of the letter frequency chart at the top of the program’s normal screen display. I’ve now
changed to , to , and so on. The procedures with

in their names are about the real histogram, and the ones with in their names
are about the frequency chart.

Here’s another example. In several parts of the program, I had to determine
whether a character found in the cryptogram text is a letter or a punctuation mark. The

What’s In a Name? 215

A B
namep

crypto

namep
crypto

copydef

save crypto
copydef

tally

to letterp :char
output memberp :char "ABCDEFGHIJKLMNOPQRSTUVWXYZ
end

if namep :char ...

copydef "letterp "namep

to tally :type :word
local "this
make "this word :type :word
if not memberp :word list. :type ~

[setlist. :type fput :word list. :type make :this 0]
make :this sum 1 thing :this
make "this thing :this
if :this > (count. :type) ~

[setcount. :type :this make (word "max. :type) :word]
end

most straightforward way to do this would be an explicit check against all the letters in
the alphabet:

But comparing the character against each of the 26 letters would be quite slow. Instead, I
took advantage of the fact that there happen to be variables in the program named after
each letter. That is, there’s a variable , a variable , and so on, but there aren’t variables
named after punctuation characters. Therefore, I could use the Logo primitive
to see whether or not the character I’m considering is a variable name, and if so, it must
be a letter. The first edition version of is full of instructions of the form

This is clever and efficient, but not at all self-documenting. Someone reading the
program would have no way to tell that I’m using to find out whether a character
is a letter. The solution was to add an instruction to the initialization in :

The primitive is used to give a new name to an existing procedure. (The old
name continues to work.) The existing procedure can be either primitive or user-defined.
The new name is not saved by the command; that’s why performs the

instruction each time.

Probably the worst example of bad naming was in the procedure. This
procedure has a complicated job; it must keep track of the most common one-letter and
three-letter words, in preparation for the program’s attempts to make automatic guesses
for A, I, and THE. Here is the version in the first edition:

216 Chapter 11 Example: Cryptographer’s Helper

type single triple
this

:this

tally tripleybl
this tripleybl

thing :this

:this

this countvar

count

setlist. list.
list.single

list.triple

make "this thing :this

to tally :type :word
localmake "countvar word :type :word
if not memberp :word list. :type ~

[setlist. :type fput :word list. :type make :countvar 0]
localmake "count (thing :countvar)+1
make :countvar :count
if :count > (count. :type) ~

[setcount. :type :count setmax. :type :word]
end

make (word "max. :type) :word

The input named is either the word or the word . One thing that
makes this procedure hard to read is the local variable named . What a vague name!
This what? Is it this word, or this letter, or this word length, or this guess? To make things
worse, partway through the procedure I recycled the same name to hold a different value.
At first, is a word that will be used as the name of a variable, counting the number
of times a given word appears. For example, if the word YBL appears in the cryptogram,
then will create a variable named whose value will be the number of
times that YBL occurs in the text. The value of will be the word , so
the expression represents the actual number. Then, near the end of the
procedure, I used the instruction

From then on, is the number itself, not the variable name! It’s really hard to
read a procedure in which the same name is used to mean different things in different
instructions.

Here’s the new version:

The name is gone. Instead, I’ve first created a local variable named
whose value is the name of the count variable. Then I create another local variable
named that contains the actual count. These names are much more descriptive
of the purposes of the two variables.

Another change in the new version is a more consistent use of data abstraction. The
original version used the constructor and the selector to refer to the
list of all known cryptogram words of the appropriate length (the variable
or), but used the instruction

histogram

histlet
prepare.guess

tally

histogram

guessing letters

word

What’s In a Name? 217

setmax. setlist.

historgram

to histogram :text
foreach :text [foreach (filter "letterp ?) "histlet]
end

to count.words :text
foreach :text [prepare.guess (filter "letterp ?)]
end

to histogram :text
foreach :text [localmake "word filter "letterp ?

foreach :word "histlet
prepare.guess :word]

end

to construct the variable containing the most frequently appearing word of that length.
The new version uses a constructor named that’s analogous to the
constructor.

Rethinking the names of procedures can reorganize your ideas about how to group
the procedures into categories. For example, in the first edition I was upset about the
fact that , whose job is to count letter frequencies and draw the histogram
of those counts, also invokes prepare.guess, whose job is to count frequencies in
preparation for automatic guessing.

The reason for this mixture of tasks is efficiency. To prepare the histogram, the program
must extract the letters (omitting punctuation) from each word of the text, and count
them. To prepare for guessing words, the program must extract the letters from each
word, and count the occurrences of the letters-only words. I could have done these things
separately:

But it seemed better to scan the words of the text just once, and extract the letters from
each word just once:

preprocess

histlet
prepare.guess

tally

histogram guessing letters

Flag Variables

flag variable.

218 Chapter 11 Example: Cryptographer’s Helper

to redisplay :flag
cleartext
showtop
alphabet
showcode :text
if :flag [showclear :text]
end

histogram
preprocess

histogram

redisplay

redisplay true false

redisplay
redisplay

crypto
showclear

Crypto

But the punch line of this story is that I could avoid the confusing jump between
boxes—the feeling of mixing two tasks—merely by changing the name of the
procedure to something neutral like . Then the structure would be

Now we have one initialization procedure that includes invocations for two separate kinds
of preprocessing. It’s not really the program structure that is inappropriate, but only
using the name for a procedure whose job includes more than the creation
of the histogram.

Procedure has the job of redrawing the entire screen when there is a major
change to what should be shown, like moving to a different window in the cryptogram
text.

The input to is a It must have the value or .
(The name comes from the flags on mailboxes, which are either up or down to indicate
whether or not there is mail in the box.) It’s there because has two slightly
different jobs to do at two different points in the program. First, is invoked
by , the top-level procedure, to draw the screen initially. At this time, no letters
have been guessed yet. Therefore, it is not necessary to invoke (which
indicates the guessed letters in the bottom part of the display). executes the
instruction

predicate,

x

Flag Variables 219

redisplay "false

redisplay "true

if :flag [do.something]

if equalp :flag "yes [do.something]

Redisplay moretext lesstext
showclear

showcode
redisplay

bind qbind

redisplay

if

true false

yes no

p
redefp

flag

bound true

Setbound
setunbound true false
boundp

to avoid that unnecessary work. is also invoked by , ,
and . Each of these procedures uses the instruction

to include . If the flag variable weren’t used, there would have to be two
different versions of .

I used the latter technique in the procedures and . These could also
have been one procedure with a flag variable input. The advantage of the technique
used in is that it makes the program easier to read by reducing the number
of procedures, and keeping similar purposes together. The advantage of using two
procedures is that it’s a little faster, because you don’t have to test the flag variable with

.

A flag variable is somewhat analogous to a a procedure that always outputs
or . The advantage of using these particular values for flag variables is that

they’re easy to test; you can say

whereas, if you used some other pair of values like and , you’d have to say

Some people like to give flag variables names ending with , as in the convention for
predicates. (The special variable that controls redefinition of primitives in some
versions of Logo, including Berkeley Logo, is an example.) I’m somewhat uncomfortable
with that practice because to me it raises a confusion about whether a particular word is
the name of a variable or the name of a procedure. I’d rather put in the names of
flag variables.

The 26 variables in this program are also flag variables; each is if the
corresponding letter has been guessed as the cleartext half of a binding. They don’t
have “flag” in their names, but their names aren’t used directly in most of the program
anyway. Instead they are hidden behind data abstraction procedures. and

are used to set any such variable or , respectively; the selector
alerts you by the P in its name that it’s a predicate.

Iteration Over Letters

220 Chapter 11 Example: Cryptographer’s Helper

foreach

showrow

alphabet

forletters

ascii

ascii

foreach "ABCDEFGHIJKLMNOPQRSTUVWXYZ [...]

to alphabet
setcursor [6 6]
forletters "A "Z [ifelse boundp ? [invtype ?] [type ?]]
end

to forletters :from :to :action
for [lettercode [ascii :from] [ascii :to]]

[apply :action (list char :lettercode)]
end

One of the ways in which I simplified the program for this edition was to replace some
recursive helper procedures with invocations of . At several points in the
program, some action must be taken for each letter in a word, or for each word in the
text.

Another kind of iteration problem that was not so easily solved by the standard
higher order procedures in Berkeley Logo was one in which some action must be taken,
not for each letter in a word, but for each letter in the alphabet, or for some subset of
the alphabet, as in the case of , which displays one row of the top part of the
screen, with information about five consecutive letters. Of course these problems could
be solved with instructions like

but that seemed unaesthetic to me. I wanted to be able to specify the starting and ending
letters, as in this example:

(The job of is to generate the middle part of the screen display, which is all
of the letters of the alphabet, in order, with each letter in inverse video if that letter has
been guessed as part of the cleartext.)

The difficulty in implementing is to get from one letter to the next.
How does a program know that the letter after A is B? Here is my solution:

The operation takes a letter (or other character) as input. Its output is
the number that represents that letter in the computer’s memory. Most computers use
the same numbers to represent characters; this standard representation is called ASCII,
for American Standard Code for Information Interchange. (It’s pronounced “ask E.”)
By using to translate the starting and ending letters into numeric codes, I’ve

?
65
?
A

make "var 87

:var

Computed Variable Names

print ascii "A

print char 65

Computed Variable Names 221

for

forletters
Char ascii

char

Forletters
lettercode for

uppercase

word

var

posna posnb
posnc

transformed the problem into one that can be solved using the standard tool that
allows an action to be carried out for each number in a given range.

But in the template input to , I want the question mark to represent a
letter, not its numeric code. is the inverse operation to . Given a number that
is part of the ASCII sequence, outputs the character that that number represents.
For example:

applies the template input to the character corresponding to the number
in the variable controlled by the .

Adding 1 to an ASCII code to get the code for the next letter depends on the fact
that the numbers representing the letters are in sequence. Fortunately, this is true of
ASCII. A is 65, B is 66, C is 67, and so on. Not all computer representations for characters
have this property. The code that was used in the days of punched cards had the slash
(/) character in between R and S!

By the way, the lower case letters have different ASCII codes from the capitals. In
this program I’ve used the primitive operation to translate every character
that the program reads into upper case, just to be sure that each letter has only one
representation.

Another programming technique that is heavily used in this project is the use of to
compute variable names dynamically. Ordinarily, you assign a value to a variable named

with an instruction like

and you look at the value of the variable with the expression

But in this project, there are variables for each letter, with names like , ,
, and so on. To assign a value to these variables, the program doesn’t use 26

separate instructions like

stylistic

222 Chapter 11 Example: Cryptographer’s Helper

setcursor

showrow

Setposn

letter a make

:posna
thing

word

word

make "posna [0 0]

forletters :from :to [setposn ? cursor onetop ?]

to setposn :letter :thing
make (word "posn :letter) :thing
end

make "posna :thing

to posn :letter
output thing (word "posn :letter)
end

to setposn :letter :thing
pprop "posn :letter :thing
end

to posn :letter
output gprop "posn :letter
end

(Each of these variables contains a list of screen coordinates for use with
to find the corresponding letter in the top part of the display.) Instead, the procedure

, which draws that section of the display, contains the instruction

is a data abstraction procedure:

When the variable contains the letter , the instruction has the same effect
as if it were

Similarly, the dots notation () isn’t used to examine the values of these
variables. Instead, is invoked explicitly:

Another point to consider is that I could have used a different approach altogether,
instead of using to piece together a variable name. For instance, I could have used
property lists:

As it happens, I first wrote this project in Atari 800 Logo, which didn’t have property list
primitives. So the question didn’t arise for me. In a version of Logo that does support
property lists, I see no reason to prefer one approach over the other. It’s entirely
a question of which is more efficient. Which is faster, searching through a list of 26 times
2 members (times 2 because each property has a name and a value) or concatenating
strings with to generate the name of a variable that can then be examined quickly?

Further Explorations

is

Further Explorations 223

if letterp thing :from [stop]

posn

posn setposn

Qbind

showclear

showcode

I’d have to experiment to find out. Alternatively, instead of using as the name of
a property list and the letters as names of properties, I could reverse the two roles. That
would give me more lists, but shorter lists.

What a stylistic issue is that using procedures like and to isolate
the storage mechanism from the rest of the program makes the latter easier to read.

I have three suggestions about how to extend this project. The first is to put in more
rules by which the program can make guesses automatically. For example, a three-letter
word that isn’t THE might be AND. Sequences of letters within a word can also be tallied;
TH is a common two-letter sequence, for example. A double letter in the cryptogram is
more likely to represent OO than HH.

If you have many rules in the program, there will be situations in which two rules
lead to contradictory guesses. One solution is just to try the most reliable rule first, and
ignore a new guess if it conflicts with an old one. (applies this strategy by means
of the instruction

which avoids adding a guess to the data base if the cryptogram letter is already bound to
a cleartext letter.)

Another solution would be to let the rules “vote” about guesses. If the program had
many rules, it might happen that three rules suggest that F represents E, while two rules
suggest that W represents E. In this case, three rules outvote two rules, and the program
would guess that F represents E.

The second direction for exploration in this program is to try to make it more
efficient. For example, every time you make a guess, is invoked to redisplay
the partially decoded text. Much of this redisplay is unnecessary, since most of the
guesses haven’t changed. How can you avoid the necessity to examine every letter of
the cryptogram text? One possibility would be to keep a list, for every letter in the text,
of the screen positions in which that letter appears. Then when a new guess is made,
the program could just type the corresponding cleartext letter at exactly those positions.
The cost of this technique would be a lot of storage space for the lists of positions, plus a
slower version of , which would have to create these position lists.

Program Listing

224 Chapter 11 Example: Cryptographer’s Helper

to crypto :text
make "text map "uppercase :text
make "fulltext :text
make "moretext []
make "textstack []
copydef "letterp "namep
forletters "A "Z "initvars
make "maxcount 0
initcount "single
initcount "triple
cleartext
histogram :text
redisplay "false
if or guess.single guess.triple [showclear :text]
parseloop
end

;; Initialization

to initcount :type
setlist. :type []
setcount. :type 0
end

to initvars :letter
setcnt :letter 0
make :letter "| |
setunbound :letter
end

The third direction for further exploration is to find out about more complicated
ciphers. For example, suppose you started with a simple substitution cipher, but every
time the letter A appeared in the cleartext you shifted the corresponding cryptogram
letters by one. That is, if E is initially represented by R, the first time an A appears you’d
start using S to represent E. The second time A appears you’d switch to T representing
E. And so on. The effect of this technique would be that a particular cleartext letter is
no longer represented by a single cryptogram letter all the way through. Therefore, you
can’t just count the frequencies of the cryptogram letters and assume that frequently-used
letters represent E and T. How could you possibly decipher such a message?

Program Listing 225

;; Histogram

to histogram :text
foreach :text [localmake "word filter "letterp ?

foreach :word "histlet
prepare.guess :word]

end

to histlet :letter
localmake "cnt 1+cnt :letter
setcursor list (index :letter) (nonneg 24-:cnt)
type :letter
setcnt :letter :cnt
if :maxcount < :cnt [make "maxcount :cnt]
end

;; Guessing letters

to prepare.guess :word
if equalp count :word 1 [tally "single :word]
if equalp count :word 3 [tally "triple :word]
end

to tally :type :word
localmake "countvar word :type :word
if not memberp :word list. :type ~

[setlist. :type fput :word list. :type make :countvar 0]
localmake "count (thing :countvar)+1
make :countvar :count
if :count > (count. :type) ~

[setcount. :type :count setmax. :type :word]
end

to guess.single
if emptyp (list. "single) [output "false]
if emptyp butfirst (list. "single) ~

[qbind first (list. "single) "A output "true]
qbind (max. "single) "A
qbind (ifelse equalp first (list. "single) (max. "single)

[last (list. "single)]
[first (list. "single)]) ~

"I
output "true
end

226 Chapter 11 Example: Cryptographer’s Helper

to guess.triple
if emptyp (list. "triple) [output "false]
if :maxcount < (3+cnt last (max. "triple)) ~

[qbind first (max. "triple) "T
qbind first butfirst (max. "triple) "H
qbind last (max. "triple) "E
output "true]

output "false
end

;; Keyboard commands

to parseloop
forever [parsekey uppercase readchar]
end

to parsekey :char
if :char = "@ [fullclear stop]
if :char = "+ [moretext stop]
if :char = "- [lesstext stop]
if not letterp :char [beep stop]
bind :char uppercase readchar
end

;; Keeping track of guesses

to bind :from :to
if not equalp :to "| | [if not letterp :to [beep stop]

if boundp :to [beep stop]]
if letterp thing :from [dark thing :from]
make :from :to
fixtop :from
if letterp :to [light :to]
showclear :text
end

to qbind :from :to
if letterp thing :from [stop]
make :from :to
fixtop :from
light :to
end

Program Listing 227

;; Maintaining the display

to redisplay :flag
cleartext
showtop
alphabet
showcode :text
if :flag [showclear :text]
end

;; Top section of display (letter counts and guesses)

to showtop
setcursor [0 0]
showrow "A "E
showrow "F "J
showrow "K "O
showrow "P "T
showrow "U "Y
showrow "Z "Z
end

to showrow :from :to
forletters :from :to [setposn ? cursor onetop ?]
print []
end

to onetop :letter
localmake "count cnt :letter
if :count = 0 [type word :letter "| | stop]
localmake "text (word :letter "- twocol :count "- thing :letter)
ifelse :maxcount < :count+3 [invtype :text] [type :text]
type "| |
end

to twocol :number
if :number > 9 [output :number]
output word 0 :number
end

to fixtop :letter
setcursor posn :letter
onetop :letter
end

228 Chapter 11 Example: Cryptographer’s Helper

;; Middle section of display (guessed cleartext letters)

to alphabet
setcursor [6 6]
forletters "A "Z [ifelse boundp ? [invtype ?] [type ?]]
end

to light :letter
setcursor list 6+(index :letter) 6
invtype :letter
setbound :letter
end

to dark :letter
setcursor list 6+(index :letter) 6
type :letter
setunbound :letter
end

;; Bottom section of display (coded text)

to showcode :text
make "moretext []
showcode1 8 0 :text
end

to showcode1 :row :col :text
if emptyp :text [make "moretext [] stop]
if :row > 22 [stop]
if and equalp :row 16 equalp :col 0 [make "moretext :text]
if (:col+count first :text) > 37 [showcode1 :row+2 0 :text stop]
codeword :row :col first :text
showcode1 :row (:col+1+count first :text) butfirst :text
end

to codeword :row :col :word
setcursor list :col :row
invtype :word
end

;; Bottom section of display (cleartext)

to showclear :text
showclear1 8 0 :text 2
end

Program Listing 229

to showclear1 :row :col :text :delta
if emptyp :text [stop]
if :row > 23 [stop]
if keyp [stop]
if (:col+count first :text) > 37 ~

[showclear1 :row+:delta 0 :text :delta stop]
clearword :row :col first :text
showclear1 :row (:col+1+count first :text) butfirst :text :delta
end

to clearword :row :col :word
setcursor list :col :row+1
foreach :word [ifelse letterp ? [type thing ?] [type ?]]
end

;; Windowing commands

to fullclear
cleartext
showclear1 0 0 :fulltext 1
print []
invtype [type any char to redisplay]
ignore readchar
redisplay "true
end

to moretext
if emptyp :moretext [beep stop]
push "textstack :text
make "text :moretext
redisplay "true
end

to lesstext
if emptyp :textstack [beep stop]
make "text pop "textstack
redisplay "true
end

;; Iteration tool for letters

to forletters :from :to :action
for [lettercode [ascii :from] [ascii :to]] ~

[apply :action (list char :lettercode)]
end

230 Chapter 11 Example: Cryptographer’s Helper

;; Data abstraction (constructors and selectors)

to setbound :letter
make word "bound :letter "true
end

to setunbound :letter
make word "bound :letter "false
end

to boundp :letter
output thing word "bound :letter
end

to setcnt :letter :thing
make (word "cnt :letter) :thing
end

to cnt :letter
output thing (word "cnt :letter)
end

to setposn :letter :thing
make (word "posn :letter) :thing
end

to posn :letter
output thing (word "posn :letter)
end

to setcount. :word :thing
make (word "count. :word) :thing
end

to count. :word
output thing (word "count. :word)
end

to setlist. :word :thing
make (word "list. :word) :thing
end

to list. :word
output thing (word "list. :word)
end

Program Listing 231

to setmax. :word :thing
make (word "max. :word) :thing
end

to max. :word
output thing (word "max. :word)
end

;; Miscellaneous helpers

to index :letter
output (ascii :letter)-(ascii "A)
end

to beep
tone 440 15
end

to invtype :text
type standout :text
end

to nonneg :number
output ifelse :number < 0 [0] [:number]
end

;; Sample cryptograms

make "cgram1 [Dzynufqyjulli, jpqhq ok yr hoxpj qnzeujory qceqwj xhrtoyx
zw oyjr u trhjptpolq trhln. oynqqn, rzh qceqkkogq eryeqhy tojp
whrvlqfk rd qnzeujory uj whqkqyj kofwli fquyk jpuj jpq |xhrty-zwk| nr
yrj pugq kzep u trhln. u nqeqyj qnzeujory uofk uj, whqwuhqk drh, u
frhq trhjptpolq dzjzhq, tojp u noddqhqyj erffzyoji kwohoj, noddqhqyj
reezwujoryk, uyn frhq hqul zjoloji jpuy ujjuoyoyx kjujzk uyn kuluhi.]

make "cgram2 [Lvo vfkp lfzj md opaxflimn iz lm gitokflo fnp zlkonblvon f
hmalv’z inilifliuo, fnp fl lvo zfyo liyo lm zoo lm il lvfl vo jnmwz
wvfl iz noxozzfkh lm xmco wilv lvo mnbminb fxliuilioz fnp xaglako md
zmxiolh, zm lvfl viz inilifliuo xfn to kogoufnl. il iz ftzakp lm
lvinj lvfl lviz lfzj xfn to fxxmycgizvop th zm yaxv zillinb in f tms
dfxinb dkmnl, yfnicagflinb zhytmgz fl lvo pikoxlimn md pizlfnl
fpyinizlkflmkz. lviz iz kflvok f wfh lm kobiyonl fnp tkfinwfzv.]

232 Chapter 11 Example: Cryptographer’s Helper

make "cgram3 [Pcodl hbdcx qxdrdlh yihcodr, hbd rzbiier gxd lih ziyqdhdlh
hi hdgzb gwhbdlhcz echdxgzf, xdgnclp gr g ydglr ia ecudxghcil gln
zwehcoghcil. gln c niwuh hbgh yirh ia wr jbi rdxciwref xdgn gln jxchd
hbd dlpecrb eglpwgpd dodx edgxldn ch uf hbd xiwhd ia "xwl, rqih, xwl"
hi rcegr ygxldx.]

make "cgram4 [Jw btn xnsgsyp ejke gfebbcg, dtyjbn fbccsksg, ryu fbccsksg
nswcsfpsu pes usgjns, wnssuba, ryu wtptns bw pes qbtyk, pesns zbtcu
ls yb knrujyk, yb psgpjyk svfsxp rg r psrfejyk aspebu, ryu yb
lcrfilbrnu dtykcsg. jy wrfp, zs rns ksppjyk cbfigpsx gfesutcjyk ryu
knrujyk pb pes xbjyp bw pbnptns.]

12 Macros

Localmake

invoked

make its caller

macros,

233

localmake "fred 87

local "fred
make "fred 87

for foreach
stop output

foreach foreach

run

for foreach

localmake

* Readers who are familiar with Lisp macros should take note that Logo macros do not prevent
argument evaluation.

I mentioned that the versions of and shown in Chapter 10 don’t work if
their instruction templates include or commands. The problem is that we
don’t want, say, to stop; we want the procedure that to stop.

What we need to fix this problem is a way for a subprocedure to carry
out some action. That is, we want something like , but the given expression should
be run in a different context. Berkeley Logo includes a mechanism, called to
allow this solution. As I write this in 1996, no other version of Logo has macros, although
this capability is commonly provided in most versions of Logo’s cousin, the programming
language Lisp.*

Before we fix and , and even before I explain in detail what a macro is,
I think it’s best to start with a simple but practical example. Throughout this book I’ve
been using a command called that creates a local variable and assigns it a
value. The instruction

is an abbreviation for the two instructions

trial

inside the
invocation of

234 Chapter 12 Macros

localmake

trial localmake fred
localmake localmake

trial localmake trial
fred

localmake
localmake

.macro to

to localmake :name :value ;; wrong!
local :name
make :name :value
end

to trial
localmake "fred 87
print :fred
end

?
fred has no value in trial
[print :fred]

.macro localmake :name :value
output (list "local (word "" :name) "make (word "" :name) :value)
end

to lmake :name :value
output (list "local (word "" :name) "make (word "" :name) :value)
end

Any version of Logo will allow those two separate instructions. It’s tempting to write a
procedure combining them:

What’s wrong with this solution? If you’re not sure, define as above and
try an example, like this:

When invokes , a local variable named is created
! That variable is then assigned the value 87. Then

returns to , and ’s local variables disappear. Back in , there is
no variable named .

Here’s the solution. If is an ordinary procedure, there’s no way it can
create a local variable in its caller. So we have to define as a special kind of
procedure:

The command is like , except that the procedure it defines is a macro instead
of an ordinary procedure. (It’s a Logo convention that advanced primitives that could
be confusing to beginners have names beginning with a period.)

It’s a little hard to read exactly what this procedure does, so for exploratory purposes
I’ll define an ordinary procedure with the same body:

show lmake "fred 87

evaluated

self-evaluating;

235

?
[local "fred make "fred 87]

erase "localmake

print "fred

local "fred

localmake "greeting "hello

lmake

localmake
localmake
localmake trial localmake

trial local
make localmake

localmake

(word "" :name)
localmake

localmake "fred

localmake fred
fred

trial

localmake

Localmake

As you see from the example, outputs a list containing the instructions that we
would like its caller to carry out.

The macro outputs the same list of instructions. But, because
is a macro, that output is then by the procedure that called

. If is run using the macro version of instead of the
ordinary procedure version that didn’t work, the effect is as if contained a
instruction and a instruction in place of the one invocation. (If you
defined the incorrect version of , you can say

and then the official version will be reloaded from the library the next time you use it.)

You may find the expression that appears twice in the definition
of confusing. At first glance, it seems that there is already a quotation mark
in the first input to , namely, . But don’t forget that that quotation
mark is not part of the word! For example, when you say

Logo doesn’t print a quotation mark. What the quotation mark means to Logo is “use
the word that follows as the value for this input, rather than taking that word as the name
of a procedure and invoking that procedure to find the input value.” In this example,
the first input to is the word itself, rather than the result of invoking a
procedure named . If we want to construct an instruction such as

based on this input, we must put a quotation mark in front of the word explicitly.

In fact, so far I’ve neglected to deal with the fact that a similar issue about quotation
may arise for the value being assigned to the variable. In the example I used
the value 87, a number, which is when a number is typed into Logo as
an expression, the number itself is the value of the expression. But if the value is a
non-numeric word, then a quotation mark must be used for it, too. The version of

shown so far would fail in a case like

Backquote

236 Chapter 12 Macros

hello

make
apply

""make

localmake
list word

[local "greeting make "greeting hello]

.macro localmake :name :value
output (list "local (quoted :name) "make (quoted :name) (quoted :value))
end

to quoted :thing
if numberp :thing [output :thing]
if listp :thing [output :thing]
output word "" :thing
end

.macro localmake :name :value
output (list "local (word "" :name) "apply ""make (list :name :value))
end

[local "NAME apply "make [NAME VALUE]]

because the macro would return the list

which, when evaluated, would try to invoke a procedure named instead of using
the word itself as the desired value.

The most straightforward solution is to write a procedure that will include a quotation
mark only when it’s needed:

A somewhat less obvious solution, but one I find more appealing, is to avoid the
entire issue of quotation by putting the inputs to in a list, which we can do by using

:

On the other hand, it may take some thinking to convince yourself that the in
that version is correct!

Even a simple macro like is very hard to read, and hard to write correctly,
because of all these invocations of and to build up a structure that’s partly
constant and partly variable. It would be nice if we could use a notation like

for an “almost constant” list in which only the words in capital letters would be replaced
by values of variables.

`
, run

:name fred :value
`

`
,@

run

backquote,

members

Backquote 237

show `[start ,[list "a "b] middle ,@[list "a "b] end]

`[local ,[word "" :name] apply "make [,[:name] ,[:value]]]

[local "fred apply "make [fred 87]]

to ` :backq.list
if emptyp :backq.list [output []]
if equalp first :backq.list ", ~

[output fput run first butfirst :backq.list
` butfirst butfirst :backq.list]

if equalp first :backq.list ",@ ~
[output sentence run first butfirst :backq.list

` butfirst butfirst :backq.list]
if wordp first :backq.list ~

[output fput first :backq.list ` butfirst :backq.list]
output fput ` first :backq.list ` butfirst :backq.list
end

?
[start [a b] middle a b end]

That particular notation can’t work, because in Logo the case of letters doesn’t
matter when a word is used as the name of something. But we do have something almost
as good. We can say

The first character in that line, before the opening bracket, is a which is
probably near the top left corner of your keyboard. To Logo, it’s just an ordinary
character, and happens to be the name of a procedure in the Berkeley Logo library. The
list that follows the backquote above is the input to the procedure.

What the procedure does with its input list is to make a copy, but wherever a word
containing only a comma () appears, what comes next must be a list, which is to
provide the value for that position in the copy. I’ve put the commas right next to the lists
that follow them, but this doesn’t matter; whenever Logo sees a bracket, it delimits the
words on both sides of the bracket, just as if there were spaces around the bracket.

So if has the value and has the value 87, then this sample
invocation of has the value

Like macros, backquote is a feature that Berkeley Logo borrows from Lisp. It’s not
hard to implement:

This procedure implements one feature I haven’t yet described. If the input to
contains the word (comma atsign), then the next member of the list must be a list,
which is as for comma, but the of the result are inserted in the output,
instead of the result as a whole. Here’s an example:

nested

238 Chapter 12 Macros

Implementing Iterative Commands

localmake

list word

for
foreach foreach

for

foreach

foreach

.macro localmake :name :value
output `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

foreach [a b c] [print ?]

[print "a print "b print "c]

[apply [print ?] [a] apply [print ?] [b] apply [print ?] [c]]

.macro foreach :data :template
output map.se [list "apply :template (list ?)] :data
end

Using backquote, we could rewrite a little more readably:

In practice, though, I have to admit that the Berkeley Logo library doesn’t use backquote
in its macro definitions because it’s noticeably slower than constructing the macro with
explicit calls to and .

By the way, this implementation of backquote isn’t as complex as some Lisp versions.
Most importantly, there is no provision for backquotes, that is, for an invocation of
backquote within the input to backquote. (Why would you want to do that? Think about
a macro whose job is to generate a definition for another macro.)

It’s time to see how macros can be used to implement iterative control structures like
and correctly. I’ll concentrate on because it’s simpler to implement,
but the same ideas apply equally well to .

Perhaps the most obvious approach is to have the macro output a long
instruction list in which the template is applied to each member of the list. That is, if we
say

then the macro should output the list

To achieve precisely this result we’d have to look through the template for question marks,
replacing each one with a possibly quoted datum. Instead it’ll be easier to generate the
uglier but equivalent instruction list

this way:

Implementing Iterative Commands 239

foreach

map.se

foreach
foreach

foreach

foreach

foreach

foreach [a b c] [print ?]

[apply [print ?] [a] foreach [b c] [print ?]]

.macro foreach :data :template
output `[apply ,[:template] [,[first :data]]

foreach ,[butfirst :data] ,[:template]]
end

.macro foreach :data :template
output (list "apply :template (list (first :data))

"foreach (butfirst :data) :template)
end

(To simplify the discussion, I’m writing a version of that only takes two
inputs. You’ll see in a moment that the implementation will be complicated by other
considerations, so I want to avoid unnecessary complexity now. At the end I’ll show you
the official, complete implementation.)

This version works correctly, and it’s elegantly written. We could stop here.
Unfortunately, this version is inefficient, for two reasons. First, it uses another higher
order procedure, , to construct the list of instructions to evaluate. Second, for a
large data input, we construct a very large instruction list, using lots of computer memory,
just so that we can evaluate the instructions once and throw the list away.

Another approach is to let the macro invoke itself recursively. This is a
little tricky; you’ll see that does not actually invoke itself within itself. Instead,
it constructs an instruction list that contains another use of . For example, the
instruction

will generate the instruction list

Here’s how to write that:

In this case the desired instruction list is long enough so that I’ve found it convenient to
use the backquote notation to express my intentions. If you prefer, you could say

This implementation (in either the backquote version or the explicit list constructor
version) avoids the possibility of constructing huge instruction lists; the constructed list
has only the computation for the first datum and a recursive that handles the
entire rest of the problem.

But this version is still slower than the non-macro implementation of given
in Chapter 10. Constructing an instruction list and then evaluating it is just a slower

240 Chapter 12 Macros

foreach
stop output local

stop output

catch
simpler.foreach1

foreach.done
simpler.foreach1

throw catch

.macro foreach :data :template
catch "foreach.catchtag

[output foreach.done runresult [foreach1 :data :template]]
output []
end

to foreach1 :data :template
if emptyp :data [throw "foreach.catchtag]
apply :template (list first :data)
.maybeoutput foreach1 butfirst :data :template
end

to foreach.done :foreach.result
if emptyp :foreach.result [output [stop]]
output list "output quoted first :foreach.result
end

.macro simpler.foreach :data :template
catch "foreach.catchtag

[this.stuff.never.invoked run [simpler.foreach1 :data :template]]
output []
end

to simpler.foreach1 :data :template
if emptyp :data [throw "foreach.catchtag]
apply :template (list first :data)
simpler.foreach1 butfirst :data :template
end

process than simply doing the necessary computation within itself. And that
earlier approach works fine unless the template involves , , or . We
could have our cake and eat it too if we could find a way to use the non-macro approach,
but notice when the template tries to stop its computation. This version is quite a bit
trickier than the ones we’ve seen until now:

To help you understand how this works, let’s first consider what happens if the
template does not include or . In that case, the program structure is
essentially this:

The instruction list that’s evaluated by the runs a smaller instruction list that
invokes . That procedure is expected to output a value, which
is then used as the input to some other computation (namely, in the
actual version). But when reaches its base case, it doesn’t output
anything; it s back to the instruction after the , which outputs an empty list.

Implementing Iterative Commands 241

local map [word "num ?] :numranks
foreach :numranks [make word "num ? 4]

foreach :numranks [localmake word "num ? 4]

foreach
foreach

simpler foreach
stop output foreach1

throw
.maybeoutput foreach1 foreach1

Foreach foreach1 runresult
Runresult run

runresult
runresult

runresult foreach.done
foreach

foreach.done stop
foreach stop

output foreach
output

stop output
local foreach1

foreach local
onegame

foreach

So all of the work of is done within these procedures; the macro outputs an
empty instruction list, which is evaluated by the caller of , but that evaluation
has no effect.

Now forget about the version and return to the actual . What if
the template carries out a or ? If that happens, will never reach
its base case, and will therefore not . It will either stop or output a value. The
use of in is what makes it possible for to function
either as a command (if it stops) or as an operation (if it outputs) without causing an
error when it invokes itself recursively. If the recursive invocation stops, so does the outer
invocation. If the recursive invocation outputs a value, the outer invocation outputs that
value.

invoked using Berkeley Logo’s primitive opera-
tion. is just like , except that it always outputs a value, whether or
not the computation that it runs produces a value. If so, then outputs a
one-member list containing the value. If not, then outputs an empty list.

The output from is used as input to , whose job is to
construct an instruction list as the overall output from the macro. If the input
to is empty, that means that the template included a , and so

should generate a instruction to be evaluated by its caller. If the input
isn’t empty, then the template included an instruction, and should
generate an instruction as its return value.

This version is quite fast, and handles and correctly. It does not,
however, handle correctly; the variable will be local to , not to the
caller. It was hard to decide which version to use in the Berkeley Logo library, but slowing
down every use of seemed too high a price to pay for . That’s why,
for example, procedure in the solitaire program of Chapter 4 includes the
instructions

instead of the more natural

That single instruction would work with the first implementation of in this
chapter, but doesn’t work with the actual Berkeley Logo implementation!

Debugging Macros

evaluated,

242 Chapter 12 Macros

foreach show

stop foreach
foreach

macroexpand

foreach
show

trace "foreach
foreach [a b c] [print ?]

foreach [a b 7 c] [if numberp ? [stop] print ?]

show macroexpand [foreach [a b 7 c] [if numberp ? [stop] print ?]]

show foreach ...

?
?
(foreach [a b c] [print ?])
a
b
c
foreach outputs []
?
(foreach [a b 7 c] [if numberp ? [stop] print ?])
a
b
foreach outputs [stop]
Can only use stop inside a procedure

?
a
b
[stop]

It’s easy to make mistakes when writing a macro, because it’s hard to keep straight what
has to be quoted and what doesn’t, for example. And it’s hard to debug a macro, because
you can’t easily see the instruction list that it outputs. You can’t say

because the output from is not passed on to .

One solution is to trace the macro.

In this case, I got an error message because, just as the message says, it doesn’t make sense
to use in a template unless this invocation of is an instruction inside a
procedure definition. Here I invoked directly at the Logo prompt.

The Berkeley Logo library provides another solution, a operation
that takes as its input a Logo expression beginning with the name of a macro. It outputs
the expression that the macro would output, without causing that expression to be
evaluated:

This time I didn’t get an error message, because the instruction list that outputs
wasn’t actually evaluated; it became the input to , which is why it appears at the end
of the example.

The Real Thing

The Real Thing 243

Macroexpand define text

.defmacro
define
text

macrop
true

foreach

to macroexpand :expression
define "temporary.macroexpand.procedure text first :expression
...
end

.macro foreach [:foreach.inputs] 2
catch "foreach.catchtag ~

[output foreach.done runresult [foreach1 butlast :foreach.inputs
last :foreach.inputs 1]]

output []
end

to foreach1 :template.lists :foreach.template :template.number
if emptyp first :template.lists [throw "foreach.catchtag]
apply :foreach.template firsts :template.lists
.maybeoutput foreach1 butfirsts :template.lists ~

:foreach.template :template.number+1
end

to foreach.done :foreach.result
if emptyp :foreach.result [output [stop]]
output list "output quoted first :foreach.result
end

works by using and to define, temporarily, a new
procedure that’s just like the macro it wants to expand, but an ordinary procedure
instead of a macro:

You might enjoy filling in the rest of this procedure, as an exercise in advanced Logo
programming, before you read the version in the library.

(What if you want to do the opposite, defining a macro with the same text as an
ordinary procedure? Berkeley Logo includes a command, which is just like

except that the resulting procedure is a macro. We don’t need two versions of
, because the text of a macro looks just like the text of an ordinary procedure. To

tell the difference, there is a primitive predicate that takes a word as input, and
outputs if that word is the name of a macro.)

Here is the complete version of , combining the macro structure developed in
this chapter with the full template flexibility from Chapter 10.

for

244 Chapter 12 Macros

And here, without any discussion, is the actual library version of . This, too,
combines the ideas of this chapter with those of Chapter 10.

.macro for :for.values :for.instr
localmake "for.var first :for.values
localmake "for.initial run first butfirst :for.values
localmake "for.final run item 3 :for.values
localmake "for.step forstep
localmake "for.tester (ifelse :for.step < 0

[[(thing :for.var) < :for.final]]
[[(thing :for.var) > :for.final]])

local :for.var
catch "for.catchtag [output for.done runresult [forloop :for.initial]]
output []
end

to forloop :for.initial
make :for.var :for.initial
if run :for.tester [throw "for.catchtag]
run :for.instr
.maybeoutput forloop ((thing :for.var) + :for.step)
end

to for.done :for.result
if emptyp :for.result [output [stop]]
output list "output quoted first :for.result
end

to forstep
if equalp count :for.values 4 [output run last :for.values]
output ifelse :for.initial > :for.final [-1] [1]
end

plot

steady-state

periodic

245

13 Example: Fourier Series Plotter

Program file for this chapter:

A particular musical note (middle C, say) played on a piano and played on a violin sound
similar in some ways and different in other ways. Two different notes played on the violin
also have similarities and differences. How do you hear which note is being played, and
how do you know what instrument you’re listening to?

To do justice to these questions would fill up an entire book. For example, a piano
produces sound when a felt-covered wooden hammer hits metal wires, or strings. Each
piano key controls one hammer, but each hammer may hit from one to three strings. It
turns out that the strings for a particular note are not tuned to exactly the same pitch.
Part of the richness of the piano’s sound comes from the interplay of slightly different
pitches making up the same note.

Another contributing factor to the recognition of different instruments is their
differences in attack and decay. Does the sound of a note start abruptly, or gradually?
The differences are not only a matter of loudness, though. A few instruments start out
each note with a very pure, simple tone like a tuning fork. Gradually, the tone becomes
more complex until it finally reaches the timbre you associate with the instrument. But a
bowed violin, a more typical example, starts out each note almost as a burst of pure noise,
as the bow hits the strings, and gradually mellows into the sound of a particular note. If
you are experimentally inclined, try tape recording the same note as played by several
instruments. Then cut out the beginnings and ends of the notes, and retain only the
middle section. Play these to people and see how well they can identify the instruments,
compared to their ability to identify the complete recorded notes.

For this chapter, though, I’m going to ignore these complications, and concentrate
on the differences in the central part of a note as played by a particular
instrument. What all such steady musical sounds have in common is that they are largely

. This means that if you graph the air pressure produced by the instrument over

fundamental

frequency

waveform.

246 Chapter 13 Example: Fourier Series Plotter

time (or the voltage when the sound is represented electrically in a hifi system), the same
pattern of high and low pressures repeats again and again. Here is an example. In this
picture, the motion of your eye from left to right represents the passing of time.

The height of the squiggle on the page, at any particular moment, represents the sound
pressure at that moment. So what this picture shows is that there are many small up-and-
down oscillations superimposed on one large, regular up-and-down motion. (This one
large oscillation is called the frequency.) You can see that the entire picture
consists of five repetitions of a smaller squiggle with just one of the large oscillations.

From what I’ve said about oscillations, you might get the impression that this is a
picture of something like a foghorn or siren, in which you can hear an alternation of loud
and soft moments. But this is actually the picture of what sounds like a perfectly steady
tone. The entire width of the page represents about one one-hundredth of a second.
There are a few hundred repetitions of the single large up-and-down cycle in each second
of a musical note. The exact number of repetitions is the of the note, and is the
same for every instrument. For example, the note A above middle C has a pitch of 440
cycles per second, or 440 Hertz.

All instruments playing A above middle C will have a picture with the same funda-
mental frequency of 440 Hertz. What is different from one instrument to another is the
exact shape of the squiggle. (By the way, the technical name for a squiggle is a
You can see the waveform for a note by connecting a microphone to an oscilloscope, a
device that shows the waveform on a TV-like screen.)

Here is a picture of the simplest, purest possible tone:

to circle
fd 1
rt 1
circle
end

sine wave.

Chapter 13 Example: Fourier Series Plotter 247

This is the waveform you’d get from an ideal tuning fork, with no impurities or bumps.
It is called a This particular kind of oscillation turns up in many situations,
not just musical sounds. For example, suppose you write a program that starts a turtle
moving in a circle forever.

Think about the motion of the turtle, and concentrate only on its vertical position on the
screen. Never mind its motion from left to right. The up-and-down part of the turtle’s
motion over time looks just like this sine wave.

This says more than simply that the turtle alternates moving up and down. For
example, the turtle’s vertical motion might have looked like this over time:

any

Fourier series.

amplitude

harmonics overtones

248 Chapter 13 Example: Fourier Series Plotter

If this were the picture of the turtle’s motion, it would mean that the turtle’s vertical
position climbed at a steady rate until it reached the top of the circle, then abruptly
turned around and started down again. But in fact what happens is that the height of the
turtle changes most quickly when the turtle is near the “Equator” of its circle. The turtle’s
vertical speed gets less and less as the turtle gets near the “poles.” This speed change
corresponds to the gradual flattening of the sine wave near the top and bottom. (You
may find it confusing when I say that the turtle’s vertical motion slows down, because
the turtle’s speed doesn’t seem to change as it draws. But what happens is that near the
Equator, the turtle’s speed is mostly vertical; near the poles, its speed is mostly horizontal.
We aren’t thinking about the horizontal aspect of its motion right now.)

What makes sine waves most important, though, is that periodic waveform can
be analyzed as the sum of a bunch of sine waves of different frequencies. (Sometimes
an infinite number of since waves must be added together.) The frequencies of the
sine waves will always be multiples of the fundamental frequency. This important
mathematical result was discovered by the French mathematician Jean-Baptiste-Joseph
Fourier (1768–1830). The representation of a mathematical function as a sum of sine
waves is called a

For example, when a violin plays A above middle C, the waveform that results will
include a sine wave with frequency 440 Hertz, one with frequency 880 Hertz, one at 1320
Hertz, and so on. Not all of these contribute equally to the complete waveform. The

of each sine wave (the amount of swing, or the vertical distance in the picture)
will be different for each. Typically, the fundamental frequency has the largest amplitude,
and the others (which are called or) have smaller amplitudes. The
precise amplitudes of each harmonic are what determine the steady-state timbre of a
particular instrument.

Square Waves

square wave

Square Waves 249

Two traditional musical instruments, the clarinet and the pipe organ, share a curious
characteristic: their Fourier series contain only odd harmonics. In other words, if a
clarinet is playing A above middle C, the waveform includes frequencies of 440 Hertz,
1320 Hertz (3 times 440), 2200 Hertz (5 times 440), and so on. But the waveform does
not include frequencies of 880 Hertz (2 times 440), 1760 Hertz (4 times 440), and so on.
(I’m oversimplifying a bit in the case of the pipe organ. What I’ve said about only odd
harmonics is true about each pipe, but the organ can be set up to combine several pipes
in order to include even harmonics of a note.)

In recent times, a third musical instrument has come to share this peculiar Fourier
series: the computer. (Perhaps you were wondering where computers come into this.)
Today there are computer-controlled musical instruments that can generate any possible
sound. Musicians have even used computers to create new instrument timbres that
are not possible with ordinary instruments. But the particular timbre that most people
associate with computer music is the one produced by the simplest possible computer
sound generator. Instead of a steady oscillation in sound pressure, this simple device can
only be on or off at a given moment. The computer produces sound by flipping the
device from on to off and back at a particular rate. Such a device produces a ,
like this:

No sound that occurs in nature has a waveform that turns corners so abruptly. But what
is “natural” in nature isn’t necessarily what’s “natural” for a computer. For many years,
computer-generated music invariably meant square waves except in very fancy music
research centers.

More recently, new integrated circuit technology has made it relatively inexpensive
to equip computers with “music chips” that generate sine waves. The stereotyped sound
of computer music is becoming uncommon. But I still find square waves fascinating for
several reasons.

⋅ ⋅ ⋅

ringing

quite

partial series

removing
more

f

fx fx fx

250 Chapter 13 Example: Fourier Series Plotter

One place where square waves are still used is in the hifi magazines, in their tests
of amplifiers. The testing laboratories feed a square wave into an amplifier, and show
oscilloscope pictures of the waveform going into the amp and the waveform coming out.
Here is an example:

The oscillation that is visible in the output near the corners of the input is called .
A lot of ringing indicates that the amplifier doesn’t have good high-frequency response.

Here is why a square wave is a good test of high frequencies: The Fourier series
corresponding to the square wave includes an infinite number of odd-harmonic sine wave
components. In other words, a perfect square wave includes infinitely high frequencies.
(In practice, the input picture isn’t a perfect square wave. You can see that the vertical
segments aren’t truly vertical, for example.) No amplifier can reproduce infinitely
high frequencies faithfully. The result is that the output from the amplifier includes only
some of the harmonics that make up the input. It turns out that such a ,
with relatively few of the harmonics included, produces a waveform in which the ringing
phenomenon at the corners is clearly visible.

If you think about it, that’s a bit unexpected. Normally, the more harmonics, the
more complicated the waveform. For example, the simplest waveform is the one with
only the fundamental, and no added harmonics. Yet, harmonics from the
square wave produces a complicated picture. I like paradoxes like that. I wanted to
write a computer program to help me understand this one.

Before you can look into the square wave in detail, you have to know not only the
fact that it uses odd harmonics, but also the amplitude of each harmonic. A square wave
with fundamental frequency has this formula:

sin()
1

+
sin(3)

3
+

sin(5)
5

+

plot 1

plot 5

Square Waves 251

The dots at the end indicate that this series goes on forever. The amplitude of each sine
wave is the reciprocal of the harmonic number (one divided by the number).

This project draws pictures of waveforms containing some number of terms of this
series. (Each sine wave is called a term.) The program allows many different ways of
controlling exactly what is drawn.

To start with something very simple, try this instruction:

The effect of this command is to draw one cycle of a pure sine wave:

This is the first term of the series for the square wave. Now try this:

plot

plot 23

plot 45

252 Chapter 13 Example: Fourier Series Plotter

The input to is the harmonic number of the highest harmonic. In this example,
we’ve drawn three sine waves added together: the fundamental, third harmonic, and
fifth harmonic.

To see a plot looking somewhat more like the pictures in the amplifier tests, try

This contains the first 12 odd harmonics. (Remember to use an odd number as input,
if you want to see something that looks like a square wave.) You can see that the result
still includes some oscillation in the horizontal sections, but does have an overall square
shape.

A mediocre hifi amp has a frequency response that is good to about 20,000 Hertz.
This is about the 45th harmonic of 440 Hertz. To see how A above middle C would come
out on such an amplifier, try

plot

Square Waves 253

plot 77

plot [maxharm 77 yscale 140 deltax 1]

There is still some ringing near the corners, but the middle of the horizontal segment is
starting to look really flat. A better amplifier might be good to 30,000 Hertz. To see how
that would look, try

(The drawing of the picture takes longer when you use a larger input to , because
the program has to calculate more terms of the series.)

So far, we have only changed one of the possible parameters controlling the
waveform, namely the highest harmonic. The program allows you to control several
other elements of the picture. For example, try this:

∆

plot [11 cycles 5]

names values.

default

254 Chapter 13 Example: Fourier Series Plotter

Plot

Maxharm
Yscale

yscale deltax

Deltax

Cycles cycles 5

maxharm
maxharm

Plot

deltax

takes one input, but this time the input is a list instead of a single number. The
members of the list are used as sort of “sub-inputs.” The odd-numbered members are the

of parameters, for which the even-numbered members provide

stands for “maximum harmonic”; it is the parameter you were setting when
you used a single number as the input. is an adjustment for the height of the plot.
(To “scale” a bunch of numbers means to multiply all of them by some constant value,
the “scale factor.”) You may have noticed that as the number of harmonics has increased,
the pictures have been getting smaller in the vertical direction; by increasing the value of

we can expand the height of the plot to show more detail. Similarly,
allows us to show more horizontal detail, not by widening the picture but by computing
the value for every dot. Ordinarily, the program saves time by calculating every second
dot. This approximation is usually good enough, but sometimes not. (means
“change in X.” Delta is the name of the Greek letter D (), which mathematicians use to
represent a small change in something.)

Here’s another example:

indicates the number of complete cycles you want to see. By saying
in this example, I drew a picture like the ones near the beginning of this chapter, with
five repetitions of the fundamental oscillation.

Notice also that we didn’t have to say . If a number appears in the input
list where a name should be, it’s automatically assigned to .

allows you to specify any of six parameters. Each parameter has a value,
the value that is used if you don’t say anything about it. For example, the default value
for is 2. Here are all the parameters:

plot 6

name default purpose

sawtooth

Square Waves 255

maxharm
deltax
yscale
cycles
xrange
skip

maxharm yscale deltax cycles

Xrange

Xrange plot

Skip

skip

maxharm

5 highest harmonic number included in series
2 number of turtle steps skipped between calculations

75 vertical motion is multiplied by this number
1 number of cycles of fundamental shown

230 highest X coordinate allowed
2 number of harmonics skipped between terms

You’ve already seen what , , , and are for. Now I’ll
explain the others.

is mainly changed when moving the program from one computer to another.
Each computer allows a particular number of turtle steps to fit on the screen in each
dimension, horizontal and vertical. is the largest horizontal position is
allowed to use. This is set a little below the largest possible X coordinate, just to make
sure that there is no problem with wrapping around the screen.

is the number of harmonics skipped between terms. To get odd harmonics,
which we need for the square wave, we have to skip by 2 each time, from 1 to 3, from 3 to
5, and so on. Different values for will give very different shapes.

For example, if you are at all adventurous, you must have tried an even value of
a while ago, getting a result like this:

What you see is two cycles of an approximation to another shape, the :

plot 6
plot

plot [3 skip 1]

skip
plot [16 skip 3]

all twice the fundamental frequency

256 Chapter 13 Example: Fourier Series Plotter

Why two cycles? Well, uses the second, fourth, and sixth harmonics. Supposing
that the fundamental frequency is 440 again, this means that added frequencies of
880, 1760, and 2640 Hertz. But these are also the fundamental, second harmonic, and
third harmonic of 880 Hertz. By choosing only even harmonics, you’ve essentially chosen

the harmonics of you had in mind. It is this doubling of
the fundamental frequency that produces two cycles on the screen. You could get one
cycle of the same waveform by saying :

You can see much more bizarre waveforms by using other values of . The best
one I’ve found is :

Keyword Inputs

keyword

positional

perfectly

Keyword Inputs 257

maxharm
maxharm

plot
plot

item

keyword Keyword

plot keyword

keyword

keyword

Keyword
keyword

plot 5 2 75 1 230 2

print item [index 2 list [vanilla chocolate strawberry]]

[maxharm 5 deltax 2 yscale 75 cycles 1 xrange 230 skip 2]

I chose a of 16 because it includes the fundamental plus five additional
harmonics (4, 7, 10, 13, 16). If I’d made 15 or 17, I wouldn’t have included
the fundamental.

There are two different points of interest about this project. One is the whole business of
waveforms and Fourier series. The second is the use of inputs, which is the name
for this system of giving information to . The more usual style of Logo programming
would have been to make a procedure with six inputs. To draw a default graph,
you would then have had to say

Since most of the time you want to use the default values for most of the inputs, all this
typing would be an annoyance. It would also be easy to make a mistake about the correct
order of the inputs. (This more usual Logo technique is called inputs.) The
combination of many necessary inputs with standard values for most of them makes the
keyword technique appropriate here. It isn’t always appropriate. You wouldn’t want to
have to say

because you have no trouble remembering which input to is which, and you always
want to provide both of them.

The procedure that interprets the keyword inputs is called . was
written to be a general tool, not limited to this particular program. It takes two inputs.
The first is the input that you, the user, provide. The second is a list of defaults. When

invokes , the second input is this:

This input tells the names of all the keyword inputs as well as their default
values. It’s in the same form as the actual input you give (a list of alternating names and
values), and in fact uses a single subprocedure, first to process the default list
and then to process your input.

is actually not general because it uses the assumption that all the
values it gets are numeric. The virtue of this assumption is that it allows to

Making the Variables Local

258 Chapter 13 Example: Fourier Series Plotter

maxharm
maxharm

keyword

plot maxharm

:xrange

:deltax
:deltax

keyword

keyword

Keyword plot 5
maxharm

to keyword :inputs :defaults
if or (wordp :inputs) (numberp first :inputs) ~

[make "inputs sentence (first :defaults) :inputs]
setup.values :defaults
setup.values :inputs
end

to setup.values :list
if emptyp :list [stop]
make first :list first butfirst :list
setup.values butfirst butfirst :list
end

recognize a number without a name as implicitly referring to the keyword.
(The name is not built into the procedure. Instead, the first name in the list of
default values is used.) To use in a context in which non-numeric words could
be values as well as names, this assumption would have to be removed.

I didn’t have keyword inputs in mind from the beginning. When I started working on
this project, the only input to was what I now call , the highest harmonic
number to include. All the other numbers were “wired in”; if I wanted to change
something like what is now called , I’d edit all the procedures and change the
numbers in the editor.

Editing all the procedures wasn’t too difficult, since without the keyword-processing
procedures everything fits in a single screenful. Changing the resolution (what is now

) was a bit annoying, since I had to edit three different parts of the program.
(You can see that appears three times in the final version.) When I finally got
tired of that editing process, I decided to use keyword inputs.

The job of is to create variables, one for each keyword, and assign a value to
each variable. If the user provides a value for a particular keyword, that’s the value to
use; if not, the default value is used.

When I first did this project, I wrote a version of that creates global
variables for the keywords:

checks for the special cases of a single number (as in) or a list beginning
with a number; in either case, a new list is made with the first keyword () inserted
before the number. Then the default values are assigned to all the keyword variables, and

Indirect Assignment

Indirect Assignment 259

local filter [not numberp ?] :defaults

plot
plot

plot keyword

keyword

keyword plot
localmake

keyword

plot keyword
setup.values

to plot :inputs
local [maxharm deltax yscale cycles xrange skip]
keyword :inputs [maxharm 5 deltax 2 yscale 75 cycles 1 xrange 230 skip 2]
...

to keyword :inputs :defaults

if or (wordp :inputs) (numberp first :inputs) ~
[make "inputs sentence (first :defaults) :inputs]

setup.values :defaults
setup.values :inputs
end

.macro keyword :inputs :defaults
if or (wordp :inputs) (numberp first :inputs) ~

[make "inputs sentence (first :defaults) :inputs]
output ‘[local ,[filter [not numberp ?] :defaults]

setup.values ,[:defaults]
setup.values ,[:inputs]]

end

finally the user’s values are assigned to whatever keywords the user provided, replacing
the defaults.

Since these keyword variables are only used within the program, it would be
cleaner to make them local to , just as ordinary positional inputs are automatically
local to a procedure. I could have had take care of this before calling :

but I thought it would be unaesthetic to have to type the names twice! What I really want
is for to be able to make the variables local. But I can’t just say

because that would make the variables local to itself, not to its caller, .
This is the same problem I had in writing in Chapter 12, and the solution is
the same: Make a macro!

Now it will be , instead of , that creates the local variables and calls
.

The actual assignment of values to the keywords is a good illustration of indirect
assignment in Logo. The instruction that does the assignment is this:

⋅ ⋅ ⋅

make

Numeric Precision

make first :list first butfirst :list

fx fx fx

significant digits

would

260 Chapter 13 Example: Fourier Series Plotter

Usually the first input to is an explicit quoted word, but in this program the
variable names are computed, not explicit. This technique would be impossible in most
programming languages.

It’s important that the program computes the Fourier series starting with the higher
harmonic numbers, adding in the fundamental term last. Recall the formula for the
series:

sin()
1

+
sin(3)

3
+

sin(5)
5

+

The value of the sine function for each term is divided by the harmonic number of the
term. In general, this means that the terms for higher numbered harmonics contribute
smaller values to the sum.

Theoretically, it shouldn’t matter in what order you add up a bunch of numbers. But
computers carry out numeric computations with only a limited precision. Usually there
is a particular number of that the computer can handle. It doesn’t matter
how big or small the number is. The numbers 1234, 1.234, and 0.00000001234 all have
four significant digits.

To take a slightly oversimplified case, suppose your computer can handle six
significant digits. Suppose that the value of the fundamental term is exactly 1. Then
the computer could add 0.00001 to that 1 and get 1.00001 as the result. But if you tried
to add 0.000001 to 1, the result (1.000001) would require seven significant digits. The
computer would round this off to exactly 1.

Now suppose that the 23rd term in some series is 0.000004, the 24th term is 0.000003,
and the 25th is 0.000002. (I just made up these values, but the general idea that they’d be
quite small is true.) Suppose we are adding the terms from left to right in the formula,
and the sum of the first 22 terms is 2.73. Adding the 23rd term would make it 2.730004,
which is too many significant digits. This sum would be rounded off to 2.73 again.
Similarly, the 24th and 25th terms would make absolutely no difference to the result.

But now suppose we add up the terms from right to left. The sum of the 25th and
24th terms is 0.000005, and adding in the 23rd term give 0.000009. If we were to add this
to 2.73 the result would be 2.730009. Although this is still too many significant digits, the
computer would round it off to 2.73001. The three terms at the end make a small
difference in the result.

Dynamic Scope

operation

Dynamic Scope 261

series
x

make
for map

foreach

accumulate

:xscale
:x

X plot term

to series
localmake "result 0
for [harmonic :maxharm 1 [-:skip]] ~

[make "result :result + (term :harmonic)]
output :result
end

to series
output accumulate "sum [harmonic :maxharm 1 [-:skip]] [term :harmonic]
end

to term :harmonic
output (sin :xscale * :harmonic * :x) / :harmonic
end

In the square wave series, the successive terms get smaller quite slowly. You’d have to
add very many terms before the problem I’m describing would really be important. But
other series have terms that get smaller quickly, so that even for a small number of terms
it’s important to add in the smaller terms before the larger ones.

By the way, the procedure that computes the value of the series for some
particular value is written recursively, but its task is iterative. I could have said

but the use of to change the value of a variable repeatedly isn’t very good Logo
style. What I really want is an corresponding to , analogous to as the
operation corresponding to . Then I could say

You might enjoy using the techniques of Chapter 10 to implement .

One final point about the programming style of this project has to do with the use of
Logo’s dynamic scope. Every procedure has access to the variables of its superprocedures,
and this project takes advantage of the fact. Many people think it’s better style if every
procedure is given all the information it needs as inputs. I didn’t follow that rule in this
project because, as I’ve said, many of the variables were invented late in the development
process, and I did as little rewriting as possible.

For example, here is the procedure that computes one term of the Fourier series:

Of the three numbers that are used in this computation, is constant throughout
the program, so it’s not unreasonable for it to be used globally. But changes for every
point. is, in fact, a local variable, but it’s local to rather than to .

Further Explorations

its

262 Chapter 13 Example: Fourier Series Plotter

x for
term plot

x term
term x

term term
series series

series
plot

:harmonic

to term :x :harmonic :xscale
output (sin :xscale * :harmonic * :x) / :harmonic
end

to series :x :harmonic :skip :xscale
if :harmonic < 1 [output 0]
output (term :harmonic)+(series :harmonic-:skip)
end

Why does it matter? One reason is that people find it easier to understand a program
if it’s made very clear where each variable gets its value. In this example, it’s easy to miss
the fact that is the index variable in a loop. The second reason is that as written,

can be used only within . If we wanted to compute the value of a Fourier
series for some reason other than plotting it, we couldn’t easily use the same procedures.

I decided to leave the program as it is, instead of cleaning it up for publication, so
that you could see an example of a style that, after all, Logo makes possible by choosing to
use dynamic scope. In some ways, this style is simpler than one in which each procedure
would have several more inputs. You can decide for yourself if you find it easier or harder
to read the program this way, compared to the officially approved style:

In this version of the procedure, I’ve made the first input to . This seems most
natural to me, considering that ’s job is to compute an algebraic function of . The
argument to a function is very naturally represented in a computer program as the input
to a procedure.

All I’ve changed in itself is the title line. But of course the invocation of ,
which is in the procedure , must be changed also. And to be consistent,
should get needed values as explicit inputs, too:

We’re up to four inputs, and it’d be easy to get them out of order when is
invoked by . You can see why “inheriting” variables from a procedure’s caller can
simplify its use.

The fact that each term in the series is divided by limits this program to a
particular family of waveforms, the family that includes square waves and sawtooth waves.
In general, real musical instruments don’t have such regularity in the extent to which
each term contributes to the sum. For example, I started by saying that clarinets and

Further Explorations 263

maxharm skip
timbre

plot 5

timbre

term

[1 0 0.3333 0 0.2]

to term :harmonic
op (sin :xscale * :harmonic * :x)/(:harmonic * :harmonic)
end

pipe organs are made of odd harmonics, just as square waves are. But clarinets don’t
sound like organs, and neither sound like square waves. There is a family resemblance,
but there are definite differences too. The differences are due to the different “weights”
that each instrument gives to each harmonic.

Instead of the and variables in the program as I’ve written it, you
could have an input called (a French word for the characteristic sound of an
instrument, pronounced sort of like “tamper” with a B instead of the P) that would be a
list of weighting factors. The equivalent of would be this timbre list:

This list says that the fundamental has a weight of 1, the second harmonic has a weight
of 0 (so it’s not used at all), the third harmonic has a weight of 1/3, and so on.

The version of the program would be perfectly general. You could create
any instrument, if you could find the right weighting factors. But so much generality
makes it hard to know where to begin exploring all the possibilities. Another thing you
could do would be to try different kinds of formulas for weighting factors. For example,
you could write this new version of :

What waveforms would result from this change?

If you’re really interested in computer-generated music, you’ll want to hear what
these waveforms sound like. Unfortunately, it’s hard to do that with the standard sound
generators in personal computers, which allow little or no control of timbre. But if you
have one of the computer-controllable musical instruments that have become available
recently, you may be able to program them to reproduce the timbre of your choice.

On the other hand, you can hear the effect of different waveforms without a
computer if you visit the Exploratorium in San Francisco, the world’s best museum.
Among their exhibits are several that let you experiment with different ways of generating
sounds. One of these exhibits is a machine that does audibly the same thing we’ve been
doing graphically, adding up selected harmonics of a fundamental pitch. If you don’t
live near San Francisco, the Exploratorium is well worth the trip, no matter how far away
you are!

xrange

Program Listing

264 Chapter 13 Example: Fourier Series Plotter

As mentioned in the text, the appropriate value of may be different depending
on which computer you’re using.

to plot :inputs
keyword :inputs ~

[maxharm 5 deltax 2 yscale 75 cycles 1 xrange 230 skip 2]
localmake "xscale :cycles*180/:xrange
splitscreen clearscreen hideturtle penup
setpos list (-:xrange) 0
pendown
for [x :deltax [2*:xrange] :deltax] ~

[setpos list (xcor+:deltax) (:yscale * series :maxharm)]
end

;; Compute the Fourier series values

to series :harmonic
if :harmonic < 1 [output 0]
output (term :harmonic)+(series :harmonic-:skip)
end

to term :harmonic
output (sin :xscale * :harmonic * :x) / :harmonic
end

;; Handle keyword inputs

.macro keyword :inputs :defaults
if or (wordp :inputs) (numberp first :inputs) ~

[make "inputs sentence (first :defaults) :inputs]
output `[local ,[filter [not numberp ?] :defaults]

setup.values ,[:defaults]
setup.values ,[:inputs]]

end

to setup.values :list
if emptyp :list [stop]
make first :list first butfirst :list
setup.values butfirst butfirst :list
end

Appendices



267

Entering and Leaving Logo

Berkeley Logo Reference Manual

logo

c:\ucblogo
ucblogo bl

logo UCB Logo

bye

bye

Copyright 1993 by the Regents of the University of California

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The process to start Logo depends on your operating system:

Unix Type the word to the shell. (The directory in which you’ve installed Logo must be in
your path.)

DOS Change directories to the one containing Logo (probably). Then type
for the large memory version, or for the 640K version.

Mac Double-click on the icon within the folder.

To leave Logo, enter the command .

Under Unix or DOS, if you include one or more filenames on the command line when
starting Logo, those files will be loaded before the interpreter starts reading commands from your
terminal. If you load a file that executes some program that includes a command, Logo will
run that program and exit. You can therefore write standalone programs in Logo and run them
with shell/batch scripts. To support this technique, Logo does not print its usual welcoming and
parting messages if you give file arguments to the logo command.

(? 37)

Tokenization

268 Berkeley Logo Reference Manual

throw "toplevel
pause

\

LOGOLIB

proc.lg proc

proc .lg

end true false

[2+3]

run if

+-*/=<>

?37

?

readlist readword
~ Readword

readlist

If you type your interrupt character (see table below) Logo will stop what it’s doing and return
to toplevel, as if you did . If you type your quit character Logo will pause as if
you did .

Unix DOS Mac

toplevel usually ctrl-C ctrl-Q command-. (period)
pause usually ctrl- ctrl-W command-, (comma)

If you have an environment variable called whose value is the name of a directory,
then Logo will use that directory instead of the default library. If you invoke a procedure that has
not been defined, Logo first looks for a file in the current directory named where
is the procedure name in lower case letters. If such a file exists, Logo loads that file. If the missing
procedure is still undefined, or if there is no such file, Logo then looks in the library directory for
a file named (no) and, if it exists, loads it. If neither file contains a definition for the
procedure, then Logo signals an error. Several procedures that are primitive in most versions of
Logo are included in the default library, so if you use a different library you may want to include
some or all of the default library in it.

Names of procedures, variables, and property lists are case-insensitive. So are the special words
, , and . Case of letters is preserved in everything you type, however.

Within square brackets, words are delimited only by spaces and square brackets. is a list
containing one word. Note, however, that the Logo primitives that interpret such a list as a Logo
instruction or expression (, , etc.) reparse the list as if it had not been typed inside brackets.

After a quotation mark outside square brackets, a word is delimited by a space, a square
bracket, or a parenthesis.

A word not after a quotation mark or inside square brackets is delimited by a space, a bracket,
a parenthesis, or an infix operator . Note that words following colons are in this category.
Note that quote and colon are not delimiters.

A word consisting of a question mark followed by a number (e.g.,), when runparsed (i.e.,
where a procedure name is expected), is treated as if it were the sequence

making the number an input to the procedure. (See the discussion of templates, below.) This
special treatment does not apply to words read as data, to words with a non-number following the
question mark, or if the question mark is backslashed.

A line (an instruction line or one read by or) can be continued onto
the following line if its last character is a tilde (). preserves the tilde and the newline;

does not.

Tokenization 269

print "abc;comment ~
def

print run (se "\(2 "+ 3 "\))

readlist readword

end

abcdef readword
readlist runparse

\

\\

readword readlist
equalp

backslashedp backslashedp

readword
readlist parse runparse

parse runparse

run

5

An instruction line or a line read by (but not by) is automatically
continued to the next line, as if ended with a tilde, if there are unmatched brackets, parentheses,
braces, or vertical bars pending. However, it’s an error if the continuation line contains only the
word ; this is to prevent runaway procedure definitions. Lines eplicitly continued with a tilde
avoid this restriction.

If a line being typed interactively on the keyboard is continued, either with a tilde or
automatically, Logo will display a tilde as a prompt character for the continuation line.

A semicolon begins a comment in an instruction line. Logo ignores characters from the
semicolon to the end of the line. A tilde as the last character still indicates a continuation line, but
not a continuation of the comment. For example, typing the instruction

will print the word . Semicolon has no special meaning in data lines read by
or , but such a line can later be reparsed using and then comments will be
recognized.

To include an otherwise delimiting character (including semicolon or tilde) in a word, precede
it with backslash (). If the last character of a line is a backslash, then the newline character
following the backslash will be part of the last word on the line, and the line continues onto the
following line. To include a backslash in a word, use . If the combination backslash-newline
is entered at the terminal, Logo will issue a backslash as a prompt character for the continuation
line. All of this applies to data lines read with or as well as to instruction
lines. A character entered with backslash is to the same character without the backslash,
but can be distinguished by the predicate. (However, recgnizes
backslashedness only on characters for which it is necessary: whitespace, parentheses, brackets,
infix operators, backslash, vertical bar, tilde, quote, question mark, colon, and semicolon.)

An alternative notation to include otherwise delimiting characters in words is to enclose a
group of characters in vertical bars. All characters between vertical bars are treated as if they were
letters. In data read with the vertical bars are preserved in the resulting word. In data
read with (or resulting from a or of a word) the vertical bars do not
appear explicitly; all potentially delimiting characters (including spaces, brackets, parentheses, and
infix operators) appear as though entered with a backslash. Within vertical bars, backslash may still
be used; the only characters that must be backslashed in this context are backslash and vertical bar
themselves.

Characters entered between vertical bars are forever special, even if the word or list containing
them is later reparsed with or . Characters typed after a backslash are treated
somewhat differently: When a quoted word containing a backslashed character is runparsed,
the backslashed character loses its special quality and acts thereafter as if typed normally. This
distinction is important only if you are building a Logo expression out of parts, to be later, and
want to use parentheses. For example,

will print , but

Constructors

run (se "make ""|(| 2)

Data Structure Primitives

270 Berkeley Logo Reference Manual

library procedure

library procedure

item
setitem

print
{a b c}@0

(mdarray [3 5] 0)
[0 0] [2 4]

word
(word)

list
(list)

sentence
se
(sentence)
(se)

fput

lput

array
(array)

mdarray ()
(mdarray)

listtoarray ()
(listtoarray)

word1 word2
word1 word2 word3 ...

thing1 thing2
thing1 thing2 thing3 ...

thing1 thing2
thing1 thing2

thing1 thing2 thing3 ...
thing1 thing2 thing3 ...

thing list

thing list

size
size origin size

origin

sizelist
sizelist origin

list
list origin

will create a variable whose name is open-parenthesis. (Each example would fail if vertical bars and
backslashes were interchanged.)

outputs a word formed by concatenating its inputs.

outputs a list whose members are its inputs, which
can be any Logo datum (word, list, or array).

outputs a list whose members are its inputs, if those
inputs are not lists, or the members of its inputs, if those inputs are lists.

outputs a list equal to its second input with one extra member, the first
input, at the beginning.

outputs a list equal to its second input with one extra member, the first
input, at the end.

outputs an array of members (must be a positive integer),
each of which initially is an empty list. Array members can be selected with and changed with

. The first member of the array is member number 1 unless an input (must
be an integer) is given, in which case the first member of the array has that number as its index.
(Typically 0 is used as the origin if anything.) Arrays are printed by and friends, and can be
typed in, inside curly braces; indicate an origin with .

outputs a multi-dimensional array. The first input must be
a list of one or more positive integers. The second input, if present, must be a single integer that
applies to every dimension of the array. Ex: outputs a two-dimensional array
whose members range from to .

outputs an array of the same size as the input list, whose
members are the members of the input list.

index of

Selectors

Data Structure Primitives 271

word fput

G1 G2

first

map map.se foreach

butfirst

map map.se foreach

library procedure

library procedure

library procedure

library procedure

arraytolist ()

combine ()

reverse ()

gensym ()

first

firsts

last

butfirst
bf

butfirsts
bfs

array

thing1 thing2 thing2
thing1 thing2 thing2 thing1 thing2

list

thing

list

wordorlist

wordorlist
wordorlist

list
list

to firsts :list
output map "first :list
end

to transpose :matrix
if emptyp first :matrix [op []]
op fput firsts :matrix transpose bfs :matrix
end

to butfirsts :list
output map "butfirst :list
end

outputs a list whose members are the members
of the input array. The first member of the output is the first member of the array, regardless of
the array’s origin.

If is a word, outputs the result
of . If is a list, outputs the result of .

outputs a list whose members are the members of the
input list, in reverse order.

outputs a unique word each time it’s invoked. The words are of
the form , , etc.

If the input is a word, outputs the first character of the word. If the input is a list,
outputs the first member of the list. If the input is an array, outputs the origin of the array (that is,
the the first member of the array).

outputs a list containing the of each member of the input list. It is an
error if any member of the input list is empty. (The input itself may be empty, in which case the
output is also empty.) This could be written as

but is provided as a primitive in order to speed up the iteration tools , , and .

If the input is a word, outputs the last character of the word. If the input
is a list, outputs the last member of the list.

If the input is a word, outputs a word containing all but the first character of
the input. If the input is a list, outputs a list containing all but the first member of the input.

outputs a list containing the of each member of the input list. It is an
error if any member of the input list is empty or an array. (The input itself may be empty, in which
case the output is also empty.) This could be written as

but is provided as a primitive in order to speed up the iteration tools , , and .

Mutators

.setfirst

.setbf

setitem

Warning:

Warning:

Warning:

272 Berkeley Logo Reference Manual

butlast
bl

item

mditem ()

pick ()

remove ()

remdup ()

quoted ()

setitem

mdsetitem ()

.setfirst

.setbf

.setitem

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

wordorlist
wordorlist

index thing thing index
thing index thing
index Index

indexlist array
array indexlist

list

thing list list
thing

list list

thing

index array value index array
value value

array

indexlist array value
array indexlist value

list value list value

list value list value

index array value index array
value

If the input is a word, outputs a word containing all but the last character of
the input. If the input is a list, outputs a list containing all but the last member of the input.

If the is a word, outputs the th character of the word. If
the is a list, outputs the th member of the list. If the is an array, outputs
the th member of the array. starts at 1 for words and lists; the starting index of an
array is specified when the array is created.

outputs the member of the multidi-
mensional selected by the list of numbers .

outputs a randomly chosen member of the input list.

outputs a copy of with every member
equal to removed.

outputs a copy of with duplicate members re-
moved. If two or more members of the input are equal, the rightmost of those members is the one
that remains in the output.

outputs its input, if a list; outputs its input with a
quotation mark prepended, if a word.

command. Replaces the th member of
with the new . Ensures that the resulting array is not circular, i.e., may not be a list
or array that contains .

command. Replaces the
member of chosen by with the new .

command. Changes the first member of to be .
Primitives whose names start with a period are dangerous. Their use by non-experts is

not recommended. The use of can lead to circular list structures, which will get some
Logo primitives into infinite loops; unexpected changes to other data structures that share storage
with the list being modified; and the loss of memory if a circular structure is released.

command. Changes the butfirst of to be .
Primitives whose names start with a period are dangerous. Their use by non-experts is not
recommended. The use of can lead to circular list structures, which will get some Logo
primitives into infinite loops; unexpected changes to other data structures that share storage with
the list being modified; Logo crashes and coredumps if the butfirst of a list is not itself a list; and
the loss of memory if a circular structure is released.

command. Changes the th member of to
be , like , but without checking for circularity. Primitives whose names

Predicates

Data Structure Primitives 273

library procedure

library procedure

library procedure

library procedure

.setitem

push

queue

true false

true false

true false

true false

true false

caseignoredp
true

setitem

true

push ()

pop ()

queue ()

dequeue ()

wordp
word?

listp
list?

arrayp
array?

emptyp
empty?

equalp
equal?

beforep
before?

stackname thing thing
stackname

stackname
stackname

queuename thing thing
queuename

queuename
queuename

thing
thing

thing
thing

thing
thing

thing
thing

thing1 thing2
thing1 thing2

thing1 = thing2

word1 word2
word1 word2 word1 word2

start with a period are dangerous. Their use by non-experts is not recommended. The use of
can lead to circular arrays, which will get some Logo primitives into infinite loops; and

the loss of memory if a circular structure is released.

command. Adds the to the stack
that is the value of the variable whose name is . This variable must have a list as its
value; the initial value should be the empty list. New members are added at the front of the list.

outputs the most recently ed member of the
stack that is the value of the variable whose name is and removes that member from
the stack.

command. Adds the to the
queue that is the value of the variable whose name is . This variable must have a list as
its value; the initial value should be the empty list. New members are added at the back of the list.

outputs the least recently d member of
the queue that is the value of the variable whose name is and removes that member
from the queue.

outputs if the input is a word, otherwise.

outputs if the input is a list, otherwise.

outputs if the input is an array, otherwise.

outputs if the input is the empty word or the empty list, otherwise.

outputs if the inputs are equal, otherwise. Two numbers
are equal if they have the same numeric value. Two non-numeric words are equal if they contain
the same characters in the same order. If there is a variable named whose value
is , then an upper case letter is considered the same as the corresponding lower case letter.
(This is the case by default.) Two lists are equal if their members are equal. An array is only
equal to itself; two separately created arrays are never equal even if their members are equal. (It is
important to be able to know if two expressions have the same array as their value because arrays
are mutable; if, for example, two variables have the same array as their values then performing

on one of them will also change the other.)

outputs if comes before in ASCII collating

Queries

Warning:

274 Berkeley Logo Reference Manual

.eq

memberp
member?

substringp
substring?

numberp
number?

backslashedp
backslashed?

count

ascii

rawascii

char

caseignoredp
lessp beforep 3 12 3 1

true
false

true
equalp false true

equalp false

false
true equalp false

true false

true
\ |

false true
()[]+-*/=<>":;\~?|

rawascii

rawascii rc

thing1 thing2

thing1 thing2
thing1 thing2 thing2 thing1

thing2 thing2
thing1 thing2

thing1 thing2
thing1 thing2 thing1 thing2

thing2 thing1 thing2

thing
thing

char
char

thing

char

char

int

sequence (for words of letters, in alphabetical order). Case-sensitivity is determined by the value
of . Note that if the inputs are numbers, the result may not be the same as with

; for example, is false because collates after .

outputs if its two inputs are the same datum, so that applying a
mutator to one will change the other as well. Outputs otherwise, even if the inputs are
equal in value. Primitives whose names start with a period are dangerous. Their use by
non-experts is not recommended. The use of mutators can lead to circular data structures, infinite
loops, or Logo crashes.

If is a list or an array, outputs if is
to a member of , otherwise. If is a word, outputs if
is a one-character word to a character of , otherwise.

If or is a list or an array, outputs .
If is a word, outputs if is to a substring of ,
otherwise.

outputs if the input is a number, otherwise.

outputs if the input character was originally entered into Logo
with a backslash () before it or within vertical bars () to prevent its usual special syntactic
meaning, otherwise. (Outputs only if the character is a backslashed space, tab,
newline, or one of .)

outputs the number of characters in the input, if the input is a word; outputs the
number of members in the input, if it is a list or an array. (For an array, this may or may not be the
index of the last member, depending on the array’s origin.)

outputs the integer (between 0 and 255) that represents the input character in the
ASCII code. Interprets control characters as representing backslashed punctuation, and returns
the character code for the corresponding punctuation character without backslash. (Compare

.)

outputs the integer (between 0 and 255) that represents the input character
in the ASCII code. Interprets control characters as representing themselves. To find out the ASCII
code of an arbitrary keystroke, use .

outputs the character represented in the ASCII code by the input, which must be an
integer between 0 and 255.

Transmitters

Communication

Communication 275

member

lowercase

uppercase

standout

parse

runparse

thing1 thing2 thing2
thing2 thing1

thing2 thing2

word

word

thing

word

wordorlist

memberp
true

memberp false

type

standout

readlist parse readword readlist

printdepthlimit

[... ...]

printwidthlimit

printwidthlimit

If is a word or list and if with these inputs
would output , outputs the portion of from the first instance of to the
end. If would output , outputs the empty word or list according to the type of

. It is an error for to be an array.

outputs a copy of the input word, but with all uppercase letters changed to
the corresponding lowercase letter.

outputs a copy of the input word, but with all lowercase letters changed to
the corresponding uppercase letter.

outputs a word that, when printed, will appear like the input but displayed
in standout mode (boldface, reverse video, or whatever your terminal does for standout). The word
contains terminal-specific magic characters at the beginning and end; in between is the printed
form (as if displayed using) of the input. The output is always a word, even if the input is of
some other type, but it may include spaces and other formatting characters. Note: a word output
by while Logo is running on one terminal will probably not have the desired effect if
printed on another type of terminal.

outputs the list that would result if the input word were entered in response to a
operation. That is, has the same value as for the same

characters read.

outputs the list that would result if the input word or list were entered
as an instruction line; characters such as infix operators and parentheses are separate members of
the output. Note that sublists of a runparsed list are not themselves runparsed.

Note: If there is a variable named with a nonnegative integer value, then
complex list and array structures will be printed only to the allowed depth. That is, members of
members of... of members will be allowed only so far. The members omitted because they are just
past the depth limit are indicated by an ellipsis for each one, so a too-deep list of two members will
print as .

If there is a variable named with a nonnegative integer value, then only the
first so many members of any array or list will be printed. A single ellipsis replaces all missing data
within the structure. The width limit also applies to the number of characters printed in a word,
except that a between 0 and 9 will be treated as if it were 10 when applied to
words. This limit applies not only to the top-level printed datum but to any substructures within it.

Receivers

line buffered;

does

276 Berkeley Logo Reference Manual

print
pr
(print)
(pr)

type
(type)

show
(show)

readlist
rl

readword
rw

thing
thing

thing1 thing2 ...
thing1 thing2 ...

thing
thing1 thing2 ...

thing
thing1 thing2 ...

print

type

print show

type
setcursor

wait Wait 0

print

readlist
Readlist

Readlist

readword Readword

backslashedp
backslashedp

command. Prints the input or inputs to the current write stream
(initially the terminal). All the inputs are printed on a single line, separated by spaces, ending with
a newline. If an input is a list, square brackets are not printed around it, but brackets are printed
around sublists. Braces are always printed around arrays.

command. Prints the input or inputs like , except
that no newline character is printed at the end and multiple inputs are not separated by spaces.
Note: printing to the terminal is ordinarily that is, the characters you print using
will not actually appear on the screen until either a newline character is printed (for example, by

or) or Logo tries to read from the keyboard (either at the request of your program
or after an instruction prompt). This buffering makes the program much faster than it would
be if each character appeared immediately, and in most cases the effect is not disconcerting. To
accommodate programs that do a lot of positioned text display using , Logo will force printing
whenever is invoked. This solves most buffering problems. Still, on occasion you may
find it necessary to force the buffered characters to be printed explicitly; this can be done using
the command. will force printing without actually waiting.

command. Prints the input or inputs like , except
that if an input is a list it is printed inside square brackets.

reads a line from the read stream (initially the terminal) and outputs that line as a list. The
line is separated into members as though it were typed in square brackets in an instruction. If the
read stream is a file, and the end of file is reached, outputs the empty word (not the
empty list). processes backslash, vertical bar, and tilde characters in the read stream;
the output list will not contain these characters but they will have had their usual effect.
does not, however, treat semicolon as a comment character.

reads a line from the read stream and outputs that line as a word. The output is a single
word even if the line contains spaces, brackets, etc. If the read stream is a file, and the end of
file is reached, outputs the empty list (not the empty word). processes
backslash, vertical bar, and tilde characters in the read stream. In the case of a tilde used for
line continuation, the output word include the tilde and the newline characters, so that the
user program can tell exactly what the user entered. Vertical bars in the line are also preserved
in the output. Backslash characters are not preserved in the output, but the character following
the backslash is marked internally; programs can use to check for this marking.
(Backslashedness is preserved only for certain characters. See .)

File Access

Communication 277

to dayofweek
output first first shell [date]
end

num
num num

command
command wordflag command

filename

filename

filename

filename

readchar
rc

readchars
rcs

shell
(shell)

openread

openwrite

openappend

openupdate

readchar
readchar

readlist readword

readchars
readchars

readlist readword

\\

readlist

readword

first first

shell

reads a single character from the read stream and outputs that character as a word. If the
read stream is a file, and the end of file is reached, outputs the empty list (not the
empty word). If the read stream is a terminal, echoing is turned off when is invoked,
and remains off until or is invoked or a Logo prompt is printed. Backslash,
vertical bar, and tilde characters have no special meaning in this context.

reads characters from the read stream and outputs those characters as a word. If
the read stream is a file, and the end of file is reached, outputs the empty list (not the
empty word). If the read stream is a terminal, echoing is turned off when is invoked,
and remains off until or is invoked or a Logo prompt is printed. Backslash,
vertical bar, and tilde characters have no special meaning in this context.

Under Unix, outputs the result of running as a
shell command. (The command is sent to /bin/sh, not csh or other alternatives.) If the command
is a literal list in the instruction line, and if you want a backslash character sent to the shell, you
must use to get the backslash through Logo’s reader intact. The output is a list containing one
member for each line generated by the shell command. Ordinarily each such line is represented
by a list in the output, as though the line were read using . If a second input is given,
regardless of the value of the input, each line is represented by a word in the output as though it
were read with . Example:

This is to extract the first word of the first (and only) line of the shell output.

Under DOS, is a command, not an operation; it sends its input to a DOS command
processor but does not collect the result of the command.

The Macintosh, of course, is not programmable.

command. Opens the named file for reading. The read position is
initially at the beginning of the file.

command. Opens the named file for writing. If the file already
existed, the old version is deleted and a new, empty file created.

command. Opens the named file for writing. If the file already
exists, the write position is initially set to the end of the old file, so that newly written data will be
appended to it.

command. Opens the named file for reading and writing. The
read and write position is initially set to the end of the old file, if any. Note: each open file has

library procedure

278 Berkeley Logo Reference Manual

filename

filename
filename

filename

filename

filename

charpos
charpos

charpos
charpos

close

allopen

closeall ()

erasefile
erf

dribble

nodribble

setread

setwrite

reader

writer

setreadpos

setwritepos

reader
writer setreadpos writepos

setreadpos
setwritepos

foreach allopen [close ?]

openwrite

writer

readlist
openread openupdate

print
openwrite openappend openupdate

readlist
setreadpos 0

print
setwritepos 0

only one position, for both reading and writing. If a file opened for update is both and
at the same time, then will also affect and vice versa. Also, if you

alternate reading and writing the same file, you must between a write and a read,
and between a read and a write.

command. Closes the named file.

outputs a list whose members are the names of all files currently open. This list does
not include the dribble file, if any.

command. Closes all open files.
Abbreviates

command. Erases (deletes, removes) the named file, which should not
currently be open.

command. Creates a new file whose name is the input, like ,
and begins recording in that file everything that is read from the keyboard or written to the
terminal. That is, this writing is in addition to the writing to . The intent is to create a
transcript of a Logo session, including things like prompt characters and interactions.

command. Stops copying information into the dribble file, and closes the file.

command. Makes the named file the read stream, used for ,
etc. The file must already be open with or . If the input is the empty list,
then the read stream becomes the terminal, as usual. Changing the read stream does not close the
file that was previously the read stream, so it is possible to alternate between files.

command. Makes the named file the write stream, used for , etc.
The file must already be open with , , or . If the input is the
empty list, then the write stream becomes the terminal, as usual. Changing the write stream does
not close the file that was previously the write stream, so it is possible to alternate between files.

outputs the name of the current read stream file, or the empty list if the read stream is
the terminal.

outputs the name of the current write stream file, or the empty list if the write stream is
the terminal.

command. Sets the file pointer of the read stream file so that the
next , etc., will begin reading at the th character in the file, counting from 0.
(That is, will start reading from the beginning of the file.) Meaningless if the read
stream is the terminal.

command. Sets the file pointer of the write stream file so that the
next , etc., will begin writing at the th character in the file, counting from 0.
(That is, will start writing from the beginning of the file.) Meaningless if the
write stream is the terminal.

Arithmetic

Arithmetic 279

Terminal Access

Numeric Operations

vector

vector

num1 num2
num1 num2 num3 ...

num1 + num2

true
false

true
not eofp

cbreak
readlist

keyp false

setcursor

x margin setcursor
Cursor

readpos

writepos

eofp
eof?

keyp
key?

cleartext
ct

setcursor

cursor

setmargins

sum
(sum)

outputs the file position of the current read stream file.

outputs the file position of the current write stream file.

predicate, outputs if there are no more characters to be read in the read stream file,
otherwise.

predicate, outputs if there are characters waiting to be read from the read stream. If
the read stream is a file, this is equivalent to . If the read stream is the terminal, then
echoing is turned off and the terminal is set to (character at a time instead of line at a
time) mode. It remains in this mode until some line-mode reading is requested (e.g.,).
The Unix operating system forgets about any pending characters when it switches modes, so the
first invocation will always output .

command. Clears the text screen of the terminal.

command. The input is a list of two numbers, the x and y coordinates
of a screen position (origin in the upper left corner, positive direction is southeast). The screen
cursor is moved to the requested position. This command also forces the immediate printing of
any buffered characters.

outputs a list containing the current x and y coordinates of the screen cursor. Logo may
get confused about the current cursor position if, e.g., you type in a long line that wraps around or
your program prints escape codes that affect the terminal strangely.

command. The input must be a list of two numbers, as for .
The effect is to clear the screen and then arrange for all further printing to be shifted down and to
the right according to the indicated margins. Specifically, every time a newline character is printed
(explicitly or implicitly) Logo will type spaces, and on every invocation of
the margins will be added to the input x and y coordinates. (will report the cursor position
relative to the margins, so that this shift will be invisible to Logo programs.) The purpose of this
command is to accommodate the display of terminal screens in lecture halls with inadequate TV
monitors that miss the top and left edges of the screen.

outputs the sum of its inputs.

means
means

minus 3 + 4 -(3+4)
- 3 + 4 (-3)+4

280 Berkeley Logo Reference Manual

quotient 5 2
quotient 4 2 quotient

int

remainder

difference
-

minus
-

product
(product)

*

quotient
(quotient)

remainder

modulo

int

round

sqrt

power

exp

num1 num2
num1 num2

num
num

num1 num2
num1 num2 num3 ...

num1 num2

num1 num2
num

num1 / num2

num1 num2 num1 num2

num1 num2 num1 num2

num

num

num

num1 num2 num1 num2

num

outputs the difference of its inputs. Minus sign means infix difference in
ambiguous contexts (when preceded by a complete expression), unless it is preceded by a space
and followed by a nonspace.

outputs the negative of its input. Minus sign means unary minus if it is immediately
preceded by something requiring an input, or preceded by a space and followed by a nonspace.
There is a difference in binding strength between the two forms:

outputs the product of its inputs.

outputs the quotient of its inputs. The quotient of two integers is an integer if
and only if the dividend is a multiple of the divisor. (In other words, is 2.5, not 2,
but is 2, not 2.0—it does the right thing.) With a single input, outputs
the reciprocal of the input.

outputs the remainder on dividing by ; both must be
integers and the result is an integer with the same sign as num1.

outputs the remainder on dividing by ; both must be integers
and the result is an integer with the same sign as num2.

outputs its input with fractional part removed, i.e., an integer with the same sign as
the input, whose absolute value is the largest integer less than or equal to the absolute value of the
input.

Note: Inside the computer numbers are represented in two different forms, one for integers and
one for numbers with fractional parts. However, on most computers the largest number that can
be represented in integer format is smaller than the largest integer that can be represented (even
with exact precision) in floating-point (fraction) format. The operation will always output a
number whose value is mathematically an integer, but if its input is very large the output may not
be in integer format. In that case, operations like that require an integer input will
not accept this number.

outputs the nearest integer to the input.

outputs the square root of the input, which must be nonnegative.

outputs to the power. If num1 is negative, then num2 must
be an integer.

outputs e (2.718281828+) to the input power.

−

π −π

π

/ 90

/ /2 /2

y x x y x

y x x y x

Arithmetic 281

Predicates

Random Numbers

Print Formatting

2*(radarctan 0 1)

true

true

random

rerandom
random rerandom

log10

ln

sin

radsin

cos

radcos

arctan
(arctan)

radarctan
(radarctan)

lessp
less?

greaterp
greater?

random

rerandom
(rerandom)

form

num

num

degrees

radians

degrees

radians

num
x y

num
x y

num1 num2
num1 num2

num1 < num2

num1 num2
num1 num2

num1 > num2

num

seed

num width precision
num

outputs the common logarithm of the input.

outputs the natural logarithm of the input.

outputs the sine of its input, which is taken in degrees.

outputs the sine of its input, which is taken in radians.

outputs the cosine of its input, which is taken in degrees.

outputs the cosine of its input, which is taken in radians.

outputs the arctangent, in degrees, of its input. With two inputs, outputs the
arctangent of , if is nonzero, or 90 or depending on the sign of , if is zero.

outputs the arctangent, in radians, of its input. With two inputs, outputs
the arctangent of , if is nonzero, or or depending on the sign of , if is zero.

The expression can be used to get the value of .

outputs if its first input is strictly less than its second.

outputs if its first input is strictly greater than its second.

outputs a random nonnegative integer less than its input, which must be an
integer.

command. Makes the results of reproducible. Ordinarily the
sequence of random numbers is different each time Logo is used. If you need the same sequence
of pseudo-random numbers repeatedly, e.g., to debug a program, say before the first
invocation of . If you need more than one repeatable sequence, you can give
an integer input; each possible input selects a unique sequence of numbers.

outputs a word containing a printable representation of
, possibly preceded by spaces (and therefore not a number for purposes of performing

Logical Operations

Bitwise Operations

282 Berkeley Logo Reference Manual

to hex :num
op form :num -1 "|%08X %08X|
end

bitand
(bitand)

bitor
(bitor)

bitxor
(bitxor)

bitnot

ashift

lshift

and
(and)

or
(or)

not

(form -1)

true true false
true false caseignoredp
true True TRUE

true true false
true false caseignoredp
true True TRUE

true false

width precision
precision

num format num
format

num1 num2
num1 num2 num3 ...

num1 num2
num1 num2 num3 ...

num1 num2
num1 num2 num3 ...

num

num1 num2 num1 num2

num1 num2 num1 num2

tf1 tf2
tf1 tf2 tf3 ...

tf1 tf2
tf1 tf2 tf3 ...

tf

arithmetic operations), with at least characters, including exactly digits after
the decimal point. (If is 0 then there will be no decimal point in the output.)

As a debugging feature, will print the floating point according to
the C printf , to allow

to allow finding out the exact result of floating point operations. The precise format needed may
be machine-dependent.

outputs the bitwise and of its inputs, which must be
integers.

outputs the bitwise or of its inputs, which must be integers.

outputs the bitwise exclusive-or of its inputs, which must
be integers.

outputs the bitwise not of its input, which must be an integer.

outputs arithmetic-shifted to the left by bits. If num2 is
negative, the shift is to the right with sign extension. The inputs must be integers.

outputs logical-shifted to the left by bits. If num2 is negative,
the shift is to the right with zero fill. The inputs must be integers.

outputs if all inputs are , otherwise . All inputs
must be or . (Comparison is case-insensitive regardless of the value of .
That is, or or are all the same.)

outputs if any input is , otherwise . All inputs
must be or . (Comparison is case-insensitive regardless of the value of .
That is, or or are all the same.)

outputs if the input is , and vice versa.

Graphics

Graphics 283

Turtle Motion

[-100
-100] [100 100]

[0 0]

forward
fd

back
bk

left
lt

right
rt

dist
dist

dist
dist

degrees
degrees

degrees
degrees

Berkeley Logo provides traditional Logo turtle graphics with one turtle. Multiple turtles, dynamic
turtles, and collision detection are not supported. This is the most hardware-dependent part of
Logo; some features may exist on some machines but not others. Nevertheless, the goal has been to
make Logo programs as portable as possible, rather than to take fullest advantage of the capabilities
of each machine. In particular, Logo attempts to scale the screen so that turtle coordinates

and fit on the graphics window, and so that the aspect ratio is 1:1, although
some PC screens have nonstandard aspect ratios.

The center of the graphics window (which may or may not be the entire screen, depending on
the machine used) is turtle location . Positive X is to the right; positive Y is up. Headings
(angles) are measured in degrees clockwise from the positive Y axis. (This differs from the common
mathematical convention of measuring angles counterclockwise from the positive X axis.) The
turtle is represented as an isoceles triangle; the actual turtle position is at the midpoint of the base
(the short side).

Colors are, of course, hardware-dependent. However, Logo provides partial hardware indepen-
dence by interpreting color numbers 0 through 7 uniformly on all computers:

0 black 1 blue 2 green 3 cyan
4 red 5 magenta 6 yellow 7 white

Where possible, Logo provides additional user-settable colors; how many are available depends on
the hardware and operating system environment. If at least 16 colors are available, Logo tries to
provide uniform initial settings for the colors 8–15:

8 brown 9 tan 10 forest 11 aqua
12 salmon 13 purple 14 orange 15 grey

Logo begins with a black background and white pen.

moves the turtle forward, in the direction that it’s facing, by the specified distance
(measured in turtle steps).

moves the turtle backward, i.e., exactly opposite to the direction that it’s facing, by the
specified distance. (The heading of the turtle does not change.)

turns the turtle counterclockwise by the specified angle, measured in degrees
(1/360 of a circle).

turns the turtle clockwise by the specified angle, measured in degrees (1/360 of a
circle).

setpos [0 0]

setscrunch setscrunch

284 Berkeley Logo Reference Manual

library procedure

library procedure

Turtle Motion Queries

Turtle and Window Control

pos

xcor ycor

xcor

ycor

degrees
degrees

angle radius

pos

setpos

setxy

setx

sety

home

setheading
seth

arc

pos

xcor ()

ycor ()

heading

towards

scrunch

showturtle
st

hideturtle
ht

clean

moves the turtle to an absolute screen position. The argument is a list of two
numbers, the X and Y coordinates.

moves the turtle to an absolute screen position. The two arguments are
numbers, the X and Y coordinates.

moves the turtle horizontally from its old position to a new absolute horizontal
coordinate. The argument is the new X coordinate.

moves the turtle vertically from its old position to a new absolute vertical coordinate.
The argument is the new Y coordinate.

moves the turtle to the center of the screen. Equivalent to .

turns the turtle to a new absolute heading. The argument is a number, the
heading in degrees clockwise from the positive Y axis.

draws an arc of a circle, with the turtle at the center, with the specified
radius, starting at the turtle’s heading and extending clockwise through the specified angle. The
turtle does not move.

outputs the turtle’s current position, as a list of two numbers, the X and Y coordinates.

outputs a number, the turtle’s X coordinate.

outputs a number, the turtle’s Y coordinate.

outputs a number, the turtle’s heading in degrees.

outputs a number, the heading at which the turtle should be facing so that it
would point from its current position to the position given as the argument.

outputs a list containing two numbers, the X and Y scrunch factors, as used by
. (But note that takes two numbers as inputs, not one list of numbers.)

makes the turtle visible.

makes the turtle invisible. It’s a good idea to do this while you’re in the middle of a complicated
drawing, because hiding the turtle speeds up the drawing substantially.

erases all lines that the turtle has drawn on the graphics window. The turtle’s state
(position, heading, pen mode, etc.) is not changed.

Graphics 285

text

xscale yscale

clearscreen
cs

wrap

window

fence

fill

label

textscreen
ts

fullscreen
fs

splitscreen
ss

setscrunch

home
clean

window fence

home wrap
fence

wrap window

splitscreen fullscreen

splitscreen textscreen

textscreen fullscreen

erases the graphics window and sends the turtle to its initial position and heading. Like
and together.

tells the turtle to enter wrap mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will “wrap around” and reappear at the opposite edge of the
window. The top edge wraps to the bottom edge, while the left edge wraps to the right edge.
(So the window is topologically equivalent to a torus.) This is the turtle’s initial mode. Compare

and .

tells the turtle to enter window mode: From now on, if the turtle is asked to move
past the boundary of the graphics window, it will move offscreen. The visible graphics window
is considered as just part of an infinite graphics plane; the turtle can be anywhere on the plane.
(If you lose the turtle, will bring it back to the center of the window.) Compare and

.

tells the turtle to enter fence mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will move as far as it can and then stop at the edge with an “out
of bounds” error message. Compare and .

fills in a region of the graphics window containing the turtle and bounded by lines that
have been drawn earlier. This is not portable; it doesn’t work for all machines, and may not work
exactly the same way on different machines.

takes a word or list as input, and prints the input on the graphics window, starting
at the turtle’s position.

rearranges the size and position of windows to maximize the space available in the text window
(the window used for interaction with Logo). The details differ among machines. Compare

and .

rearranges the size and position of windows to maximize the space available in the graphics
window. The details differ among machines. Compare and .

In the DOS version, switching from fullscreen to splitscreen loses the part of the picture that’s
hidden by the text window. Also, since there must be a text window to allow printing (including the
printing of the Logo prompt), Logo automatically switches from fullscreen to splitscreen whenever
anything is printed. [This design decision follows from the scarcity of memory, so that the extra
memory to remember an invisible part of a drawing seems too expensive.]

rearranges the size and position of windows to allow some room for text interaction while
also keeping most of the graphics window visible. The details differ among machines. Compare

and .

adjusts the aspect ratio and scaling of the graphics display.
After this command is used, all further turtle motion will be adjusted by multiplying the horizontal

286 Berkeley Logo Reference Manual

Turtle and Window Queries

Pen and Background Control

refresh

norefresh

shownp
shown?

pendown
pd

penup
pu

penpaint
ppt

penerase
pe

penreverse
px

setscrunch 2 1

setscrunch scrunch.dat

true false
showturtle hideturtle

up
down

paint
erase
reverse

down

up

down paint

down erase

down reverse

and vertical extent of the motion by the two numbers given as inputs. For example, after the
instruction motion at a heading of 45 degrees will move twice as far horizontally
as vertically. If your squares don’t come out square, try this. (Alternatively, you can deliberately
misadjust the aspect ratio to draw an ellipse.)

For Unix machines and Macintoshes, both scale factors are initially 1. For DOS machines, the scale
factors are initially set according to what the hardware claims the aspect ratio is, but the hardware
sometimes lies. The values set by are remembered in a file (called)
and are automatically put into effect when a Logo session begins.

tells Logo to remember the turtle’s motions so that they can be reconstructed in case
the graphics window is overlayed. The effectiveness of this command may depend on the machine
used.

tells Logo not to remember the turtle’s motions. This will make drawing faster, but
prevents recovery if the window is overlayed.

outputs if the turtle is shown (visible), if the turtle is hidden. See
and .

The turtle carries a pen that can draw pictures. At any time the pen can be (in which case
moving the turtle does not change what’s on the graphics screen) or (in which case the turtle
leaves a trace). If the pen is down, it can operate in one of three modes: (so that it draws
lines when the turtle moves), (so that it erases any lines that might have been drawn on or
through that path earlier), or (so that it inverts the status of each point along the turtle’s
path).

sets the pen’s position to , without changing its mode.

sets the pen’s position to , without changing its mode.

sets the pen’s position to and mode to .

sets the pen’s position to and mode to .

sets the pen’s position to and mode to . (This may interact in hardware-
dependent ways with use of color.)

Pen Queries

Graphics 287

library procedure

library procedure

pen

true false

paint erase reverse

setpen

colornumber
colornumber

colornumber rgblist

size
pattern

list

color
color

colornumber

setpencolor
setpc

setpalette

setpensize
setpenpattern

setpen ()

setbackground
setbg

pendownp
pendown?

penmode

pencolor
pc

palette

pensize
penpattern

pen ()

background
bg

sets the pen color to the given number, which must be a nonnegative
integer. Color 0 is always black; color 7 is always white. Other colors may or may not be consistent
between machines.

sets the actual color corresponding to a given
number, if allowed by the hardware and operating system. Colornumber must be an integer greater
than or equal to 8. (Logo tries to keep the first 8 colors constant.) The second argument is a list
of three nonnegative integers less than 64K (65536) specifying the amount of red, green, and blue
in the desired color. The actual color resolution on any screen is probably less than 64K, but Logo
scales as needed.

set hardware-dependent pen characteristics. These commands
are not guaranteed compatible between implementations on different machines.

sets the pen’s position, mode, and hardware-dependent
characteristics according to the information in the input list, which should be taken from an earlier
invocation of .

set the screen background color.

outputs if the pen is down, if it’s up.

outputs one of the words , , or according to the current pen
mode.

outputs a color number, a nonnegative integer that is associated with a particular color by the
hardware and operating system.

outputs a list of three integers, each in the range 0–65535, repre-
senting the amount of red, green, and blue in the color associated with the given number.

output hardware-specific pen information.

outputs a list containing the pen’s position, mode, and hardware-
specific characteristics, for use by .

outputs the graphics background color.

to ()special form

Procedure Definition

Workspace Management

288 Berkeley Logo Reference Manual

minimum, default, maximum

minimum

rest

to

inlist [a b c] startvalue
a

inlist [a b c] startvalue x

procname :input1 :input2 ...
procname

input1

:inputname

[:inputname default.value.expression]

to proc :inlist [:startvalue first :inlist]

proc [a b c]

(proc [a b c] "x)

[:inputname]

to proc :in1 [:in2 "foo] [:in3]

command. Prepares Logo to
accept a procedure definition. The procedure will be named and there must not
already be a procedure by that name. The inputs will be called etc. Any number of inputs
are allowed, including none. Names of procedures and inputs are case-insensitive.

Unlike every other Logo procedure, takes as its inputs the actual words typed in the instruction
line, as if they were all quoted, rather than the results of evaluating expressions to provide the
inputs. (That’s what “special form” means.)

This version of Logo allows variable numbers of inputs to a procedure. Every procedure has a
and number of inputs. (The latter can be infinite.)

The number of inputs is the number of required inputs, which must come first. A
required input is indicated by the notation.

After all the required inputs can be zero or more optional inputs, represented by the following
notation:

When the procedure is invoked, if actual inputs are not supplied for these optional inputs, the
default value expressions are evaluated to set values for the corresponding input names. The
inputs are processed from left to right, so a default value expression can be based on earlier inputs.
Example:

If the procedure is invoked by saying

then the variable will have the value and the variable will have the
value . If the procedure is invoked by saying

then will have the value and will have the value .

After all the required and optional input can come a single input, represented by the following
notation:

This is a rest input rather than an optional input because there is no default value expression.
There can be at most one rest input. When the procedure is invoked, the value of this input will
be a list containing all of the actual inputs provided that were not used for required or optional
inputs. Example:

maximum

default

define

text

fulltext

Workspace Management 289

proc "x

(proc "a "b "c "d)

to proc :in1 [:in2 "foo] [:in3] 3

procname text procname
text

procname procname

procname procname

in1 x in2 foo in3 []

in1 a in2 b in3 [c d]

to

to
? >

end

to to

end
redefp true

define

to edit load

readword
end define

to
fulltext define

If this procedure is invoked by saying

then has the value , has the value , and has the value (the empty list). If it’s
invoked by saying

then has the value , has the value , and has the value .

The number of inputs for a procedure is infinite if a rest input is given; otherwise, it is
the number of required inputs plus the number of optional inputs.

The number of inputs for a procedure, which is the number of inputs that it will accept if its
invocation is not enclosed in parentheses, is ordinarily equal to the minimum number. If you want
a different default number you can indicate that by putting the desired default number as the last
thing on the line. Example:

This procedure has a minimum of one input, a default of three inputs, and an infinite maximum.

Logo responds to the command by entering procedure definition mode. The prompt character
changes from to and whatever instructions you type become part of the definition until you
type a line containing only the word .

command. Defines a procedure with name and text
. If there is already a procedure with the same name, the new definition replaces the old one.

The text input must be a list whose members are lists. The first member is a list of inputs; it looks
like a line but without the word , without the procedure name, and without the colons before
input names. In other words, the members of this first sublist are words for the names of required
inputs and lists for the names of optional or rest inputs. The remaining sublists of the text input
make up the body of the procedure, with one sublist for each instruction line of the body. (There
is no line in the text input.) It is an error to redefine a primitive procedure unless the variable

has the value .

outputs the text of the procedure named in the form expected
by : a list of lists, the first of which describes the inputs to the procedure and the rest of
which are the lines of its body. The text does not reflect formatting information used when the
procedure was defined, such as continuation lines and extra spaces.

outputs a representation of the procedure in which for-
matting information is preserved. If the procedure was defined with , , or , then the
output is a list of words. Each word represents one entire line of the definition in the form output
by , including extra spaces and continuation lines. The last member of the output
represents the line. If the procedure was defined with , then the output is a list of
lists. If these lists are printed, one per line, the result will look like a definition using . Note: the
output from is not suitable for use as input to !

thing "

Variable Definition

Property Lists

290 Berkeley Logo Reference Manual

library procedure

library procedure

copydef

make

name ()

local
local
(local)

localmake ()

thing
:

redefp true copydef save
copydef

po pot copydef

copydef make
name

make

local
make

local make

thing

:foo thing "foo

caseignoredp true

newname oldname newname old-
name newname

newname

varname value value varname

value varname

varname
varnamelist
varname1 varname2 ...

varname value

varname
quoted.varname

command. Makes a procedure identical to
. The latter may be a primitive. If was already defined, its previous definition

is lost. If was already a primitive, the redefinition is not permitted unless the variable
has the value . Definitions created by are not saved by ; primitives

are never saved, and user-defined procedures created by are buried. (You are likely to
be confused if you or a procedure defined with because its title line will contain
the old name. This is why it’s buried.)

Note: dialects of Logo differ as to the order of inputs to . This dialect uses “ order,”
not “ order.”

command. Assigns the value to the variable named ,
which must be a word. Variable names are case-insensitive. If a variable with the same name already
exists, the value of that variable is changed. If not, a new global variable is created.

command. Same as but with the inputs
in reverse order.

command. Accepts as inputs one or more words, or
a list of words. A variable is created for each of these words, with that word as its name. The
variables are local to the currently running procedure. Logo variables follow dynamic scope rules;
a variable that is local to a procedure is available to any subprocedure invoked by that procedure.
The variables created by have no initial value; they must be assigned a value (e.g., with

) before the procedure attempts to read their value.

command. Makes the named variable
local, like , and assigns it the given value, like .

outputs the value of the variable whose name is the input. If there is more
than one such variable, the innermost local variable of that name is chosen. The colon notation is
an abbreviation not for but for the combination

so that means .

Note: Names of property lists are always case-insensitive. Names of individual properties are
case-sensitive or case-insensitive depending on the value of , which is by
default.

contents list,

Predicates

Queries

plist

true

true

true

true

Workspace Management 291

pprop

gprop

remprop

plist

procedurep
procedure?

primitivep
primitive?

definedp
defined?

namep
name?

contents

buried

procedures

names

plistname propname value plistname
propname value

plistname propname propname
plistname

plistname propname propname
plistname

plistname
plistname

name
name

name
name

name
name

name
name

command. Adds a property to the
property list with name and value .

outputs the value of the property in the
property list, or the empty list if there is no such property.

command. Removes the property named
from the property list named .

outputs a list whose odd-numbered members are the names, and whose
even-numbered members are the values, of the properties in the property list named .
The output is a copy of the actual property list; changing properties later will not magically change
a list output earlier by .

outputs if the input is the name of a procedure.

outputs if the input is the name of a primitive procedure (one built
into Logo). Note that some of the procedures described in this document are library procedures,
not primitives.

outputs if the input is the name of a user-defined procedure, including
a library procedure. (However, Logo does not know about a library procedure until that procedure
has been invoked.)

outputs if the input is the name of a variable.

outputs a i.e., a list of three lists containing names of defined procedures,
variables, and property lists respectively. This list includes all unburied named items in the
workspace.

outputs a contents list including all buried named items in the workspace.

outputs a list of the names of all unburied user-defined procedures in the
workspace. Note that this is a list of names, not a contents list. (However, procedures that require
a contents list as input will accept this list.)

outputs a contents list consisting of an empty list (indicating no procedure names)
followed by a list of all unburied variable names in the workspace.

Inspection

292 Berkeley Logo Reference Manual

contents

po contents

po procedures

po names

po plists

po namelist

po pllist

pprop po

pot procedures

plists

namelist ()
namelist

pllist ()
pllist

po

poall ()

pops ()

pons ()

popls ()

pon ()
pon

popl ()
popl

pot

pots ()

varname
varnamelist

plname
plnamelist

contentslist

contentslist

varname
varnamelist

varname(list)

plname
plnamelist

plname(list)

contentslist

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

outputs a contents list consisting of two empty lists (indicating no procedures or
variables) followed by a list of all unburied property lists in the workspace.

outputs a contents list consisting of an empty list followed by a
list of the name or names given as input. This is useful in conjunction with workspace control
procedures that require a contents list as input.

outputs a contents list consisting of two empty lists followed by a list of
the name or names given as input. This is useful in conjunction with workspace control procedures
that require a contents list as input.

Note: All procedures whose input is indicated as will accept a single word (taken
as a procedure name), a list of words (taken as names of procedures), or a list of three lists as
described under the command above.

command. Prints to the write stream the definitions of all procedures,
variables, and property lists named in the input contents list.

command. Prints all unburied definitions in the workspace.
Abbreviates .

command. Prints the definitions of all unburied procedures in the
workspace. Abbreviates .

command. Prints the definitions of all unburied variables in the
workspace. Abbreviates .

command. Prints the contents of all unburied property lists in
the workspace. Abbreviates .

command. Prints the definitions of the named variable(s). Abbreviates
the instruction .

command. Prints the definitions of the named property list(s). Abbreviates
the instruction .

command. Prints the title lines of the named procedures and the
definitions of the named variables and property lists. For property lists, the entire list is shown on
one line instead of as a series of instructions as in .

command. Prints the title lines of all unburied procedures in the
workspace. Abbreviates .

Workspace Control

Workspace Management 293

erase
er

erall ()

erps ()

erns ()

erpls ()

ern ()
ern

erpl ()
erpl

bury

buryall ()

buryname ()
buryname

unbury

unburyall ()

unburyname ()
unburyname

trace

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

contentslist
contentslist

varname
varnamelist

varname(list)

plname
plnamelist

plname(list)

contentslist

varname
varnamelist var-

name(list)

contentslist

varname
varnamelist

varname(list)

contentslist

redefp true

erase contents

erase procedures

erase names

erase plists

erase namelist

erase pllist

contents procedures
variables plists buried

poall save

bury contents

bury namelist

contents

unbury buried

unbury namelist

stop output

command. Erases from the workspace the procedures, variables, and
property lists named in the input. Primitive procedures may not be erased unless the variable

has the value .

command. Erases all unburied procedures, variables, and
property lists from the workspace. Abbreviates .

command. Erases all unburied procedures from the workspace.
Abbreviates the instruction .

command. Erases all unburied variables from the workspace.
Abbreviates .

command. Erases all unburied property lists from the workspace.
Abbreviates .

command. Erases from the workspace the variable(s) named in the input.
Abbreviates .

command. Erases from the workspace the property list(s) named in the
input. Abbreviates .

command. Buries the procedures, variables, and property lists named
in the input. A buried item is not included in the lists output by , ,

, and , but is included in the list output by . By implication, buried
things are not printed by or saved by .

command. Abbreviates .

command. Abbreviates the instruction
.

command. Unburies the procedures, variables, and property lists
named in the input. That is, the named items will be returned to view in , etc.

command. Abbreviates .

command.
Abbreviates .

command. Marks the named items for tracing. A message is printed
whenever a traced procedure is invoked, giving the actual input values, and whenever a traced
procedure s or s. A message is printed whenever a new value is assigned to a traced

shadowed

294 Berkeley Logo Reference Manual

untrace

step

unstep

edit
ed
(edit)
(ed)

edall ()

edps ()

edns ()

edpls ()

edn ()
edn

edpl ()
edpl

save

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

make
pprop

local

EDITOR EDITOR
edit

edit

edit

edit contents

edit procedures

edit names

edit plists

edit namelist

edit pllist

to save :filename
local "oldwriter
make "oldwriter writer
openwrite :filename
setwrite :filename
poall
setwrite :oldwriter
close :filename
end

contentslist

contentslist

contentslist

contentslist
contentslist

varname
varnamelist varname(list)

plname
plnamelist plname(list)

filename

variable using . A message is printed whenever a new property is given to a traced property
list using .

command. Turns off tracing for the named items.

command. Marks the named items for stepping. Whenever a stepped
procedure is invoked, each instruction line in the procedure body is printed before being executed,
and Logo waits for the user to type a newline at the terminal. A message is printed whenever a
stepped variable name is because a local variable of the same name is created either as a
procedure input or by the command.

command. Turns off stepping for the named items.

command. Edits the definitions of the named items, using your favorite editor as determined
by the environment variable. If you don’t have an variable, edits the definitions
using jove. If invoked without an argument, edits the same temporary file left over from
a previous instruction. When you leave the editor, Logo reads the revised definitions and
modifies the workspace accordingly.

Exceptionally, the command can be used without its default input and without parentheses
provided that nothing follows it on the instruction line.

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Saves the definitions of all unburied procedures, variables, and
property lists in the named file. Equivalent to

library procedure

Control Structures

Control Structures 295

savel ()

load

help
(help)

run

runresult

repeat

if
(if)

to
startup

LOGOHELP

help

run readword run readlist
~

;

true if false if
if ifelse

true false

if

local "result
make "result runresult [something]
if emptyp :result [stop]
output first :result

contentslist filename
contentslist

filename

filename

name

instructionlist

instructionlist

instructionlist

num instructionlist instructionlist
num

tf instructionlist
tf instructionlist1 instructionlist2

command. Saves the defini-
tions of the procedures, variables, and property lists specified by to the file
named .

command. Reads instructions from the named file and executes them. The
file can include procedure definitions with , and these are accepted even if a procedure by the
same name already exists. If the file assigns a list value to a variable named , then that list
is run as an instructionlist after the file is loaded.

command. Prints information from the reference manual about the primitive procedure
named by the input. With no input, lists all the primitives about which help is available. If there
is an environment variable , then its value is taken as the directory in which to look for
help files, instead of the default help directory.

Exceptionally, the command can be used without its default input and without parentheses
provided that nothing follows it on the instruction line.

Note: in the following descriptions, an can be a list or a word. In the latter
case, the word is parsed into list form before it is run. Thus, or
will work. The former is slightly preferable because it allows for a continued line (with) that
includes a comment (with) on the first line.

command or operation. Runs the Logo instructions in the input
list; outputs if the list contains an expression that outputs.

runs the instructions in the input; outputs an empty list if
those instructions produce no output, or a list whose only member is the output from running the
input instructionlist. Useful for inventing command-or-operation control structures:

command. Runs the repeatedly,
times.

command. If the first input has
the value , then runs the second input. If the first input has the value , then
does nothing. (If given a third input, acts like , as described below.) It is an error if the
first input is not either or .

For compatibility with earlier versions of Logo, if an instruction is not enclosed in parentheses,
but the first thing on the instruction line after the second input expression is a literal list (i.e., a list

296 Berkeley Logo Reference Manual

ifelse

test

iftrue
ift

iffalse
iff

stop

output

catch

throw
(throw)

tf instructionlist1 instructionlist2

tf

instructionlist
instructionlist

instructionlist
instructionlist

value
value

tag instructionlist

tag
tag value

if ifelse
if

true ifelse
false ifelse Ifelse

true false
iftrue iffalse test

iftrue iffalse

test
true test

test
false test

output output

throw

catch
throw

error
throw "error

catch
erract erract

erract [pause]

catch
catch throw

catch throw
catch

Throw "toplevel

in square brackets), the is treated as if it were , but a warning message is given. If this
aberrant appears in a procedure body, the warning is given only the first time the procedure is
invoked in each Logo session.

command or operation. If the
first input has the value , then runs the second input. If the first input has the value

, then runs the third input. outputs a value if the instructionlist contains
an expression that outputs a value.

command. Remembers its input, which must be or , for use by later
or instructions. The effect of is local to the procedure in which it is used;

any corresponding or must be in the same procedure or a subprocedure.

command. Runs its input if the most recent instruction had a
input. The must have been in the same procedure or a superprocedure.

command. Runs its input if the most recent instruction had a
input. The must have been in the same procedure or a superprocedure.

command. Ends the running of the procedure in which it appears. Control is returned to
the context in which that procedure was invoked. The stopped procedure does not output a value.

command. Ends the running of the procedure in which it appears. That
procedure outputs the value to the context in which it was invoked. Don’t be confused:

itself is a command, but the procedure that invokes is an operation.

command or operation. Runs its second input. Outputs
if that instructionlist outputs. If, while running the instructionlist, a instruction is
executed with a tag equal to the first input (case-insensitive comparison), then the running of the
instructionlist is terminated immediately. In this case the outputs if a value input is given
to . The tag must be a word.

If the tag is the word , then any error condition that arises during the running of the
instructionlist has the effect of instead of printing an error message and returning
to toplevel. The does not output if an error is caught. Also, during the running of the
instructionlist, the variable is temporarily unbound. (If there is an error while
has a value, that value is taken as an instructionlist to be run after printing the error message.
Typically the value of , if any, is the list .)

command. Must be used within the scope of a with an equal
tag. Ends the running of the instructionlist of the . If is used with only one input,
the corresponding does not output a value. If is used with two inputs, the second
provides an output for the .

can be used to terminate all running procedures and interactive pauses,
and return to the toplevel instruction prompt. Typing the system interrupt character (normally
control-C for Unix, control-Q for DOS, or command-period for Mac) has the same effect.

special form

Control Structures 297

value
value

time time

value

error

pause

continue
co
(continue)
(co)

wait

bye

.maybeoutput ()

Throw "error
throw "error throw

error

throw
throw

catch "error
throw

Throw "system
edit

error

pause Pause
continue

erract
erract [pause]

\

pause
continue

pause pause

continue

Wait 0

output
stop

can be used to generate an error condition. If the error is not caught, it prints a
message () with the usual indication of where the error (in this case the)
occurred. If a second input is used along with a tag of , that second input is used as the text
of the error message instead of the standard message. Also, in this case, the location indicated for
the error will be, not the location of the , but the location where the procedure containing
the was invoked. This allows user-defined procedures to generate error messages as if they
were primitives. Note: in this case the corresponding , if any, does not output,
since the second input to is not considered a return value.

immediately leaves Logo, returning to the operating system, without printing the
usual parting message and without deleting any editor temporary file written by .

outputs a list describing the error just caught, if any. If there was not an error caught
since the last use of , the empty list will be output. The error list contains four members:
an integer code corresponding to the type of error, the text of the error message, the name of the
procedure in which the error occurred, and the instruction line on which the error occurred.

command or operation. Enters an interactive pause. The user is prompted for
instructions, as at toplevel, but with a prompt that includes the name of the procedure in which

was invoked. Local variables of that procedure are available during the pause.
outputs if the pause is ended by a with an input.

If the variable exists, and an error condition occurs, the contents of that variable are run
as an instructionlist. Typically is given the value so that an interactive pause will
be entered on the event of an error. This allows the user to check values of local variables at the
time of the error.

Typing the system quit character (normally control- for Unix, control-W for DOS, or command-
comma for Mac) will also enter a pause.

command. Ends the current interactive pause, returning to the context of the
invocation that began it. If is given an input, that value is used as the output from the

. If not, the does not output.

Exceptionally, the command can be used without its default input and without
parentheses provided that nothing follows it on the instruction line.

command. Delays further execution for 60ths of a second. Also causes any
buffered characters destined for the terminal to be printed immediately. can be used to
achieve this buffer flushing without actually waiting.

command. Exits from Logo; returns to the operating system.

works like except that the expression that
provides the input value might not, in fact, output a value, in which case the effect is like .

−

ignore ()

` ()

for ()

298 Berkeley Logo Reference Manual

value

list

forcontrol instructionlist

runresult

,

,@

,@

run

for

For

for for [i 1 0 1] ...
for

library procedure

library procedure

library procedure

1

(invoke "print "a "b "c)

print (invoke "word "a "b "c)

for [i 2 7 1.5] [print :i]

to invoke :function [:inputs] 2
.maybeoutput apply :function :inputs
end

?
a b c
?
abc

show `[foo baz ,[bf [a b c]] garply ,@[bf [a b c]]]

[foo baz [b c] garply b c]

?
2

This is intended for use in control structure definitions, for cases in which you don’t know whether
or not some expression produces a value. Example:

This is an alternative to . It’s fast and easy to use, at the cost of being an exception
to Logo’s evaluation rules. (Ordinarily, it should be an error if the expression that’s supposed to
provide an input to something doesn’t have a value.)

command. Does nothing. Used when an expression is
evaluated for a side effect and its actual value is unimportant.

outputs a list equal to its input but with certain substitutions.
If a member of the input list is the word (comma) then the following member should be an
instructionlist that produces an output when run. That output value replaces the comma and the
instructionlist. If a member of the input list is the word (comma atsign) then the following
member should be an instructionlist that outputs a list when run. The members of that list replace
the and the instructionlist. Example:

will print

command. The first input
must be a list containing three or four members: (1) a word, which will be used as the name of a
local variable; (2) a word or list that will be evaluated as by to determine a number, the starting
value of the variable; (3) a word or list that will be evaluated to determine a number, the limit value
of the variable; (4) an optional word or list that will be evaluated to determine the step size. If the
fourth member is missing, the step size will be 1 or depending on whether the limit value is
greater than or less than the starting value, respectively.

The second input is an instructionlist. The effect of is to run that instructionlist repeatedly,
assigning a new value to the control variable (the one named by the first member of the forcontrol
list) each time. First the starting value is assigned to the control variable. Then the value is
compared to the limit value. is complete when the sign of (current - limit) is the same as the
sign of the step size. (If no explicit step size is provided, the instructionlist is always run at least
once. An explicit step size can lead to a zero-trip , e.g.,) Otherwise, the
instructionlist is run, then the step is added to the current value of the control variable and
returns to the comparison step.

Control Structures 299

Template-Based Iteration

3.5
5
6.5

?
[4 9 16 25]

?
[ada beb cfc]

do.while ()

while ()

do.until ()

until ()

template.
slots

explicit-slot question mark

show map [? * ?] [2 3 4 5]

show (map [word ?1 ?2 ?1] [a b c] [d e f])

library procedure

library procedure

library procedure

library procedure

true
true

false

true
true false

false
true

false

false
true false

map [? * ?]
[2 3 4 5]

?1 ?2

(? 1) ?1,
(? ?1)

instructionlist tfexpression
instructionlist tfexpres-

sion instructionlist
tfexpression

tfexpression instructionlist
instructionlist tfexpression

instructionlist
tfexpression

instructionlist tfexpression
instructionlist tfexpres-

sion instructionlist
tfexpression

tfexpression instructionlist
instructionlist tfexpression

instructionlist
tfexpression

command. Repeatedly evaluates the as long as the evaluated
remains . Evaluates the first input first, so the is always run at

least once. The must be an expressionlist whose value when evaluated is
or .

command. Repeat-
edly evaluates the as long as the evaluated remains

. Evaluates the first input first, so the may never be run at all. The
must be an expressionlist whose value when evaluated is or .

command. Repeatedly evaluates the as long as the evaluated
remains . Evaluates the first input first, so the is always run at

least once. The must be an expressionlist whose value when evaluated is
or .

command. Repeat-
edly evaluates the as long as the evaluated remains

. Evaluates the first input first, so the may never be run at all. The
must be an expressionlist whose value when evaluated is or .

The procedures in this section are iteration tools based on the idea of a This is a
generalization of an instruction list or an expression list in which are provided for the tool to
insert varying data. Three different forms of template can be used.

The most commonly used form for a template is form, or form. Example:

In this example, the tool evaluated the template repeatedly, with each of the members
of the data list substituted in turn for the question marks. The same value was used
for every question mark in a given evaluation. Some tools allow for more than one datum to be
substituted in parallel; in these cases the slots are indicated by for the first datum, for the
second, and so on:

If the template wishes to compute the datum number, the form is equivalent to so
means the datum whose number is given in datum number 1. Some tools allow additional

slot designations, as shown in the individual descriptions.

show (map "word [a b c] [d e f])

300 Berkeley Logo Reference Manual

named-procedure

named-slot lambda

library procedure

library procedure

library procedure

apply

invoke ()
(invoke)

foreach ()
(foreach)

map ()
(map)

?1 ?3 "proc
[proc ?1 ?2 ?3]

?

to
Apply

apply

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

template inputlist template
inputlist inputlist

template
template

template input
template input1 input2 ...

data template
data1 data2 ... template

template data
template data1 data2 ...

?
[ad be cf]

to dotprod :a :b ; vector dot product
op apply "sum (map "product :a :b)
end

to matmul :m1 :m2 [:tm2 transpose :m2] ; multiply two matrices
output map [[row] map [[col] dotprod :row :col] :tm2] :m1
end

The second form of template is the form. If the template is a word rather than
a list, it is taken as the name of a procedure. That procedure must accept a number of inputs
equal to the number of parallel data slots provided by the tool; the procedure is applied to all of
the available data in order. That is, if data through are available, the template is
equivalent to .

The third form of template is or form. This form is indicated by a template list
containing more than one member, whose first member is itself a list. The first member is taken as
a list of names; local variables are created with those names and given the available data in order
as their values. The number of names must equal the number of available data. This form is
needed primarily when one iteration tool must be used within the template list of another, and the

notation would be ambiguous in the inner template. Example:

command or operation. Runs the , filling its
slots with the members of . The number of members in must be an
acceptable number of slots for . It is illegal to apply the primitive as a template, but
anything else is okay. outputs what outputs, if anything.

command or operation. Exactly like
except that the inputs are provided as separate expressions rather than in a list.

command. Evaluates the template list repeat-
edly, once for each member of the data list. If more than one data list are given, each of them must
be the same length. (The data inputs can be words, in which case the template is evaluated once
for each character.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs a word or list, depending on the type of the

?
eea

Control Structures 301

map.se ()
(map.se)

filter ()

print filter "vowelp "elephant

library procedure

library procedure

template data
template data1 data2 ...

tftemplate data

word

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

sentence

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

true false true

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

data input, of the same length as that data input. (If more than one data input are given, the output
is of the same type as data1.) Each member of the output is the result of evaluating the template
list, filling the slots with the corresponding member(s) of the data input(s). (All data inputs must
be the same length.) In the case of a word output, the results of the template evaluation must be
words, and they are concatenated with .

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs a list formed by evaluating the template
list repeatedly and concatenating the results using . That is, the members of the output
are the members of the results of the evaluations. The output list might, therefore, be of a different
length from that of the data input(s). (If the result of an evaluation is the empty list, it contributes
nothing to the final output.) The data inputs may be words or lists.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs a word or list, depending on
the type of the data input, containing a subset of the members (for a list) or characters (for a word)
of the input. The template is evaluated once for each member or character of the data, and it must
produce a or value. If the value is , then the corresponding input constituent is
included in the output.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

302 Berkeley Logo Reference Manual

find ()

reduce ()

crossmap ()
(crossmap)

library procedure

library procedure

library procedure

tftemplate data

template data

template listlist
template data1 data2 ...

true

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

"sum

?1 ?2
?1

?2

sum
apply reduce

reduce max
sum

Crossmap
map

to max :a :b
output ifelse :a > :b [:a] [:b]
end

print reduce "max [...]

to max [:inputs] 2
if emptyp :inputs ~

[(throw "error [not enough inputs to max])]
output reduce [ifelse ?1 > ?2 [?1] [?2]] :inputs
end

outputs the first constituent of the data
input (the first member of a list, or the first character of a word) for which the value produced by
evaluating the template with that consituent in its slot is . If there is no such constituent, the
empty list is output.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs the result of applying the template
to accumulate the members of the data input. The template must be a two-slot function. Typically
it is an associative function name like . If the data input has only one constituent (member in
a list or character in a word), the output is that consituent. Otherwise, the template is first applied
with filled with the next-to-last consitient and with the last constituent. Then, if there are
more constituents, the template is applied with filled with the next constituent to the left and

with the result from the previous evaluation. This process continues until all constituents have
been used. The data input may not be empty.

Note: If the template is, like , the name of a procedure that is capable of accepting arbitrarily
many inputs, it is more efficient to use instead of . The latter is good for associative
procedures that have been written to accept exactly two inputs:

Alternatively, can be used to write as a procedure that accepts any number of inputs,
as does:

outputs a list containing the results of tem-
plate evaluations. Each data list contributes to a slot in the template; the number of slots is equal
to the number of data list inputs. As a special case, if only one data list input is given, that list is
taken as a list of data lists, and each of its members contributes values to a slot. differs
from in that instead of taking members from the data inputs in parallel, it takes all possible
combinations of members of data inputs, which need not be the same length.

library procedure

Control Structures 303

Computer Science Logo Style,

cascade ()
(cascade)
(cascade)

crossmap
:1 ?1

cascade

cascade
false

cascade

Cascade #
1 2

cascade

?2

cascade

cascade

endtest template startvalue
endtest tmp1 sv1 tmp2 sv2 ...
endtest tmp1 sv1 tmp2 sv2 ... finaltemplate

?
[a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4]

?
[1 2 3 4 5]
?
ing
?
120

to fibonacci :n
output (cascade :n [?1 + ?2] 1 [?1] 0)
end

show (crossmap [word ?1 ?2] [a b c] [1 2 3 4])

show cascade 5 [lput # ?] []

show cascade [vowelp first ?] [bf ?] "spring

show cascade 5 [# * ?] 1

For compatibility with the version in the first edition of
templates may use the notation instead of to indicate slots.

outputs the result of applying a template (or several templates, as explained below) repeatedly,
with a given value filling the slot the first time, and the result of each application filling the slot for
the following application.

In the simplest case, has three inputs. The second input is a one-slot expression template.
That template is evaluated some number of times (perhaps zero). On the first evaluation, the
slot is filled with the third input; on subsequent evaluations, the slot is filled with the result of the
previous evaluation. The number of evaluations is determined by the first input. This can be either
a nonnegative integer, in which case the template is evaluated that many times, or a predicate
expression template, in which case it is evaluated (with the same slot filler that will be used for
the evaluation of the second input) repeatedly, and the evaluation continues as long as
the predicate value is . (In other words, the predicate template indicates the condition for
stopping.)

If the template is evaluated zero times, the output from is the third (startvalue) input.
Otherwise, the output is the value produced by the last template evaluation.

templates may include the symbol to represent the number of times the template has
been evaluated. This slot is filled with for the first evaluation, for the second, and so on.

Several cascaded results can be computed in parallel by providing additional template-startvalue
pairs as inputs to . In this case, all templates (including the endtest template, if used)
are multi-slot, with the number of slots equal to the number of pairs of inputs. In each round
of evaluations, represents the result of evaluating the second template in the previous round.
If the total number of inputs (including the first endtest input) is odd, then the output from

is the final value of the first template. If the total number of inputs is even, then the last
input is a template that is evaluated once, after the end test is satisfied, to determine the output
from .

Macros

outbasket

304 Berkeley Logo Reference Manual

cascade.2
()

transfer ()

.macro ()

.defmacro

library procedure

library procedure

special form

cascade

Transfer

?in
?out

true

.Macro
to .defmacro define

repeat if

repeat

output stop local

endtest temp1 startval1 temp2 startval2

endtest template inbasket

inbasket

procname :input1 :input2 ...
procname text

to piglatin :word
output (cascade [vowelp first ?]

[word bf ? first ?]
:word
[word ? "ay])

end

to my.repeat :num :instructions
if :num=0 [stop]
run :instructions
my.repeat :num-1 :instructions
end

my.repeat 5 [print "hello]

to example
print [Guess my secret word. You get three guesses.]

outputs the result of invoking with the same inputs. The only
difference is that the default number of inputs is five instead of three.

outputs the result of
repeated evaluation of the template. The template is evaluated once for each member of the list

. maintains an that is initially the empty list. After each evaluation
of the template, the resulting value becomes the new outbasket.

In the template, the symbol represents the current member from the inbasket; the symbol
represents the entire current outbasket. Other slot symbols should not be used.

If the first (endtest) input is an empty list, evaluation continues until all inbasket members have
been used. If not, the first input must be a predicate expression template, and evaluation continues
until either that template’s value is or the inbasket is used up.

command. A macro is a special kind of procedure whose
output is evaluated as Logo instructions in the context of the macro’s caller. is exactly like

except that the new procedure becomes a macro; is exactly like with the
same exception.

Macros are useful for inventing new control structures comparable to , , and so on.
Such control structures can almost, but not quite, be duplicated by ordinary Logo procedures. For
example, here is an ordinary procedure version of :

This version works fine for most purposes, e.g.,

But it doesn’t work if the instructions to be carried out include , , or . For
example, consider this procedure:

Macros 305

my.repeat repeat
stop my.repeat example

my.repeat

repeat

my.repeat
my.repeat

my.repeat

my.repeat
hello

my.repeat
output stop

repeat 3 [type "|?? |
if readword = "secret [pr "Right! stop]]

print [Sorry, the word was "secret"!]
end

.macro my.repeat :num :instructions
if :num=0 [output []]
output sentence :instructions ~

(list "my.repeat :num-1 :instructions)
end

my.repeat 5 [print "hello]

[print "hello my.repeat 4 [print "hello]]

.macro my.repeat :num :instructions
catch "repeat.catchtag ~

[op repeat.done runresult [repeat1 :num :instructions]]
op []
end

to repeat1 :num :instructions
if :num=0 [throw "repeat.catchtag]
run :instructions
.maybeoutput repeat1 :num-1 :instructions
end

to repeat.done :repeat.result
if emptyp :repeat.result [op [stop]]
op list "output quoted first :repeat.result
end

This procedure works as written, but if is used instead of , it won’t work
because the will stop instead of stopping as desired.

The solution is to make a macro. Instead of actually carrying out the computation, a
macro must return a list containing Logo instructions. The contents of that list are evaluated as if
they appeared in place of the call to the macro. Here’s a macro version of :

Every macro is an operation—it must always output something. Even in the base case,
outputs an empty instruction list. To show how works, let’s take the example

For this example, will output the instruction list

Logo then executes these instructions in place of the original invocation of ; this prints
once and invokes another repetition.

The technique just shown, although fairly easy to understand, has the defect of slowness because
each repetition has to construct an instruction list for evaluation. Another approach is to make

a macro that works just like the non-macro version unless the instructions to be
repeated include or :

not

name
name

expr library procedure

macrop
macro?

macroexpand ()

306 Berkeley Logo Reference Manual

stop output repeat1
throw

stop output
repeat.done stop output

Localmake

apply
make make "garply "hello

`

`

true

.macro localmake :name :value
output (list "local

word "" :name
"apply
""make
(list :name :value))

end

to try
localmake "garply "hello
print :garply
end

[local "garply apply "make [garply hello]]

.macro localmake :name :value
op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

If the instructions do not include or , then will reach its base case and
invoke . As a result, my.repeat’s last instruction line will output an empty list, so the
second evaluation of the macro result will do nothing. But if a or happens, then

will output a or instruction that will be re-executed in the caller’s
context.

The macro-defining commands have names starting with a dot because macros are an advanced
feature of Logo; it’s easy to get in trouble by defining a macro that doesn’t terminate, or by failing
to construct the instruction list properly.

Lisp users should note that Logo macros are special forms. That is, the inputs to the macro are
evaluated normally, as they would be for any other Logo procedure. It’s only the output from the
macro that’s handled unusually.

Here’s another example:

It’s used this way:

outputs the list

The reason for the use of is to avoid having to decide whether or not the second input to
requires a quotation mark before it. (In this case it would— —but

the quotation mark would be wrong if the value were a list.)

It’s often convenient to use the function to construct the instruction list:

On the other hand, is pretty slow, since it’s tree recursive and written in Logo.

outputs if its input is the name of a macro.

takes as its input a Logo expression that invokes
a macro (that is, one that begins with the name of a macro) and outputs the the Logo expression
into which the macro would translate the input expression.

Error Codes

recoverable;

Error Processing

Error Processing 307

show macroexpand [localmake "pi 3.14159]

.macro localmake :name :value
op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

?
[local "pi apply "make [pi 3.14159]]

erract error

pause

erract pause
continue pause

erract

erract

erract

erract pause

erract erract
erract

[pause] erract

erract
throw "error

throw catch "error

catch "error erract
erract catch "error

power

error

If an error occurs, Logo takes the following steps. First, if there is an available variable named
, Logo takes its value as an instructionlist and runs the instructions. The operation

may be used within the instructions (once) to examine the error condition. If the instructionlist
invokes , the error message is printed before the pause happens. Certain errors are

for one of those errors, if the instructionlist outputs a value, that value is used in place
of the expression that caused the error. (If invokes and the user then invokes

with an input, that input becomes the output from and therefore the output
from the instructionlist.)

It is possible for an instructionlist to produce an inappropriate value or no value where one
is needed. As a result, the same error condition could recur forever because of this mechanism. To
avoid that danger, if the same error condition occurs twice in a row from an instructionlist
without user interaction, the message “Erract loop” is printed and control returns to toplevel.
“Without user interaction” means that if invokes and the user provides an incorrect
value, this loop prevention mechanism does not take effect and the user gets to try again.

During the running of the instructionlist, is locally unbound, so an error in the
instructions themselves will not cause a loop. In particular, an error during a pause will

not cause a pause-within-a-pause unless the user reassigns the value to during
the pause. But such an error will not return to toplevel; it will remain within the original pause
loop.

If there is no available value, Logo handles the error by generating an internal
. (A user program can also generate an error condition deliberately by in-

voking .) If this throw is not caught by a in the user program, it is eventually
caught either by the toplevel instruction loop or by a pause loop, which prints the error message.
An invocation of in a user program locally unbinds , so the effect is that
whichever of and is more local will take precedence.

If a floating point overflow occurs during an arithmetic operation, or a two-input mathematical
function (like) is invoked with an illegal combination of inputs, the “doesn’t like” message
refers to the second operand, but should be taken as meaning the combination.

Here are the numeric codes that appear as the first member of the list output by when an
error is caught, with the corresponding messages. Some messages may have two different codes

Special Variables

308 Berkeley Logo Reference Manual

proc datum
proc proc

proc
proc datum

datum

var

proc
throwtag

proc

var

proc

proc

value
value

badthing

depending on whether or not the error is recoverable (that is, a substitute value can be provided
through the mechanism) in the specific context. Some messages are warnings rather than
errors; these will not be caught. Errors 0 and 32 are so bad that Logo exits immediately.

Logo takes special action if any of the following variable names exists. They follow the normal
scoping rules, so a procedure can locally set one of them to limit the scope of its effect. Initially,
no variables exist except , which is and buried.

erract

0 Fatal internal error (can’t be caught)
1 Out of memory
2 Stack overflow
3 Turtle out of bounds
4 doesn’t like as input (not recoverable)
5 didn’t output to
6 Not enough inputs to
7 doesn’t like as input (recoverable)
8 Too much inside ()’s
9 You don’t say what to do with

10 ’)’ not found
11 has no value
12 Unexpected ’)’
13 I don’t know how to (recoverable)
14 Can’t find catch tag for
15 is already defined
16 Stopped
17 Already dribbling
18 File system error
19 Assuming you mean IFELSE, not IF (warning only)
20 shadowed by local in procedure call (warning only)
21 Throw "Error
22 is a primitive
23 Can’t use TO inside a procedure
24 I don’t know how to (not recoverable)
25 IFTRUE/IFFALSE without TEST
26 Unexpected ’]’
27 Unexpected ’}’
28 Couldn’t initialize graphics
29 Macro returned instead of a list
30 You don’t say what to do with
31 Can only use STOP or OUTPUT inside a procedure
32 APPLY doesn’t like as input
33 END inside multi-line instruction
34 Really out of memory (can’t be caught)

caseignoredp true

Special Variables 309

caseignoredp

erract

loadnoisily

printdepthlimit

printwidthlimit

redefp

startup

true
equalp beforep memberp true

[pause]

true
edit

print

print

true erase copydef

load

If , indicates that lower case and upper case letters should be considered
equal by , , , etc. Logo initially makes this variable , and buries it.

An instructionlist that will be run in the event of an error. Typically has the value
to allow interactive debugging.

If , prints the names of procedures defined when loading from a file
(including the temporary file made by).

If a nonnegative integer, indicates the maximum depth of sublist structure
that will be printed by , etc.

If a nonnegative integer, indicates the maximum number of members in
any one list that will be printed by , etc.

If , allows primitives to be erased () or redefined ().

If assigned a list value in a file loaded by , that value is run as an instructionlist
after the loading.

A

B

C

311

Index of Defined Procedures

This index lists example procedures whose definitions are in the text. The general index
lists technical terms and primitive procedures.

134
134

135
135
135

136
136

135

185
29
170

169
170
10, 13

70
70

228
136

168
136

136
31, 32

31, 32
145

185
102

107
107

231
170

65
226

70
230

107
12, 14

106
104
104

169
70

71
67

67
67

168

#gather
#test
#test2
&test
@test
@test2
@try.pred
ˆtest

a
addline
addmemr
addpunct
addrule
addword
again
allup
alphabet
always
analyze
anyof
anyof1
ask.once
ask.thrice
aunts

b
basicprompt
basicread
basicread1
beep
beliefp
bell
bind
blacktype
boundp
breadstring
break

c.if1
c.input1
c.print1
capitalize
carddis
cheat
checkempty
checkfull
checkonto
checkpriority

D

E

F

G

H

I

312 Index of Defined Procedures

168
67

28
229

230
228

103
103
105

104
103

106
104

105
105

104
104

230
146

67

228
65

168
22, 26

23, 26
21, 26

70
69

69
69

69
186

169

103
106

106
3

11, 13

144
170

28
66
66

66
27

11, 13
227

184, 244
189, 190, 240, 243

229
185
185

229

22, 27
167

168
167

140
204

145
145

145
225
226

65
71
72

225
225

103
136

231

checkrules
checktop
chop
clearword
cnt
codeword
compile
compile.end
compile.for
compile.gosub
compile.goto
compile.if
compile.input
compile.let
compile.next
compile.print
compile.return
count.
cousins
coveredp

dark
deal
decapitalize
diff.differ
diff.found
diff.same
dishand
dispile
disstack
distop
distop1
divisiblep
dorule

eraseline
expr1
expression
extract
extract.word

family
familyp
filename
findcard
findpile
findshown
firstn
firstword
fixtop
for
foreach
forletters
forloop
forstep
fullclear

getline
getsentence
getsentence1
getstuff
gprop
grade
grandchildren
granddaughters
grandfathers
guess.single
guess.triple

hand3
helper
hidden
histlet
histogram

immediate
in
index

J

K

L

M

N

O

P

Index of Defined Procedures 313

9
224

64
64

224
103

77
63

63
231

145

145

170
229

228
28

29
230

10, 13, 167

103
28
201

134
134
135
134
135
135

231
23, 26

169
229

145

187, 203
203
203

35, 36, 182

189
12

12
71
108

22, 28
11, 13

12, 15
231

169

62
76
227

74
75

133
64

64
226

226
65

40
66

67
68
65

66
66

68
182

29
230

init.vars
initcount
inithidden
initstacks
initvars
insert
instant
instruct
instruct1
invtype

justgirls

kids

lastresort
lesstext
light
linenum
lines
list.
loop

makedef
makefile
map.tree
match!
match#
match&
match?
match@
matchˆ
max.
member2
memory
moretext
mother

multifor
multiforloop
multiforstep
multiply

named.foreach
newindent
newline
newstack
nextline
nextlinenum
nextword
nofill
nonneg
norules

onegame
onekey
onetop
opinion
ordinals

parse.special
parsecmd
parsedigit
parsekey
parseloop
parsezero
play
play.by.name
playcard
playonto
playpile
playstack
playstack1
playtop
polyspi
popsaved
posn

Q

R

S
T

314 Index of Defined Procedures

139
225

186
10, 13, 24, 28
10, 13

10, 13

32
226

136, 236

71
72

21, 27
108

169
69, 227

72
70

79
68
140

68
68

183
24, 27
169
65

62
37
38

29
29

75
264
134

133
230

230
230

72
28

29
230

231
230

72
230

264
228

229
228

228
72

227
227
63

146
12, 14

11
11, 13

13
145

138
133

107
107

72
12, 14

78
72

225
264

167
167

72
15

168
136

68

pprop
prepare.guess
primep
process
putline
putwords

qa
qbind
quoted

rank
ranknum
readline
readvalue
reconstruct
redisplay
redp
redtype
reference
rempile
remprop
remshown
remshown1
rep
report
reword
rubout

s
safe.item1
safe.item2
savedp
savelines
second
series
set.in
set.special
setbound

setcnt
setcount.
setempty
setlinenum
setlines
setlist.
setmax.
setposn
settop
setunbound
setup.values
showclear
showclear1
showcode
showcode1
shown
showrow
showtop
shuffle
siblings
skip
skipfirst
skipspaces
skipword
sons
spanish
special
split
split1
stackemptyp
start
submemberp
suit

tally
term
tokenize
tokenword
top
topmar
translate
try.pred
turnup

U

W

X

Y

Z

227

67
170

28
71

80
80

13, 15

39

Index of Defined Procedures 315

twocol

upsafep
usememory

which
wingame

xref
xrefall

yesfill

zap.player

A

B

317

Apple Logo

General Index

This index lists technical terms and primitive procedures. There is also an index of
defined procedures, which lists procedures whose definitions are in the text.

*
+
-
.defmacro
.eq
.macro
.maybeoutput
.setbf
.setfirst
.setitem
/
:
<
=
>

allopen

and

apply
arc
arctan
array
array?
arrayp
arraytolist

ascii
ashift

back
background

backslashed?
backslashedp

before?
beforep

bf
bfs
bg

280
279
280

304
274

304
194, 297

272
272

272
280
290
281
273
281

Abelson, Hal xvii, 149
access, random 21
algorithm 209

278
American Standard Code for Information

Interchange 220
amplitude 248

282
149

189, 192, 300
284

281
270

273
273

271
artificial intelligence xiii, xiv, 149, 157

220, 274
282

assignment, indirect 127, 221, 259

283
287

backquote 237
274
274

BASIC 81
273
273

behaviorism 157
271

271
287

Birch, Alison xvii

C

D

318 General Index

Compulsory Miseducation

Computer Power and Human Reason

bitand
bitnot
bitor
bitxor
bk
bl

buried
bury
buryall
buryname
butfirst
butfirsts
butlast
bye

cascade
cascade.2

caseignoredp
catch

char

clean

clearscreen
cleartext
close
closeall
co

combine

contents
continue

copydef
cos
count

crossmap

cs
ct
cursor

define
defined?
definedp

dequeue

diff
difference

do.until
do.while
dribble

282
282

282
282

283
272

branching, multiple 58
291

293
293

293
271

191, 271
272

297

C++ 186
capital letter 4
cardinal number 76

303
304

case, lower 4
case, upper 4

4, 309
31, 296

catch tag 32
catching errors 36

221, 274
cipher, simple substitution 205
circular list 164
Clancy, Mike xvii
clarinet 249

284
clear text 205

285
279

2, 278
278

297
cognitive science 157

271
compiler 87
compiler, incremental 88

210
computed variable names 221
computer music 249

149
computer science xiv

291
297

conversational program 109
215, 290

281
274

cross-reference listing 78
302

cryptogram 205
cryptography xiii

285
279

279

Dao, Khang xvii
data abstraction 49
data files 1
data, program as 73
Davis, Jim xvii
debugging 143
default 129, 143, 254

74, 289
291
291

defining a procedure 74
273

Deutsch, Freeman xvii
19

280
disk, hard 2
diskette 2

299
22, 299

4, 278
dribble file 4
dynamic scope 261

E

F

G

H

General Index 319

ed
edall
edit
edn
edns
edpl
edpls
edps

empty?
emptyp

eof?
eofp
equal?
equalp
er
erall
erase
erasefile
erf
ern
erns
erpl
erpls
erps
erract
error

exp

fd

fence

fill
filter
find
first
firsts

for
foreach

form

forward

fput

fs
fullscreen
fulltext

gensym

gprop

greater?
greaterp

294
294

294
294

294
294

294
294

effect and output 52
efficiency 122
Eliza 148

273
273

end of file 3
engineering, software xiv
environment, evaluation 204

279
279

273
4, 273

293
293
293

278
278
293

293
293

293
293

309
297

errors, catching 36
evaluation environment 204
evaluation of inputs 124
evaluation, serial 126
exit, nonlocal 31

280
extensible language 186

283

285
file, dribble 4
files, data 1
fill 5

285
198, 301

302
271

191, 271
flag variables 218

298
188, 300

fork, tuning 247
281

formatter, text 5
283

Fourier series 248
Fourier, Jean-Baptiste-Joseph 248

195, 270
frequencies of occurrence 206
frequency, fundamental 246
Friedman, Batya xvii

285
285

289
fundamental frequency 246

games xiii
generated symbol 98, 160
gensym 160

98, 181, 271
Gilham, Fred xvii
Goldenberg, Paul xvii
Goodman, Paul 210

139, 291
graph 206
graphical user interface 42

281
281

hard disk 2

I

J

K

L

M

320 General Index

heading
help

hideturtle

home
ht

if
ifelse
iff
iffalse
ift
iftrue
ignore

int

invoke
item

key?

keyp

label
last
left
less?
lessp

list

list?

listp
listtoarray
ln
load
loadnoisily
local
localmake
log10

lowercase
lput
lshift
lt

macro?
macroexpand
macrop
make

harmonics 248
harmonics, odd 249

284
295

heuristic 209
284

highlighting 207
histogram 206

284
284

295
296

296
296

296
296
298

incremental compiler 88
indirect assignment 127, 221, 259
input, optional 193
inputs, evaluation of 124
inputs, keyword 257
inputs, positional 257
instruction list 73

280
intelligence, artificial xiii, xiv, 149, 157
interpreter 87
inverse video 207

300
272

iteration 181

justify 5

Katz, Michael xvii
Katz, Yehuda xvii
Kemeny, John 81

279

279
keyword inputs 257
Kurtz, Thomas 81

285
271
283

281
281

letter, capital 4
library 181
Lisp xiv, 125, 141, 160

270
list structure, modification of 160
list, circular 164
list, property 137, 138, 154, 158
list, pushdown 50

273
listing, cross-reference 78

273
270

281
295

309
290

48, 290
281

Logo 186
loop 185
lower case 4

275
270

282
283

machine language 87
macro 233

306
306

306
75, 290

N

O

P

General Index 321

map
map.se

mdarray
mditem
mdsetitem
member
member?
memberp

minus

modulo

name
name?
namelist
namep
names

nodribble

norefresh
not

number?
numberp

openappend

openread
openupdate
openwrite

or

output

palette
parse

pause
pc
pd
pe
pen
pencolor
pendown
pendown?
pendownp
penerase
penmode
penpaint
penpattern
penreverse
pensize
penup

pick

plist
plists
pllist
po
poall

300
196, 301

matcher, pattern 109
mathematics xiii

270
272

272
89, 275

274
4, 274

Mills, George xvii
Minsky, Margaret xvii

280
modification of list structure 160
modularity 15, 33

280
mouse 42
multiple branching 58
music, computer 249
musical sounds 245
mutator 22

290
291

292
291
291

node 141
4, 278

nonlocal exit 31
286

282
number, cardinal 76
number, ordinal 76

274
274

numeric iteration 183
numeric precision 260

odd harmonics 249
277

2, 277
277

2, 277
optional input 193

282
ordinal number 76
organ, pipe 249
Orleans, Doug xvii

296
output and effect 52
overtones 248

287
275

parser 92
Pascal xiv, 186
pattern 109
pattern matcher 109
pattern matching xiv

297
287
286
286

287
287

286
287
287
286

287
286

287
286

287
286

periodic waveform 245
272

pipe organ 249
141, 291

292
292

292
292

Q

R

S

322 General Index

pon
pons
pop
popl
popls
pops
pos

pot
pots
power
pprop
ppt
pr

primitive?
primitivep
print
printdepthlimit

printwidthlimit

procedure?
procedurep
procedures
product

pu
push

px

queue

quoted
quotient

radarctan
radcos
radsin
random

rawascii
rc
rcs
readchar
readchars

reader
readlist
readpos
readword

redefp
reduce
refresh
remainder
remdup
remove
remprop
repeat
rerandom
reverse

right

rl
round
rt
run
runparse
runresult
rw

292
292

273
292

292
292

284
positional inputs 257

292
292

280
139, 291

286
276

precision, numeric 260
predicate 113, 219

291
291

276
309

printer 2
309

procedure 75
procedure, defining 74

291
291
291

280
program as data 54, 73, 131
program, conversational 109
program-writing program 76
programming, systems xiii, xiv
programs, utility xiv
property list 137, 138, 154, 158
psychotherapist 147

286
273

pushdown list 50
286

quadratic time 80
quantifiers 115

96, 273

272
280

281
281
281
281

random access 21
274

277
277

277
277

reader 2, 90
278

276
279

13, 276
recursion 181

309
198, 302

286
280

272
272

139, 291
181, 295

281
271

reverse video 207
283

ringing 250
276

280
283

14, 295
275

295
276

Sargent, Randy xvii

T

U

General Index 323

save
savel

scrunch
se
sentence

setbackground
setbg
setcursor
seth
setheading
setitem
setmargins
setpalette
setpc
setpen
setpencolor
setpenpattern
setpensize
setpos
setread
setreadpos
setscrunch
setwrite
setwritepos
setx
setxy
sety
shell
show
shown?
shownp
showturtle

sin

splitscreen

sqrt

ss
st

standout
startup
step

stop

substring?
substringp
sum

test
text

textscreen
thing
throw

to
towards
trace

transfer

ts

type

unbury
unburyall
unburyname
unstep
until

294
295

science, cognitive 157
science, computer xiv
scope, dynamic 261

284
270

270
serial evaluation 126
series, Fourier 248

287
287

279
284

284
272

279
287

287
287

287
287

287
284

2, 278
278
285

2, 278
278

284
284

284
277

276
286
286

284
simple substitution cipher 205

281
sine wave 247
software engineering xiv
solitaire 41
Solomon, Cynthia xvii
sounds, musical 245

285

280
square wave 249

285
284

stack 50
44, 275

309
294

stimulus-response 157
296

substitution cipher, simple 205
274
274

279
symbol, generated 98, 160
systems programming xiii, xiv

tag, catch 32
tail recursion 201

296
73, 289

text formatter 5
285

75, 290
31, 39, 296

time, quadratic 80
288

284
293

transcript file 4
304

tree 200
285

tuning fork 247
276

293
293

293
294

299

V

W

X

Y

324 General Index

untrace

uppercase

wait

while
window
word

word?
wordp
wrap

writepos

writer

xcor

ycor

294
upper case 4

221, 275
user interface, graphical 42
utility programs xiv

van Blerkom, Dan xvii
variable 75
variable names, computed 221

297
wave, sine 247
wave, square 249
waveform 246
waveform, periodic 245
Weizenbaum, Joseph 148

299
285

270
word processor 5

273
273

285
Wright, Matthew xvii

279
writer 2

278

284

284
Yoder, Sharon xvii

	v2ch00.pdf
	v2ch01.pdf
	v2ch02.pdf
	v2ch03.pdf
	v2ch04.pdf
	v2ch05.pdf
	v2ch06.pdf
	v2ch07.pdf
	v2ch08.pdf
	v2ch09.pdf
	v2ch10.pdf
	v2ch11.pdf
	v2ch12.pdf
	v2ch13.pdf
	v2ch14.pdf

