Nabil R. Adam Bharat K. Bhargava (Eds.)

Advanced
Database Systems

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo '
Hong Kong Barcelona
Budapest



Series Editors

Gerhard Goos Juris Hartmanis

Universitit Karlsruhe Cornell University

Postfach 69 80 , Department of Computer Science
Vincenz-Priessnitz-Strafie 1 4130 Upson Hall

D-76131 Karlsruhe, Germany Ithaca, NY 14853, USA

Volume Editors

Nabil R. Adam
Department of MS/CIS, Rutgers University
Newark, NJ 07102, USA

Bharat K. Bhargava
Department of Computer Science, Purdue University
West Lafayette, IN 47906, USA

CR Subject Classification (1991): H.2, H.3, H.5.1

ISBN 3-540-57507-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57507-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper



Preface

Currently, database management is receiving wide interest in both academic and
industrial worlds. New application areas such as CAD/CAM, Geographic Infor-
mation Systems, and Multimedia are emerging. The needs of these application
areas are far more complex than those of conventional business applications.

The purpose of this book is to bring together a set of current research is-
sues that addresses a broad spectrum of topics related to database systems and
applications.

The book is divided into four parts. Part I includes seven chapters that focus
on object-oriented databases, Chapters included in Part IT address issues related
to temporal /historical database systems. Part III addresses query processing in
database and is made up of four chapters. The last part of the book includes five
chapters that discuss heterogeneity/interoperability /open system architectures
and multimedia.

We would like to express our gratitude to the reviewers for their valuable
comments.
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Chapter 1

COMPOSE: A System For Composite Specification And
Detection

Narain Gehani*, H. V. Jagadish!, O. Shmueli!

1.1 Imntroduction

An “event” is a happening of interest. Events can be simple such as, the stock
price going above a certain price, the beginning of a transaction, the update of
an object, or the temperature going above a specified limit. New events can
also be formed as a combination of other events, for example, three successive
discount rate cuts without an intervening increase, all withdrawals following a
large deposit, and the temperature going above a specified limit and staying
there for more than some time period. We call such events “composite events”.

We have developed a model for specifying composite events {216, 215]. We
were motivated to explore the specification of composite events as part of an
effort to design “trigger” facilities for the Ode object database [7, 217]. Triggers
are the key facility that distinguishes active databases [138, 524, 40, 378, 556, 395]
from passive databases. A trigger consists of an event-action pair. When an
event is detected, the associated action is executed.

The use of triggers moves code from the application to the database. This
simplifies application writing because the application now does not have to check
for the conditions specified by the triggers. Triggers also eliminate duplicate code
since the same conditions may have to be checked in multiple applications.

A trigger facility in which triggers fire on the occurrence of composite events
is more powerful than one in which triggers fire on the occurrence of simple events
because it allows users to write triggers that could not be easily expressed before.
Composite event specification is useful for many application domains besides
databases:

1. Financial Applications: Trades can be executed in response to an observed
pattern of (trading) events in a stock market.

*AT&T Bell Laboratories
tAT&T Bell Laboratories
{AT&T Bell Laboratories and Technion -Israel Institute of Technology



4 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION

2. Fraud Detection: Particular sequences of credit card purchases may point
to fraudulent use.

3. Production Management: Particular sequences of defects could indicate
difficulties that must be brought to the attention of a supervisor.

Composite events are specified as event expressions. Qur basic notation for
specifying composite events has the same expressive power as regular expressions.
Thus the occurrence of a composite event is detected by a finite automaton that
implements the event expression. Despite the equivalence of expressive power,
our notation is specially suited for specifying composite events. For example,
it allows for the easy specification of composite events whose components can
overlap and allows uninteresting events to be screened out.

We extend our basic notation with “masks”, correlation variables, and pa-
rameters, thereby stepping beyond the domain of regular expressions. However,
we can still implement event expressions that use these facilities by using au-
tomata augmented with “mask” events and by using “generic” automata. This
allows us to use finite automata optimization techniques to generate efficient
implementations for recognizing the occurrence of composite events.

We have built a prototype system, COMPOSE, for specifying and detecting
composite events. A real-time stock trade feed is used to experiment with specifying
and detecting stock market related events.

In this chapter, we describe how composite events are specified, illustrate composite
event specification, give an overview of COMPOSE, and describe the construction of
the finite automata.

1.2 Event Expressions

Primitive events are events that are known to or supported by the database system.
Examples of some primitive events, in object-oriented databases [215], are object ma-
nipulation actions such as creation, deletion, and update or access by an object method
(member function). Events can be specified to happen just prior to or just after the
above actions. In addition, events can be associated with transactions and specified
to happen immediately after a transaction begins, immediately before a transaction
attempts to commit, immediately after a transaction commits, immediately before a
transaction aborts, and immediately after a transaction aborts. Examples of other
events are time events such as clock ticks, the passage of a day, an hour, a second, or
some other time unit. Finally, stock trades and the raising or lowering of interest rates
are examples of financial events, and company announcements are examples of news
events.

Composite events are specified as event expressions. An event ezpression can be
NULL, any primitive event a, or an expression formed using the basic operators A, !
(not), relative and relative-.

Formally, event expressions are mappings from histories (sequences of primitive
events) to histories:

E : histories — histories

The result of applying an expression E to a history h, which is also a history, is denoted
by Efh].
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Here are the semantics of some simple event expressions:

1.
2.
3.

Elnull] = null for any event F, where null is the empty history.
NULL[R] = nall.

afh)], where a is a primitive event, is the maximal subset of & composed of all
event occurrences of the symbol a.

1.2.1 Basic Operators

Let E and F' denote event expressions and h, hi, hz denote event histories. Here are
the semantics of expressions formed using the basic operators:

1.
2.
3.

(E A F)h] = hiNhy where hi = E[h] and ko = FT&].
('EN[R} = (h ~ E[h)).
relative(E, F)[h] are the event occurrences in k at which F is satisfied assuming

that the history started immediately following some event occurrence in h at
which F takes place.

Formally, relative(E, F)[h] is defined as follows. Let E'[A] be the i** event
occurrences in E[h]; let h; be obtained from k by deleting all event occurrences

before E‘[h]. Then relative(E, F)[h] = Ufi[?] Flhi).

. relative + (E)[k] = |J2, relative’ (E)[h] where relative'(E) = E and

i=1

relative’(E) = relative(relative’™'(E), E).

1.2.2 Additional Operators

Besides the basic operators, we provide some additional operators that make composite
events easier to specify. These operators do not add to the expressive power provided by
the basic operators. Consequently, they can be defined in terms of the basic operators.

Let h denote a non-null history, and E, F, and E; denote event expressions. The
new operators are

1

2.
3.

Ev F=I(EAIF).
any denotes the disjunction of all the primitive events.

prior(E, F)specifies that an event F that takes place after an event E has taken
place. £ and F may overlap. Formally, prior(E, F) = relative(E, any) A F.

. prior{E, ..., En) specifies occurrences, in order, of the events Ey, Es ..., En,.

prior(Ey, ..., Epm) = prior((prior(Ei,..., Em ~1), En).
sequence(Es, ..., Em) specifies immediately successive occurrences of the events
Ey, Es ..., FEp:
(a) sequence(Er,..., Em) = sequence((sequence(Ey, ..., BEm — 1), Bn).
(b) sequence(E:, E;) = relative(E,!(relative(any, any))) A E,.
The first operand of the conjunction specifies the first event following event

Ey. The second operand specifies that the event specified by the complete
event expression must satisfy E.

. first identifies the first event in a history.

first = ‘relative(any, any).
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7. (E|F)[R] = F[E[h]];i.e., F applied to the history produced by £ on k. Operator
| is called pipe, with obvious similarity to the UNIX § pipe operator.

8. (< n > E) specifies the n** occurrence of event E. Formally,
(< n>F) = ((Elseg(any:, anys, ..., any,))|first),
where each any; is simply any.

9. (every < n> E) specifies the n'", 2n'", ..., occurrences of event E. Formally,
(every < n > E) = (Elrelative + (< n > any)).

10. (F/ E)h] = F[h'] where ' is null if E[h] = null and otherwise A’ is
the history obtained from A by eliminating all the event occurrences before and
including (< 1 > E)[k]. Formally, F/E = relative((!prior(E, any) A E), F),
equivalently, F/E = relative((E|first), F).

11. Suppose that E takes place m timesin h. F /+ E[h]=J_, F[ }' i].
hi, 1 <= i < m — 1, is obtained from % by eliminating all event occurrences
before and including event (< ¢ > E)[k] and all event occurrences including
and following (< ¢+ 1 > E)[A]. k;, is obtained from h by eliminating all event
occurrences before and including event (< m > E)[A].

F is used to delimit sub-histories of h, where the “delimiter” are event occur-
rences at which F takes place. F is applied to each such sub-history, and the
results of these applications are combined (unioned) to form a single history.

12. firstAfter(Ey, E», F){h] specifies events E; that take place relative to the last
preceding occurrence of E; without an intervening occurrence of F relative to
the same Fj. Formally,

firstAfter(E1, Ez, F) = (E2 Alprior(F, any)) [+ E1

13. before(E) = prior(E, any).

14. happened(E) = E V prior(E, any).

15. prefiz(E) [h] is satisfied by each event occurrence e such that there exists a
history h’ identical to » up to event occurrence e, and F is satisfied in A’ at
some event occurrence following e. In other words, prefiz(E) is recognized at
each event occurrence as long as a possibility exists that an E event will be
recognized eventually. This operator is normally used in the form !prefiz(E),
which occurs as soon as we can be sure that £ cannot occur.

16. E + T is a series of zero or more F events followed by a T event.
ExT = T Alprior(1E, T).

1.2.3 Regular Expressions

Regular expressions are widely used for specifying sequences. The above event expres-
sion langnage (basic operators with or without the additional operators) has the same
expressive power as regular expressions [216]. It can be shown that the operators A,
!, relative, and relative+ constitute a minimal operator set; reducing it will make the
expressive power less than that of regular expressions.

COMPOSE event expressions differ from regular expressions in that the focus on
ordered sets rather than strings. We believe that our event expression operators are
more suitable for specifying composite events. However, since our event expressions
are equivalent to regular expressions we can implement them efficiently using finite
automata.

S$UNIX is a trademark of USL




1.3. EXAMPLES 7

1.3 Examples

We now show how composite events are specified by means of examples.

1.3.1 Simple Examples

1. All occurrences of an event a:
a

2. The 5* occurrence of event deposit:
(<5>deposit)

3. A deposit event followed immediately by a withdraw event:
sequence(deposit, withdraw)

4. A deposit event followed eventually by a withdraw event:
prior(deposit, withdraw)

5. A deposit event followed eventually by withdraw with no intervening interest:
relative(deposit, !'before(interest)) &% withdraw

6. Event expression that is satisfied when an E occurs provided there is no “non E”
event before it. We are essentially recognizing a series of E events:
E &% ‘prior (!E, E)

1.3.2 Discount Rate Cut

The United State Federal Reserve Board raises and lowers a key interest rate, called
the discount rate, to control inflation and economic growth. Three or more successive
discount rate cuts (D) without an intervening discount rate increase (I) is a rare phe-
nomenon and is of interest to the financial community. Many other events can occur,
for example, the prime rate may be cut and the stock market can crash, but these
events do not interest us here. Our problem is to write an event expression that is
satisfied by such cuts in the discount rate.

Here is an example history with the dots marking the events in the history with the
discount rate cut events labeled by D (decrease) and increases labeled by I (increase):

The composite event of interest occurs at the last two D events (marked with #).

Let us create an event expression that specifies a composite event satisfied when
three or more successive discount rate cut events D take place without an intervening
rate increase event I. We specify this composite event in steps. First, the event ex-
pression

prior(I, D)
specifies D events that are preceded by an I event. Expression

‘prior(I, D)
specifies all events except the occurrences of D that are preceded by I. Expression
lprior(I, D) && D

specifies D events that are not preceded by an I event.
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Figure 1.1: Discount rate cut

The expression
relat‘:ive(D, lprior(I, D) &% D)

specifies a D event followed eventually by another D event with no intervening I
events. This expression gives us a pair of D events with no intervening I events. Note
that in this case, the relative operator is used to look at the history starting after a
D event.

Finally, the event that we are interested in can be specified as

relative (relative (D, !prior(I, D) &% D), !prior(I, D) && D)

The outermost relative finds another D without a preceding I giving us three D
events without an intervening I event.

Using the pipe operator, we can write the composite event for the three successive
discount rate cuts simply as

(I 1l D) | sequence(D, D, D)

1.3.3 Attributes and Masks

Primitive events can have atéributes. These could be associated with the event itself,
such as the user id, transaction id, parameters to a function invocation (if the event
is the function invocation). Event attributes can also be determined from the state of
the world at the time the event occurred, such as by reading the system clock or by
performing a database query.

Arbitrary predicates can be defined on these attributes and, when false, these
predicates “mask” the occurrence of the corresponding event.

As an example of an event with attributes, consider stock trade events which have
the form
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stock-symbol(current price, intra-day-low, intra-day-high, volume)

Suppose we are interested in a stock trade in which the price of Apple Computer
{stock symbol AAPL) has risen by 10% or more compared to it’s low of the day. Such
a composite event can be written as

AAPL(current, low, high, volume) & current > low*1.1

where & is the mask operator.

As an other example, define the event “large withdrawal” as the basic event “ex-
ecution of the method withdrawal” qualified with the mask “withdrawal amount >
10007,

withdraw(Item, int q) & q > 1000

It is commonly the case in a database that an integrity constraint is to be checked
immediately after an update {or creation) of an object. This constraint can be written
as a Boolean expression, and used as a mask:

(after update | after create) &
Boolean-expression-specifying-integrity-constraint

1.3.4 Parameters

Some or all of the attribute can be designated as parameters. QOur terminology is
that attributes are immediate, referring only to the current primitive event, while
parameters are attributes that have been saved over one or more event occurrences.
While logically there may be little difference between the two, as we shall see in the
next section, there is a world of a difference in terms of implementation effort. We have
chosen to make this difference evident to the user in the interface that we provide. The
implementation difference arises from the fact that non parameter attribute values
need only be accessible with the occurrence of the current event while parameter and
attribute values, in the worst case, must be available from the “beginning of history”.

Once parameters are available, one common requirement is equality between pa-
rameter values in two different events in an event expression. Rather than move the
automaton and check for equality as a distinct predicate, it is more efficient to perform
the equality check immediately and the (second) move as a function of the equality
test result.

In the following example, the attribute I is declared as a parameter. The first
deposit of an item after a large withdrawal can be written as:

first (deposit(Item I, int amt)) /+ withdraw(Item I, int q) & q > 1000

The use of the common parameter I indicates that the item withdrawn and de-
posited must be the same.
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1.3.5 Correlation Variables

Correlation variables are used to refer to the same event in the history in different
parts of an event expression. Consider the following event expression F that contains
the correlation variable z:

E = 3z prior(b =z, c) Alrelative(z, prior(a, c)) A relative(z, prior(d, c))
Consider the following histories (% is a prefix of h2 which is a prefix of h3):

hi=ebac
ho=cbacdbc

hy=ebacdbedbec

We want to determine if F can be satisfied (will trigger) at the last event, a c event,
in the above histories. When determining the points at which F can be satisfied in the
above histories, the correlation variable z will be associated with a specific b event in
each history. In case of by, £ must be associated with the only b present; F will not
trigger at ¢ because !relative(z, prior(a, ¢)) is not satisfied. In case of k2, there are
two b events. The first has the same problem as in h;. If we associate z with the second
b in ho, then relative(z, prior(d, c¢)) is not satisfied. In case of k3, there are three
choices of b with which to associate z. If we choose the first, !relative(z, prior(a, c))is
not satisfied. If we choose the third, relative(z, prior(d, c)) is not satisfied. However,
if we choose to associate z with the second b, then F will trigger at the last c.

To appreciate the role played by z, consider the event expression E’', given below,
which is the same as E except that the last occurrence of = has been replaced by b.

E' = 3Jzprior(b =13, c) A lrelative(z, prior(a, ¢)) A relative(b, prior(d, c))

E' triggers on ha in the same way as E. However, it also triggers on kz, where z is
associated with the second b. relative(d, prior(d, c)) is satisfied now on account of the
first b, which does not have to be associated with «.

Finally, the event expression E”, without correlation variables, given below, does
not trigger on ki1, k2, kg, or any other history of which k; is a prefix. The reason is that
hy has in it the sequence b a ¢ guaranteeing that the clause !relative(d, prior(a, c))
can never be satisfied.

E" = prior(b, c) A lrelative(b, prior(a, c)) A relative(b, prior(d, c))

1.4 Composite Event Detection

We detect composite events by implementing the event expressions as finite automata.
These automata are fed as input the primitive events that make up the event expression.
The composite event associated with an automaton is said to occur when the automaton
reaches an accepting state.

Automata construction is by inductive composition of automata for sub-expressions.
Primitive events are expressed in terms of a simple 3 state automaton, one of which
is the start state and another the accepting state. From all states, the transition on
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event a, the event to be recognized, the transition is to the accepting state. On all
other events, the transition is to the non-accepting (non-start) state.

Composition rules are specified for each of the basic event expression operators.
These rules are used to compose the antomaton for an expression from its sub-expressions.
By and large, the additional operators described are rewritten, by compiler transforma-
tion, into basic operators. However, specific direct composition rules were developed
for a few key additional operators, such as prefiz. ‘

1.4.1 Design Decisions

1. Automata are kept deterministic at all stages of the construction. Non deter-
ministic automata require that we keep track of the various states computation
threads are in, and so are ineflicient at run time. Moreover, negation is a problem
for non deterministic automata.

2. Reachability analysis is used to eliminate unreachable states in the automaton.

3. The number of states in the automaton is minimized by merging equivalent
states. Reachability analysis and state minimization is performed after each stage
of the comstruction so that we always have a minimal deterministic automaton
for the sub-expression at hand.

4. Most event symbols are ignored in most states: the number of transitions to
be stored explicitly is minimized by explicitly recording only those that cause a
transition out of a state, and letting a “self-loop transition” be the default.

5. We may have a large number of events in our system. Individual automata may
be interested in small subsets of these events. Letting each automaton “work”
on the whole event set is wasteful. So, we have the concept of local events specific
to an automaton. With each automaton we associate an array lnames with as
many entries as there are global system wide events. Entry Inames[i] contains
the local name of the global event 1. If the automaton is not “interested” in global
event 1 then Inameli] contains otherwise, where otherwise is a local alphabet
symbol denoting “all other events”.

1.4.2 Masks

A mask predicate is treated like any other operator in terms of automaton construction.
Any mask M associated with an event expression F is implemented by modifying the
automaton A that implements event expression F. For each accepting state, F, of the
automaton A:

1. Two new states MTruer and M Falser are created.

2. Any transitions from F to other states are copied to MTruer and M Falser.
These transitions are deleted from F.

3. F is changed from an accepting state to a non-accepting state and MTruer is
made an accepting state.

4. Transitions from F to MTruer on event ETruey and from F to M Falser on
event FFalseps are added.

Conceptually, after each event symbol is input, every mask predicate is evaluated,
and a pseudo-event ET'rue; or EFalse; is generated for each mask predicate. Except
in a state where this mask is to be.evaluated to determine further transition, these
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events are ignored. Moreover, the order in which these mask predicates are evaluated
is immaterial.

Practically speaking, of course, every mask predicate cannot be evaluated after
every event. Instead, we mark states that have outgoing transitions on such pseudo-
events. When the automaton reaches such a state, it evaluates the corresponding
predicate and makes the necessary transition. - The effect obtained is the same as in
the conceptual scheme of the previous paragraph.

1.4.3 Generic Automaton For Implementing Events With
Parameters

Event expressions with parameters can be thought as representing the union under
all possible assignments of values to parameters of the expressions with those values
substituted. This definition is used to implement such expressions as follows

1. Given an expression F, convert it to a finite set of expressions Fi, ..., Ex whose
union is equivalent to E, such that all variables occurring (as parameters) in any
E; can be assumed to represent distinct values different than any constant men-
tioned in the expression (i.e. if X and Y are variables and € a constant in some
E;,then X and Y are never suppose to represent the same value or the value C).
This is done by rewriting. Thus an expression of the form relative(F(X), F(4))
becomes the union of relative(F(4), F((4)) and relative(F(X’), F(4)), X'l = 4.

2. Each E; is now handled separately by associating a deterministic minimal size
automaton with E;, viewing all symbols (such as F(50), F(X), or b) as ordinary
alphabet symbols.

3. To handle F; we keep track separately of each combination of values for pa-
rameters in E; and the state the automaton denoted by this combination is in.
We index these antomata by the state they are in. We can efficiently perform
state transitions in “groups” for all automata in the same state seeing the same
symbol.

4. In general, there may be infinitely many sets of values associated with the pa-
rameters of an expression F. At any point in time however, we are exposed to
finitely many such sets of values as the sequence of events up to this point is
finite. So, we handle copies for values combinations we have seen thus far and
retain a state for combinations we have not yet seen in a generic way. Specifi-
cally, suppose there are two parameters X and Y. If we have only seen X = 4
but no Y values yet, we keep the state associated with 4, » where * denotes “any
domain values not yet seen”. We also maintain *, * in that case where *! =4 is
assumed. When new domain values are encountered some generic automata are
“Instantiated” to those values and continue as “independent copies”; the generic
copy continues as well under the assumption that the values denoted by a * in
a generic automaton is different than all domain values seen for that parameter
so far.

1.5 Compose System

A prototype COMPOSE system has been written in Concurrent C/C++ [213], which
is a parallel version of C [316] and C++ [563]. The event stream fed to the system
consists of real-time stock trades.
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The prototype COMPOSE system is structured as follows:

Database

. Event
gilreer:m e——a%ﬁ'gﬁ% _ . Manager
1 /

Figure 1.2: The COMPOSE System

The circles represent processes. The event manager process accepts composite
event specifications from the user, and the events that occur are fed to it by the event
stream processes (one for each event stream). The trigger firing process and the event
manager processes share a common data structure which contains the triggers. The
event manager constructs and stores the finite automata implementing the triggers and
the global event mappings in the shared data structure. The trigger firing process takes
the events it receives from the event stream processes and looks for active triggers in
the shared data structure and then “feeds” them the events after tramslating events
into numbers using the global mapping. To be precise, the global event numbers are
mapped to local event numbers using the local mapping table associated with each
automaton.

Since the event manager and trigger firing processes can be simultaneously accessing
the shared data, accesses to the shared data are serialized by implemented the shared
data structure as a “capsule” [214].

The trigger firing process reports triggers that fire to the user process which is the
COMPOSE system’s interface to the user.

1.6 Examples of Automata Generated by Com-
pose :

The composite event expression for the discount rate cut example shown earlier was
(I {i D) | sequence(D, D, D)

We now show the finite automaton for the above event expression. First, here is
the automaton for the event expression I || D, which is the first operand of the pipe
operator | (Figure 3):

The automaton for the second operand of the pipe operator, i.e., sequence(D, D,
D), is (Figure 4)
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Figure 1.3: Automaton for (I || D)

The above two automata are combined to form the automaton for the complete
expression (I 1] D) | sequence(D, D, D). The resulting automaton is (Figure 5)

1.7 Conclusion

Our base event language has the same expressive power as regular expressions, or
propositional temporal logic with quantifiers (QPLTL or SOLLO) (see [180]). However,
our event specification language is more suitable to specifying trigger events because of
its algebraic nature which enables free composition of events into more complex ones.

We implement our event expressions by using finite automata. These automata
take as input, on a continuous basis, simple events. Their current state represents a
partial (complete) detection of the associated composite event.

Masks and parameters extend our base language to a fragment of temporal logic
whose expressive power is beyond that of regular expressions. We implement a mask by
adding two additional states to the corresponding antomaton without a mask. Tran-
sitions to these states take place based on whether the mask predicate is true or false.
Evaluation of the mask takes us beyond finite automata. We implement parameters
using generic automata. These automata are used to instantiate ordinary antomata for
each combination of new parameter values. We are currently investigating technigues
for optimizing such finite automata [421].

In a distributed database, there may not be a well-defined unique system history. In
[287] we discuss how to coordinate the different “views” of the history seen at different
sites.

As mentioned earlier, the motivation behind our work was the design of “trigger”
facilities for the Ode object database [7, 217].

We plan to integrate the COMPOSE event specification facilities into the Ode
trigger facility.
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Figure 1.4: Automaton for sequence(D, D, D)

Figure 1.5: Automaton for (I || D) | sequence(D, D, D)



Chapter 2

Access Controls in Object-Oriented Database Systems —
Some Approaches and Issues

Elisa Bertino*, Sushil Jajodia', Pierangela Samaratit

2.1 Introduction

Object-oriented database management systems (OODBMSs) today represent one of
the most active areas in both academic and industrial worlds. OODBMSs combine
object-oriented programming technology with database technology, thus combining
the strengths of both. The need for these systems has been driven by several advanced
applications, such as CAD/CAM, cartography, multimedia, for which relational sys-
tems have been proved inadequate. A serious problem with these systems is that they
do not provide adequate access control mechanisms to prevent unauthorized disclosure
of information. They do not provide for the mandatory security [146] and, in most
cases, do not even provide adequate discretionary authorization facilities (a notable
exception is presented by the ORION/ITASCA system [460]). We can expect, how-
ever, that the broadening of application scope of these systems will require them to
enforce both mandatory and discretionary security.

Mandatory security policies govern access to information by individuals on the basis
of the classifications of subjects and objects in the system. Objects are passive entities
storing information, such as data files, records, field in records, etc. Subjects are active
entities that access the objects. Generally, a subject is considered to be an active
process operating on behalf of a user. Access classes are associated with every subject
and object in the system, and the access of a subject to an object is granted iff some
relationship, depending on the access mode, is satisfied between the classifications of
the subject and the object.

An access class consists of two components: a security level and a set of categories.
The security level is an element of a hierarchically ordered set. The hierarchical set
generally considered consists of Top Secret (TS), Secret (S), Confidential (C) and
Unclassified (U), where TS > 8§ > C > U. The set of categories is an unordered set
(e.g., NATO, Nuclear, Army, etc.). All access classes are partially ordered as follows:

*Dipartimento di Informatica e Scienze dell’Informazione, Universita di Genova, Via L.B.
Alberti 4, 16132 Genova, Italy.

tCenter for Secure Information Systems and Department of Information and Software Sys-
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39/41, 20135 Milano, Italy.
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An access class ¢; dominates (>) an access class ¢, iff the security level of ¢, is greater
than or equal to that of ¢; and the categories of ¢; include those of c2. Two classes ¢1
and ¢, are said to be incomparable if neither ¢1 > ¢z nor ¢2 > ¢; holds.

An access class is assigned to every object and every subject in the system. The
security level of the access class associated with an object reflects the sensitivity of the
information contained in the object, i.e, the potential damage which could result from
unauthorized disclosure of the information. The security level of the access class associ-
ated with a user, also called clearance, reflects the user’s trustworthiness not to disclose
sensitive information to users not cleared to see it. Categories are used to provide finer
grained security classifications of subjects and objects than classifications provided by
security levels alone, and are the basis for enforcing need-to-know restrictions.

Access control in mandatory protection system is based on two principles that were
formulated by Bell and LaPadula [43] and that are followed by all models enforcing a
mandatory security policy. They are:

Simple Security Property: A subject is allowed a read access to an object only if the
clearance of the subject dominates the access class of the object.

*_Property: A subject is allowed a write access to an object only if clearance of the
subject is dominated by the access of the object.

These principles, also known as “no-read-up” and “no-write-down,” prevent in-
formation to flow directly from high level subjects to subjects at lower levels. High
assurance systems must additionally protect against illegal indirect information flows
through covert or signaling channels [146].

Discretionary protection policies govern the access of users to the information on
the basis of the users’s identity and the rules that specify, for any user and any object
in the system, the types of accesses (e.g., read, write, or execute) the user is allowed
on the object. The request of a user to access an object is therefore checked against
the specified authorizations; if there exists an authorization stating that the user can
access the object in the specific mode, the access is granted, otherwise it is denied. This
type of access control is sometimes called a closed policyin that a user is not allowed an
access unless he or she has been explicitly so authorized. Alternatively, an open policy
could be applied where all accesses to be denied have to be fully specified, and users
are allowed all those accesses for which they have not been explicitly denied. More
recent models combine the two policies, allowing to explicitly specify both the accesses
to be authorized as well as the accesses to be denied by the users. The resulting access
control takes into consideration both authorizations and negations in order to decide
whether a request of a user to access an object should be granted.

Discretionary protection models generally allow users to grant other users autho-
rizations to access the objects. There are many policies that can be applied for the
administration of authorizations in systems enforcing discretionary protection. Some
examples are: centralized administration where only some privileged user is allowed to
grant and revoke authorizations, ownership where the creator of an object is allowed to
grant and revoke other users accesses on the object created, and decentralized admin-
istration where other users can be allowed, at the discretion of the owner of an object,
to grant and revoke authorizations on the object.

Some discretionary models also admit the possibility of defining groups of users
and specifying access authorizations for the groups. Authorizations specified for a
group can be used by any user belonging to the group. Sometimes predicates can
also be associated with authorizations, specifying conditions to be satisfied for an
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authorizations to be considered valid. These conditions can be defined, for example,
n terms of the time an access can be executed or in terms of the content of the object
to be accessed.

Mandatory as well as discretionary security models have been formalized for the
protection of information in operating systems and database systems. However, the
characteristics of object-oriented data models introduce new protection requirements
that make the existing security models not sufficiently adequate for ensuring security
of the information.

In particular, applying the Bell-LaPadula paradigm to object-oriented data models
is not straightforward for two reasons. First, while this paradigm has proven to be quite
effective for modeling security in operating systems, as well as relational databases, it
appears somewhat forced when applied to object- oriented systems [288]. The problem
is that the notion of an object in the object-oriented data model does not correspond to
the Bell-LaPadula notion of an object. The former combines the properties of a passive
information repository, represented by attributes and their values, with the properties
of an active entity, represented by methods and their invocations. Thus, the object of
the object-oriented data model can be thought of as the object and the subject of the
Bell-LaPadula paradigm fused into one. The second reason is the increased complexity
of the object-oriented data models. An objeci-oriented data model includes notions
such as complex objects and inheritance hierarchies, that must be accounted for when
designing a secure object-oriented database model. As for the discretionary policy, the
policy has to be extended to take into consideration the characteristics of the object
oriented systems such as subtyping, aggregation, and versioning.

In spite of this complexity, the use of an object-oriented approach offers several
advantages from the security perspective [397]. The notion of encapsulation, which
was originally introduced in object-oriented systems to facilitate modular design, can
be used to express security requirements in a way that is comprehensible to the users.
Moreover, the notion of information flow in security has a direct and natural representa-
tion in terms of message exchanges; messages and their replies are the only instruments
of information flow in OODBMSs. The conceptual clarity and simplicity of the model
translates into simplicity of design of security mechanisms.

In this chapter we will review the current state of the art in both mandatory and
discretionary access controls in OODBMSs. We will also point out some open problems
in the field and outline current research directions. The chapter is organized as follows.
Section 2.2 summarizes the main concepts of object-oriented data models. Section 2.3
discusses mandatory access control by presenting in detail the message filter model
proposed recently by Jajodia and Kogan [288], followed by a review of other mandatory
access control models. Section 2.4 presents some models for enforcing discretionary
access control. Sections 2.5 and 2.6 list some research issues related to mandatory and
discretionary protection in OODBMSs. Finally, Section 2.7 draws some conclusions.

2.2 Object-oriented Data Model

An object-oriented model can be characterized by a number of concepts [55]:

e Fach real-world entity is modeled by an object. Each object is associated with a
unique identifier (called OID) that makes the object distinguishable from other
objects.

o Each object has a set of atiributes (properties) and methods (operations). The
value of an attribute can be an object or a set of objects. The set of attributes
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together with the set of methods represent the object structure and behavior,
respectively.

e The attribute values represent the object’s status. This status is accessed or
modified by sending messages to the object to invoke the corresponding methods.
The set of messages that can be sent to an object is the object interface.

o Objects sharing the same structure and behavior are grouped into classes. A class
represents a template for a set of similar objects. Each object is an instance of
some class.

e A class can be defined as a specialization of one or more classes. A class defined
as specialization is called a subclass and inherits attributes and methods from
its superclass(es).

There are many variations with respect to the basic concepts, especially when
comparing OODBMSs and object-oriented programming languages (OOPLs). The
concepts that we have chosen to include are used mainly as a basis for our discussion;
we do not claim them to be a definition of the object-oriented paradigm. However,
despite all differences, it has been widely recognized that this paradigm offers several
advantages. First of all, the separation between an object’s status and interfaces allows
clients to use the services provided by an object without knowing how the services are
implemented (information hiding). Therefore, an object’s implementation may change
without impacting other objects or applications using the services provided by the
object. The inheritance mechanism favors re-usability of both object interfaces and
implementations. Moreover, in most models, a subclass may override the definition of
inherited methods and attributes. Therefore, inheritance lets a class specialize another
class by additions and substitutions.

In the database field, the object-oriented paradigm brings other important advan-
tages. First, it allows complex objects to be directly represented by the model, without
having to flatten them into tuples, as in the case of relational systems. Second, a tra-
ditional DBMS only centralizes data; high-level semantic operations on data are still
dispersed among application programs. By contrast, a portion of the high-level seman-
tic operations in an object-oriented database is also centralized. As a consequence, the
application programming in object-oriented systems is simplified, since it often consists
of invoking and assembling predefined operations — the methods.

The information hiding capability offers, in addition to the previously mentioned
advantages, a great potential for data security. Surrounding an object by methods
makes it possible to interpose an additional layer between the object and its users.
Therefore, arbitrary complex content-based access rules can also be supported.5 Many
aspects and issues in exploiting the object-oriented approach for security will be dis-
cussed in the following sections.

In addition to the basic concepts listed above, OODBMSs often provide additional
semantic concepts, such as composite objects and versions, that we will briefly discuss
in the following. The reason for including those additional concepts is to illustrate
their impact on the definition of a discretionary authorization model.

Composite objects

$A common distinction found in authorization models is between content-independent ac-
cess rules, whose enforcement depends only on the object names, and content-dependent access
rules, whose enforcements depends on the object information content.
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For composite objects we will use the same model as the one given in [320], since
this model is quite general. The model distinguishes between two types of references
among objects: general, and composite. The latter is used to model the fact that a
referenced object is actnally a part of (or a component of) a given object. An object
and all its components constitute a composite object. Composite references are further
refined into shared/exclusive and dependent/independent. A shared composite refer-
ence allows the referenced object to be shared among several composite objects, while
an exclusive composite reference constrains an object to be component of at most one
composite object at a time. A dependent (independent) composite reference models
the fact that a component object is dependent (independent) on the existence of the
composite object(s) of which it is a part. Since these two dimensions can be combined,
four different types of composite references are possible.

Versioned objects

Several versioning models have been proposed in the literature [310]. Here, we
present some basic aspects of versioning mechanisms that should be sufficient for dis-
cussing the authorization model. In general, a versioned object can be seen as a hier-
archy of objects, called version hierarchy. Each object in a version hierarchy (except
for the root object) is derived from another object in the hierarchy by changing the
values of one or more attributes of the latter object. Objects in a version hierarchy
are first-class objects. Therefore, they have their own object-identifier (OIDs). Infor-
mation about the version hierarchy is often stored as part of the root object, called
generic object. Two types of object references are supported in most version models
to denote objects within a version hierarchy. The first, called dynamic reference, is a
reference to the generic version of a version hierarchy. It is used by users who do not
require any specific version. The system selects a version (default version) to return to
users. The default version is in most cases the most recent stable version. Commands
are usually available that allow users to change the default version. The second type
of reference, called static, is a reference to a specific version within the version hier-
archy. Another important aspect concerns stability of versions in version hierarchies.
In most cases, versioned objects are shared among several users. Mechanisms should
be provided so that users receive consistent and stable versions. Most version models
distinguish between transient and stable versions. A transient version can be modified
or deleted. However, no versions can be derived from a transient version. A transient
version must first be promoted to a stable version before new versions can be derived
from it. By contrast, a stable version cannot be modified. However, it can be used to
generate new versions.

2.3 Mandatory Access Control

In this section we present an approach to mandatory access control based on the
message filter model proposed recently by Jajodia and Kogan [288]. The message filter
model is an information flow model whose main elements are objects and messages.
The chief advantages of this model are its compatibility with the object-oriented data
model and the simplicity with which security policies can be stated and enforced.

In the message filter model [288, 289, 487}, each object is viewed as a unit of security
and, therefore, it is assigned a unique classification. Objects can communicate (and
exchange information) only by means of sending messages among themselves. Even a
basic object activity such as access to internal attributes, object creation, or invocation
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of local methods are to be implemented by having an object send messages to itself;
these messages are considered to be primitive messages. This makes the information
flow explicit in the form of message exchange among objects and, therefore, easy to
control,

Therefore, in the message filter model security is achieved through checking message
exchanges among objects. The basic idea of the approach is that information flow
control can be achieved by mediating the flow of messages among objects. Indeed, in
object-oriented systems all information flows are through message exchanges. This
approach is very simple, in that it requires the security mechanism to deal only with
two elements: objects and messages. It is based on two basic principles governing
message exchanges among objects in the system

1. if the sender of the message is at a strictly higher level than the receiver’s level,
the method is executed by the receiver in restricted mode (that is, no updates
can be performed)

2. if the sender of the message is at a strictly lower level than the receiver’s level,
the method is executed by the receiver in normal mode, but the returned value
is nil.

The first principle ensures that no write downs occur, whereas the second one ensures
that no read ups occur.

The message filter uses the filtering algorithm given in Figure 1 to mediate mes-
sages [487]. We assume that o; and o, are sender and receiver objects, respectively.
Also, let t; be the method invocation in 07 that sent the message g1, and ¢2 the method
invocation in o on receipt of g1. The two major cases of the algorithm correspond to
whether or not g1 is a primitive message.

Cases (1) through (4) in Figure 1 deal with non-primitive messages sent between
two objects, say o1 and oz. In case (1), the sender and the receiver are at the same
level. The message and the reply are allowed to pass. The rlevel of t; will be the same
as that of ¢;. Note that rlevel is a property of a method invocation, rather than a
property of an object. We will explain the significance of rlevel shortly. In case (2}, the
levels of 01 and o2 are incomparable, and thus the message is blocked and a n#l reply
returned to method ¢;. In case (3), the receiver is at a higher level than the sender.
The message is passed through; but a nil reply is returned to #1, while the actual reply
from 1 is discarded, thus effectively cutting off the backward flow. For case (4), the
receiver is at a lower level than the sender. The message and the reply are allowed
to pass. However, the rlevel of 2 (in the receiver object) is set in such a manner as
to prevent illegal flows. In other words although a message is allowed to pass from
a high-level sender to a low-level receiver, it cannot cause a “write-down” violation
because the method invocation in the receiver is restricted from modifying the state
of the object or creating a new object (i.e., the method invocation is “memoryless”).
Moreover, this restriction is propagated along with further messages sent out by this
method invocation to other objects, as far as is needed for security purposes.

The intuitive significance of rlevel is that it keeps track of the least upper bound
of all objects encountered in a chain of method invocations, going back to the user
object at the root of the chain. We can show this by induction on the length of the
method invocation chain. To do so, it is also useful to show the related property that

Y1t is important to note that the message filter model is a conceptual model telling us
what needs to be done, rather than how it is to be implemented. Reference [487] contains an
implementation in which primitive messages do not require any messages.
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% let g1 = (h1,{p1,...,Px),7) be the message sent from o1 to 02

if o1 # 02 V by ¢ {READ, WRITE, CREATE} then case
% i.e., g1 ts a non-primitive message

(1) L{e1) = L(o2): % let g1 pass, let reply pass
invoke 3 with rlevel(tz) « rlevel(t1);
r « reply from #3; return r to t;

(2) Lo1) <> L(o2) : % block g1, inject NIL reply
r « NIL; return r to ¢;;
(3) L(o1) < L{o2) : % let g1 pass, inject NIL reply, ignore actual reply
7 — NIL; return r to £;;
invoke t3 with rlevel(tz) « lub{L(02), rlevel(t1)];
% where lub denotes least upper bound
discard reply from ta;
(4) L(o1) > L{o2) : % let g1 pass, let reply pass
invoke t with rlevel(ty) «— rlevel(t1);
r « reply from t5; return r to ty;
end case;

if oy = 02 A hy € {READ, WRITE, CREATE} then case
% i.e., g1"is a primitive message
(5) g1 = (READ,(a;),7} : % allow unconditionally

r + value of a;; return r to ty;

(6) g1 = (WRITE, (aj,v;),7) : % allow if status of t; is unrestricted
if rlevel(t1) = L{o1)
then [a; « vj; r +— SUCCESS]
else r — FAILURE;
return r to t;;

(7) 91 = (CREATE, (v1,...,v,5;),7) : % allow if status of t; is unrestricted relative to S;
if rlevel(t1) < S;
then [CREATE ¢ with values v1,...,u; and L(i) — Sj; r « 4]
else r — FAILURE;
return r to iy;
end case;

Figure 2.1: Message filtering algorithm
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rlevel( t;) > L( 0:). For the basis case we assume that the spontaneous method
invocation in the root user object has its rlevel set to the level of the user object.
The induction step follows by inspection of cases (1), (3) and (4) of Figure 1. The
use of least upper bound is explicit in case (3). In cases (1) and (4), because of the
induction hypothesis, and the relative levels of 01 and o2, the assignment of rlevel can
be equivalently written as in case (3).

We say that a method invocation t; has restricted status if rlevel{ t;) > L( 0;).
In such cases t; is not allowed to write to o; (case (6) of Figure 1), or to create an
object with security level below rlevel( ;) (case (7) of Figure 1). A key element of the
message filter algorithm is that the restricted status is propagated along with further
messages sent out by a method invocation to other objects (exactly so far as is needed
for security purposes). This is critical in preventing indirect information flows.

To understand how the message filter algorithm propagates the restricted status
on method invocations, it is useful to visualize the generation of a tree of method invo-
cations. The root ¢ is a “spontaneous” method invocation by a user. The restricted
method invocations are shown within shaded regions. Suppose 4 is a method for ob-
Ject ok, and t, a method for object 0, which resulted due to a message sent from
t0 0n. The method i, has a restricted status because L({ on) < L( ox). The children
and descendants of ¢, will continue to have a restricted status until ¢. is reached. The
method ¢ is no longer restricted because L{ 0.} > L( o0x), and a write by £, to the
state of o, no longer constitutes a write-down. This is accounted for in the assignment
to rlevel( t2) in case (3) of Figure 1.

The variable rlevel clearly plays a critical role in determining whether or not the
child of a restricted method should itself be restricted. A method invocation potentially
obtains information from security levels at or below its own rlevel. It follows that a
method invocation should only be allowed to record information labeled at levels which
dominate its own rlevel. For example, consider a message sent from a Secret object to
a Confidential one (where Secret > Confidential). The rlevel derived for the method
invocation at the receiver object will be Secret.

We now discuss the security mediation of primitive messages. Read operations
(case (5)) never fail due to security reasons because read-up operations cannot occur.
This is because read operations are confined to an object’s methods, and their results
can only be exported by messages or replies which are filtered by the message filter.
Write operations (case (6)) will succeed only if the status of the method invoking the
operations is unrestricted. Finally, create operations (case (7)) will succeed only if the
rlevel of the method invoking the operatior is dominated by the level of the created
object. If a write or create operation fails, a failure message is sent to the sender. This
failure message does not violate security since information flows upwards in level.

There has been relatively little additional work on mandatory security related is-
sues in the object-oriented databases, although some work does exist. Meadows and
Landwehr [397)] are the first to model mandatory access controls using object-oriented
approach, however, their effort is limited to considering the Military Message System.
Spooner in [539] takes a preliminary look at the mandatory access control and raises
several important concerns. In [313, 312, 582, 583], objects can be multilevel. This
means, for example, that an object’s attributes can belong to different security levels,
which in turn means that the security system must monitor all methods within an
object. We consider this to be contrary to the spirit of the object-oriented paradigm.
Finally, Millen and Lunt in [397] mention some problems associated with having mul-
tilevel objects. In their model, only singlelevel objects are permitted; however, the
notion of subjects is still retained, and subjects are assigned security levels.
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2.4 Discretionary Access Control

In this section we present an authorization model for discretionary access control that
has been proposed by Rabitti et al. in the ORION/ITASCA framework [460], followed
by the extensions to this model that have then been proposed by Bertino and Weigand
in [57]. We also illustrate how the authorization models proposed in [53] and [8] ex-
ploit the object-oriented approach in the development of a discretionary access control
mechanism.

2.4.1 The ORION Authorization Model

This model enforces a discretionary protection policy which takes into consideration
the relationships existing among the database objects, the access modes through which
objects can be accessed, and the subjects which can access the objects. In particu-
lar these relationships are used to derive new authorizations from the authorizations
specified by the users. Moreover, the model takes into consideration characteristics of
object-oriented systems such as inheritance, composite objects, and versioned objects.

Subjects

The model considers, as subjects, groups of users (roles) into which users are or-
ganized on the basis of the activities they execute in the organization. A user may
belong to more than one role. Roles are related by means of an implication relation-
ship. A role R; is in implication relationship with another role R; if and only if the
authorizations associated with role R; subsume the authorizations associated with role
Ry. In particular, this corresponds to saying that all users belonging to role Ry also
belong to role R;. For example, an implication link between the 1ole “accountant”
and the role “employee” indicates that accountants are also employees and therefore
all authorization specified for the role “employee” are considered valid also for the
role “accountant.” According to the implication relationship, the set of roles forms a
lattice, called a role lattice. An example of a role lattice is shown in Figure 2.2.

An arc directed from role R; to role R; indicates that role Ry is in implication
relationship with role Ry. The root of the lattice (topmost tole) corresponds to a role
which has the authorizations of any other role in the system. The bottom most role
corresponds to a role which has a set of base authorizations executable by any role. On
the basis of the implication relationship, and therefore of the role lattice, a partially
ordered relationship (>) is defined on all subjects as follows:

Given two subjects s; and s;, s; > s; if an implication link exists directed from s,
to s; in the role lattice; 5; > s; if s; = s; or 8; > s; or there exist subjects 81, 52,... 5,
such that s; > s1 > 52 > ... > s > 35.

For the role lattice shown in Figure 2.2, we have Super_user > Chief_accountant >
Accountant > Employee.

Objects

The ORION authorization model considers the following objects as objects to be
protected: databases, classesin the database, instances of classes and their components
(attributes, values, and methods). The model also considers sets of objects of the same
type that have a common root (e.g., the set of instances of a class or the set of values of
an attribute) as objects to be protected. In this way authorizations can be specified on
the set of objects contained in a given object using the same access modes specified for
the object itself, without the need of introducing further access modes. For example,
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Super.user
/\
Chief_accountant Manager
/\
Accountant Consultant Permanent
\l/
Employee

Figure 2.2: An example of a role lattice

it is not necessary to use two different access modes to refer to the read privilege on
a class definition and the read privilege on the instances of the class. The meaning of
the access mode, and therefore of the authorization, will depend on the type of object
to which the authorization is referred.

Like the subjects, objects are also related by means of an implication relationship.
An implication link from object 01 to object 02 indicates that the authorizations spec-
ified on 01 can also be used on 02. On the basis of the implication relationship two
structures are defined: an authorization object schema (AOS), defining the implication
links between object types, and an authorization object lattice (AOL), defining the re-
lationships between the instances of the authorization objects. An AOL is therefore an
instance of an AOS for a given system. Every authorization object in the AOL is an
instance of only one object type indicated in the AOS. Examples of an authorization
object schemal and an authorization object lattice are shown in Figures 2.3 and 2.4,
respectively.

On the basis of the AOL, a partially ordered relationship (>) exists among all
objects:

Given two objects o0; and o5, 0; > o0 if an implication link exists directed from o;
to o; in the authorization object lattice; 0; > o, if 0; = 0; or 0; > o; or there exist
objects 01,02,...0n such that 0; > 01 > 02 > ... > 0 > 0.

Access modes
The model considers the following access modes:
e Write (W) to write to an object.
o Write_Any (WA) it is analogous to the Write access mode. It allows writes to an

I'The nodes shown in italics correspond to authorization objects representing a set of objects
of the next lower level.
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Figure 2.3: An example of an anthorization object schema

object. It is considered for completeness purposes in the implication rules based
on access modes.

o Read (R) to read an object. When referred to a method indicates that the
method can be executed.

¢ Generate {G) to create instances of an object.

¢ Read_Definition (RD) to read the definition of an object.

The model does not consider administrative privileges. Any subject that has spe-
cific privileges can grant or revoke these privileges of other subjects. Therefore, the
authorization for an access implies the authorization to administer (grant and revoke)
the access.

Not all access modes are meaningful for every object. In particular, the access
modes executable on an object depend on the object type. Given the access modes
introduced earlier, an access authorization matriz (AAM) states, for every object type
and access mode, whether the access mode is executable on objects of that type. An
example of an AAM is given in Figure 2.5.

Access modes are related by means of an implication relationship. An implication
link from access mode a1 to access mode a» indicates that the access mode a; on a given
object implies the access mode a; on the same object. For example, the implication
link between the access mode “write” and “read” indicates that the authorization to
write an object implies the authorization to read the same object. On the basis of the
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database[Inventory] database[Research] database[CAD] ......

class[Contract] class[Report] class{Project]

setof-instances[Report]

instance[1] instance[2] instance(3]

setof-values(1]

attribute-value{authors] attribute-value[object]

Figure 2.4: An example of an authorization object lattice

implication relationship, access modes form a lattice named authorization type lattice
(ATL). This lattice is shown in Figure 2.6.

A link directed from node a; to node a; indicates that access mode a; implies access
mode a;. A partially ordered relationship (>} is therefore defined on the access modes:
Given two access modes a; and a;: a; > a; if an implication link exists directed from
a; to a; in the access mode lattice; a; > a; if a; = a; or a; > a; or there exist access
modes a1, a2, ...0, such that a; > a1 > a2 > ... > an > aj.

Access modes are grouped into three classes: A.up, containing all access modes
which are propagated from low objects to higher objects in the AOL; A.down, contain-
ing all access modes which are propagated from high objects to lower objects in the
AOL; and A.nil, containing all access modes which are not propagated. These groups
are as follows:

A.up = {WA, RD}. For example, the authorization for the RD mode on the instances
of a class, which permits reading of their definition, implies the authorization
for the RD mode on the class itself. Analogously, the authorization for the RD
mode on a class implies the anthorization for the RD mode on the database to
which the class belongs.
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Figure 2.5: An example of an authorization association matrix
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Figure 2.6: An example of an authorization type lattice

A.down = {W, R}. For example, the authorization for the R mode on a class, which
allows reading of the class information, implies the authorization for the R mode,
meaning reading, on the instances of the class.

A.nil = {G}. The authorization to create objects cannot be propagated among objects
related in the AOL.

Implicit and Explicit Authorizations

The ORION authorization model allows the derivation of new authorizations from those
specified by the users. The derivation of new authorizations is based on the implication
relationships existing among subjects (e.g., 2 manager can access the information his
employees can access}, among objects (e.g., the authorization to read a class implies
the authorization to read all instances of the class), and among access modes {e.g.,
the authorization to write an object implies the authorization to read the object), as
expressed in the respective lattices.
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Authorizations specified by users are called explicit, whereas authorizations derived
by the system are called implicit. Beside this classification, two other orthogonal classi-
fications are introduced. These concern the distinction between positive authorizations,
stating access privileges, and negative authorizations, stating denial of privileges, and
between strong authorizations which cannot be overwritten by other authorizations
and weak authorizations which can be overwritten by other authorizations.

Authorizations are grouped into two sets: an authorization base (AB) grouping
all strong authorizations, both positive and negative, and a weak authorization base
(WAB) grouping all weak authorizations, both positive and negative. In the following,
strong authorizations will be indicated by listing them between round brackets { ),
whereas weak authorizations will be indicated by listing them between square brackets
[]

A positive strong authorization is described as a tiiple (s,0,a) indicating that
subject s can access object o in access mode . A negative authorization is described
as a triple (s,0,-a) indicating that subject s cannot access object o in access mode a.

The system ensures that the set AB, consisting of strong authorizations, is free
of (1) inconsistency, i.e., there do not exist two authorizations such that both are
derivable from the authorizations in AB and one is the negation of the other, and (2)
redundancy, i.e., an authorization should not be in AB if it can be derived from other
authorizations already present in the AB.

The set WAB, consisting of all weak authorizations, groups all authorizations,
positive and negative, which are classified as weak, i.e., which can be overwritten
by strong authorizations. A weak positive authorization is characterized by a triple
[s, 0, a] stating that subject s can execute access mode @ on object 0. A weak negative
authorization is characterized by a triple [s, 0, —a] stating that subject s cannot execute
access mode @ on object o.

To avoid having an access request for which neither a positive authorization nor a
negative authorization is derivable from the system, the system ensures the complete-
ness of the authorization bases, i.e., for any possible access that users can request, the
corresponding negative or positive authorization can be derived from the authorization
bases. Moreover the system ensures that the set of weak authorizations is free of any
inconsistency, i.e., an authorization and its negation cannot be both derivable at the
same time from the set of weak authorizations.

Unlike AB, redundancy is allowed in WAB, i.e., an authorization can exists in
WAB even if it is implied by existing authorizations. Therefore, an authorization
already implied by some authorizations in WAB can be inserted in WAB.

A further property, required on the union of WAB and AB, is that a weak autho-
rization must not be present, either as implicit or explicit, as a strong authorization
as well. Since weak authorizations are used to complement strong authorizations, the
system avoids insertion of those weak authorizations that are already present, either
explicitly or implicitly, in the strong authorization base.

Rules for the Derivation of Implicit Authorizations and Access Con-
trol

Implication rules determine how new authorizations, called implicit, are derived from
the authorizations explicitly defined by the users. These rules are based on the rela-
tionships existing among subjects, objects, and authorization types.

Implication rules, summarized in Figure 2.7, are defined for strong authorizations.
{mplication rules for weak authorizations are derived from the implication rules defined
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for strong authorizations. Authorizations derived from strong (weak) authorizations
are also considered as strong (weak). The implication relationship among strong antho-
rizations is denoted by —. The implication relationship between weak authorizations
is denoted by .

Rule 1 V31,81 € S,0i,0; € 0,2, € Adown,a, € A:
Sk 2 81,0 2 0,0n 2 Gm = (Sz,Oi,an) — (Sk,Oj,am)

Rule 2 Vsi,8k € 5,0i,0; € 0,8, € A,am € Aup :
Sk > 81,00 2 0j,an > @m = (81,05,an) = (5k, 01, 8m)

Rule 3 Vsi,8x € S,0i,0; € 0,an € Anil g, € A
Sk > 81,00 = 0j,n > am = (81,05, 8n) — (Sk, 04, 8m)

Rule 4 Vsi,sr € 5,0i,0; € 0,0, € Adown,am € A:
Sk > 81,0 > 05,an > @m = (Sk, 05, "@m) — (81, 04, "an)

Rule 5 Vs, 56 € S,0i,05 € Oy,an € Ayam € Aup :
8k 2 81,0i 2 05,8n 2 Gm = (Sk,0i, "8m) — (81,05, a5)

Rule 6 V31,85 € 5,0i,0; € 0,0, € Anil,am € A
Sk > 81,0i = 0j,8n > Gm = (8k, 04, "@m) — (81,04, an)

Figure 2.7: Implication rules for strong authorizations

The implication rules for the derivation of strong positive authorizations can be
summarized as follows:

o Authorizations with access mode belonging to A.down are propagated for subjects
at higher levels, and for objects and access modes at lower levels as described
in the corresponding lattices (Rule 1). Since every subject, object, and access
mode is > and < itself, this rule allows the derivation of, from an authorization,
authorizations involving the same or different subject, object, and access mode.

o Authorizations with access mode belonging to A.up are propagated for subjects
and objects at lower levels, and for access modes at higher levels as described in
the corresponding lattices (Rule 2). Again, since any subject, object, and access
mode is > and < itself, this rule allows us to derive, from an authorization,
authorizations involving the same or different subject, object, and access mode.

o Authorizations with access mode belonging to A.nil, therefore not propagatable
in the authorization object lattice, are propagated for subjects at higher level
and for access modes at lower level as described in the corresponding lattices
{Rule 8). Therefore, starting from an aunthorization, new authorizations on the
same object, with the same or different user and access mode can be derived.

From these implication rules, according to the property that given two predicates

pand ¢: p — ¢ & —¢ — —p, analogous implication rules for negative authorizations
are defined.
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The implication rules for weak authorizations are the same as those for strong aun-
thorizations. The only difference is that, since weak authorizations can be overwritten,
the derivation of authorizations from an explicit weak authorization stops where an-
other more specific explicit authorization starts.

Access control

Derivation of authorization is used in the access control as follows. Given a re-
quest of a subject to exercise an access mode on an object the strong authorizations
are examined. If there exist a strong authorization, either explicit or implicit, which
authorizes, or denies, the access, then the access is authorized, or denied, respectively.
If there does not exist any strong authorization for the access, the weak authorizations
are examined, and the access is either granted or denied based of the outcome.

To illustrate how the implication of authorizations work, consider the role lattice
shown in Figure 2.2, the AOS shown in Figure 2.3, and the ATL shown in Figure 2.6,
and suppose that the strong authorization base contains the authorization (Permanent,
database[Research], W). Suppose now that the authorization (Manager, instance[1]
of class[Report], R) needs to be checked. Along the subject domain, we have that
Manager > Permanent. Along the objects domain we have that database[Research]
> class[Report] > instance[l]. Finally, along the authorization type domain we have
W > R, with W € A.down. Therefore, by applying Rule 1 we have that (Permanent,
database[Research], W) — (Manager, instance[l] of class[Report], R). Therefore, the
authorization is satisfied.

Inheritance Hierarchies, Composite Objects, and Versions

In this section, we illustrate how the ORION authorization model takes into consid-
eration characteristics of the object oriented systems such as inheritance hierarchy,
composite objects, and version.

Inheritance hierarchies

When a class is defined as subclass of another class, there are two approaches which
can be taken concerning authorization on instances of the subclass.

The first approach is that the creator of a class should have no implicit authorization
on the instance of the subclasses derived from his class by some other user. For example,
in reference to the AOL shown in Figure 2.4, if class Technical Report is defined as
a specialization of class Report, the creator of class Report should not be able to
read or update the instances of class Technical_ Report, unless explicitly authorized
for that from the creator of class Technical Report (or other authorized user). This
approach allows users to reuse existing classes without compromising the protection of
the subclasses generated.

A second approach is that the creator of a class should have implicit authoriza-
tions on instances of a subclass. For instance, in the above example, the creator of
class Report will be implicitly authorized to update and read instances of class Tech-
nical_Report.

With respect to query processing, the first approach implies that an access whose
scope is a class and its subclasses will be evaluated only against those classes for which
the user issuing the query has the read authorization, whereas in the second approach,
it would be evaluated against the class and all its subclasses.

The ORION authorization model adopts the first approach as default, and supports
the second as a user option. This choice is motivated by the reason that under the
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second approach, a user wishing to derive a class from another class would not have
any privacy on the instances of the subclass (which are readable by the creator of the
superclass). Therefore, users could be discouraged from reusing existing classes not
taking advantage of the characteristic of inheritance.

When multiple inheritance is allowed, implicit authorizations along the class hier-
archy may give rise to conflicts. Conflicts are handled by rejecting insertion of new
authorizations when it conflicts with some other authorization already present in the
system.

To allow authorizations for generating subclasses, the access mode subclass-generate
{SG)is added to the set of access modes. If a user is authorized for the SG access mode
on some class, the user can define subclasses on it. Access mode SG belongs to the set
A.nil, i.e., it is not propagated in the AOL. Moreover, the following relationships hold:
W > SG > RD. Given these relationships, authorization along the specialization hier-
archy can be derived according to the rules given in the previous section. For example,
if a user has the write authorization on a class, the user is implicitly authorized to
generate subclasses from the class; if a user has the SG authorization on a class, then
the user has implicitly the RD authorization on the class. Indeed, a user, in order to
create a subclass from a class C, must be able to read the definition of C. Therefore,
the anthorization to generate a class from a given class C implies the authorization to
read the definition of C.

Composite objects

Composite objects are taken into account in the model by considering a composite
as an authorization unit. This allow a single authorization granted on the root of a
composite object to be propagated to all components without any additional explicit
authorization. This can simply be enforced by representing the composite relationship
among objects in the authorization object lattice. The defined implication rules can
therefore be used to derive authorizations across composite objects. For example, if
a user can read a composite object, then the user is automatically authorized to read
the objects which compose it. It should be noticed that the implicit authorization only
holds for the objects which belong to the composite object. For example, suppose a
class C is defined on class C1 and C2. Access authorization to C’s instances implies
the authorizations on the instances of C1 and C2 which compose some object of C. No
authorizations for instances of C1 and C2 which do not compose any object of C are
derived.

In this context, negative authorization may give rise to conflicts in the autho-
rization of implicit authorizations. Therefore, care must be taken that authorization
conflicts will not arise. For example, the positive authorization to read a composite
and the negative authorization to read one of its component cannot be present at the
same time, unless the authorization on the component is a weak authorization and can
therefore be overwritten. As in the case of inheritance hierarchy conflicts are avoided
by accepting insertion of a new authorization only in case it does not conflict with
authorizations already specified.

Versions

Authorizations can also be specified on a versioned object and on individual versions
of the object. To represent version hierarchy and enforce derivation of authorization
along the hierarchy, the model extends the authorization objects to include generic
instances and versions. An implication link is therefore defined between the generic
instance of an object and the set of versions of the objects. The implication rules can
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then be used to derive new authorizations. For example, a read authorization an a
generic instance of an object implies the same authorization on all the versions of the
object; a write authorization on the set of versions of an object implies the same au-
thorization on the versions described by the generic instance. The write authorization
on the set of versions of an object is also the authorization to create a new version
from a working version of the instance. The write authorization on a generic instance
allows the user to modify the generic instance (e.g., by changing the default version)
and implies the write authorization on the version objects described by the generic
instance.

2.4.2 Content-dependent Authorizations

The ORION authorization model has been extended in [53]. In [53] different access
modes have been introduced in reference to different object types, and some implication
rules for the derivation of implicit authorizations have been revised.

An important extension introduced in [53]is the consideration of content-dependent
authorizations, i.e., authorization depending on some properties of the objects to be
accessed. Indeed, in [460] a user is either authorized or denied for an access on an object.
Instead, in [53] it is possible to specify that a user is allowed (denied) for an access on
an object if some conditions on the object are satisfied. Therefore, authorizations are
extended to the consideration of conditions which must be verified for the authorization
to hold. Conditions can be put on any of the objects’ attributes. In particular, they
may involve class-attributes, e.g., attributes that characterize the classes themselves
and are not inherited by instances, or instance attributes.

For example, consider the AOL shown in Figure 2.4 and suppose that attribute
status is added to the attributes of instances of class Report. An authorization could
be specified by stating that Employee can read only instances of class Report which
have status “released”.

The implication rules defined in [460] are applied also to content-dependent autho-
rizations. Authorizations derived from content-dependent authorizations inherit also
the conditions upon which the access has to be controlled. For example, it is possi-
ble to specify content-dependent authorizations on a class to be evaluated against the
instances of the class and to specify content dependent authorizations on a versioned
object to be evaluated against all versions of the object.

In the case of composite objects, the situation is a little different. Indeed, composite
objects can have components of different classes and their types may be different.
Therefore, conditions may not be evaluable on all the components. In this case the
conditions are considered only in reference to the component against which they can
be applied.

A main issue when dealing with content-dependent authorizations is how to effi-
clently evaluate conditions associated with authorizations. Since conditions have to
be evaluated over object’s attributes, which can change over time, conditions have
necessarily to be evaluated at run-time, therefore necessarily increasing the response
time of the system. In particular, enforcing satisfaction of the conditions expressed
in the authorizations by filtering the data prior to the user access, would require a
double access to the objects (one to evaluate the conditions and the other to satisfy
the user query). The solution considered in relational database system is to simply
add conditions expressed in the authorization to the user query. This approach, known
as query modification mechanism has the advantage of ensuring the satisfaction of the
protection requirements and not overloading the access control.
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In object-oriented databases, where objects are accessed through methods, which
can be nested, implementation of content-dependent condition is not straightforward.
A possible solution would be incorporating conditions in the method. This approach
has the drawback of having method specification to be dependent on authorizations,
therefore a change in the authorizations would require to change specification of meth-
ods.

A further aspect that must be taken into consideration when considering content-
dependent authorization is that since satisfaction of the conditions in the anthorizations
depends on the values of the objects’ attributes and can therefore change over the time
is more difficult to ensure the consistency and completeness of the authorizations. For
example, consider the class Documents having as attributes date and status. Suppose
then that subject Employee has to be authorized at the same time for both the positive
authorization to read all documents with date later than “March 3, 1992” and the
negative authorization to read all objects with status “protected”. If no object exist
with status protected and date later than “March 3,1992”, the authorization state
is consistent. However, since attribute values can change and new objects can be
added authorizations may become inconsistent. Consistency and completeness criteria
and mechanism to satisfy them have therefore to be extended to the consideration of
content-dependent authorizations.

2.4.3 Accessing Objects Through Methods

The model presented in [460] and extended in [56] takes into consideration many of the
characteristics of object-oriented data models such as inheritance hierarchy, versions
and composite objects. However, it does not exploit the potential of encapsulation
typical of the object-oriented approach. In fact, all accesses made during a method
execution are further checked against the user who invoked (directly or indirectly)
the methods. For example, if during the execution of a method invoked by a user,
an attempt is made to modify the attribute of an instance, the authorization for the
user to update the attribute must be checked. In some cases, where encapsulation is
meant to provide protection, it is desirable not to give the users the authorization to
execute some accesses directly but allow at the same time the accesses to the users
through the execution of some method. For example, users may not be authorized to
write an attribute of an object but can be authorized to run a method which, during
its execution, modifies the attribute. Therefore, since users should not be directly
authorized for the access, no authorization for the users to execute the access executed
by the method should be provided. An authorization model which takes into account
this principle has been presented in [57].

According to many object-oriented languages, the model distinguishes between
public and private methods. Private methods of an object can be invoked only by other
methods of the same object, whereas public methods can also be invoked directly by the
users of the object (i.e., end- users, application programs, other objects). That previous
notion of public/private methods has been further refined by allowing methods to be
defined public with respect to some other methods, of the same or different objects. The
method is then considered private for all methods for which it has not been explicitly
defined as public. In this way, it is possible to specify that some methods cannot be
invoked directly by the users of the object but can be invoked during the execution of
some other methods. The declaration of the methods for which a specific method is
public is provided as part of the class definition to which the method belongs. The set
of methods for which a specific method is public is called the invocation scope of the
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method.

The model is based on authorizations for users to execute methods on objects.
Awuthorizations specify, for each user, the set of methods the user can invoke on which
.objects. Therefore, authorizations have the form < o,u,m >, where o is an object, u
is a user, m is a method. Such a tuple specifies that user u is authorized to execute
method m on object 0. Authorizations can be specified only on public methods, i.e.,
on methods directly invokable by end-users. In order for a user to execute a method,
the method must be public for the end-users and the user must have the authorization
to execute the method. If both these conditions are satisfied, the user can execute the
method. However, the fact that the user is authorized to run a method does not imply
that the user will be able to always execute all actions that are part of the method.
Indeed, other methods can be invoked during execution of the method called by the
user, and; therefore, several access controls may be performed during the execution.
In particular, if during the execution of a method m another method m’ is invoked,
the invocation is allowed if either m’ is public for end-users and the user has the
authorization for it or m’ is private for end-users and m belongs to the invocation
scope of m'.

The model allows users to grant other users authorizations to execute methods.
A user can grant such authorizations on an object if the user is the creator or one of
the owners of the object. Each object is associated with a creator, i.e., the user who
created the object, and some owners. The creator of an object is always unique but
can change during the life-time of the object. In fact, it is allowed for the creator of an
object to give the privilege of being creator to some other user. Since the creator must
be unique, so doing the first user looses the creator privilege on the object, which is
passed to the other user. The creator can also add and delete owners for the object.
Any owner of an object can grant and revoke aunthorizations to execute methods on
the object to other users. A user can revoke only authorizations that he granted.

The model introduces also the notion of protection mode for method execution
authorizations. If user u grants user w’ the authorization to execute method m in
protection mode, then when u' executes m, all invocations of methods public for end-
users made by m are checked for anthorizations not against u’, who called the method,
but against u, i.e., against the user who granted u’ the authorization on the method**.
In this way users can grant other users the privilege of executing some methods on an
object not directly, but by using some other methods.

A model applying a similar approach has been proposed in the context of the Iris
DBMS [8]. There, objects (and their data) are encapsulated by a set of functions,
i.e., to access an object, users call the appropriate functions 1. Authorizations specify
for every user, the set of functions the user is allowed to call. Authorizations can be
referred to single users as well to groups of users. A user can belong to zero or more
groups, and groups can be nested.

The model supports the concept of ownership, in particular, the user who creates
a function is considered the owner of the function and can grant other users the au-
thorization to call the function. This anthorization can also be given with the grant
option. If a user has the grant option on the authorization to call a function, the user
can grant other users the authorization to call the function and the grant option on

**The concept of protection mode is very similar to the set user-id on execution concept
considered in the Unix operating system.

t1In the Iris data model both attributes and methods are represented as functions. In
particular, attributes are defined as stored functions, while methods are defined as derived
functions.
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it. The grant privilege is also enforced as a function: the anthorization for the grant
privilege on a function f is represented by the authorization to call the grant function
with f as argnment.

Functions can be defined on other functions. Authorizations on derived functions
can be defined as static or dynamic. If a user has the dynamic authorization on a
derived function, in order for the user to successfully call the function, the user must
have the call privilege on all the underlying functions. By contrast, in order to call
a derived function on which he has the a static authorization, a user does not need
to have the call authorization to the underlying functions. The concepts of static and
dynamic authorizations correspond to the concepts of protection and non-protection
execution modes for methods discussed earlier [57].

When a user creates a derived function, the user must specify whether the autho-
rizations on the defining functions must be checked statically or dynamically. In either
case, the creator of the derived function must have the call authority on all the under-
lying functions. If the creator specifies that the function must have dynamic authoriza-
tion, the user can grant other users the authorization to call the function. By contrast,
if the function is specified to have static authorizations, the user can grant other users
the authorization to call the derived function only if he has the grant privilege on all the
underlying functions. Derived functions can also be used to support content-dependent
authorizations. In this case, users are not authorized directly for a function, but on a
function derived from it which enforce some constraints. For example, suppose to have
an class Employee storing information about the employees and a function “Salary”,
defined on it, returning the salary. Thought some employees can be authorized to read
the salary of everybody, some employees could be restricted to see their own salary.
This condition can easily be enforced by defining a derived function “Self _Salary” which
takes into consideration the caller of the function and calls function “Salary” to return
the user’s salary. Since users cannot be authorized to call directly function “Salary”,
the authorization to be specified on function “Self_Salary” is a static one. However,
the application of derived function to enforce content-dependent authorizations has
the drawback of embedding authorizations in the function implementation, therefore a
change of authorizations would imply a change in the implementation of some derived
function.

The authorization model takes also into consideration the characteristic of poly-
morphism of object-oriented systems. Polymorphism allows to specify functions, called
generic functions which have associated a set of specific functions that are defined on
different types . When a generic function is called, a specific function is selected
for invocation {late binding). Authorizations can be specified on generic or on specific
functions. A user authorized to call a generic function is automatically authorized to
call all specific functions of that generic function. When a user calls a generic function,
the corresponding specific function is selected and the user is allowed for it only if he
has the authorization on the specific function. The specific function can be selected
regardless of the user’s authorizations (authorization-independent resolution) or by tak-
ing into account the user’s authorizations (authorization-dependent resolution). The
authorization-dependent resolution has the disadvantage that the query semantics is
in this case dependent on the authorization-policies.

Functions can also be specified as having a gnard function. If a function has a guard
function associated with it, the function can be executed only if the gnard function

4 The concept of type in the Iris data model is equivalent to the concept of class in discussed
in Section 2.
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returns value “true”. Guard functions can therefore be used to specify conditions
which have to be satisfied for the users to execute some function. Since guards enforce
conditions by evaluating them prior to the execution of the function they control, they
are really useful for evaluating preconditions, i.e., conditions independent on the values
returned by the controlled function. Indeed, in order to enforce conditions on values
returned by the controlled function, the controlled function itself should be called and
its results evaluated by the guard.

Another concept introduced by the model is that of prozy functions. Proxy func-
tions provide different implementations of specific functions for different users. A func-
tion may have associated several proxy functions. When a user calls a function, the
appropriate proxy is executed in place of the original function. Therefore, the result
of a function may change depending on the user calling it. Proxy functions have the
advantage of allowing to enforce constraints on function execution by users without
any impact on the function implementation.

2.5 Research Issues in Mandatory Access Con-
trol

We now discuss ongoing research aiming at extending in various directions the message
filter model presented in Section 2.3.

2.5.1 Modeling Multilevel Entities as Single-level Objects

In the message filter model, all objects are single-level in that a unique classification
is associated with the entire object. This constraint is essential in order to make the
security monitor small enough so that it can be easily verified. However, entities in
real world are often multilevel: some entities may have attributes of different levels
of security. Much modeling flexibility would be lost if multilevel entities could not be
represented in the database.

A preliminary approach that maps multilevel entities in terms of single-level ob-
jects is given in [288]. It is based on using inheritance hierarchies. Unfortunately, this
approach suffers from several problems. First, it leads to a replication of information.
Since a multilevel entity is modeled as several single-level objects in a class hierarchy,
some attributes of high level objects are replicas of attributes of low level objects (be-
cause of inheritance). Second, if not carefully monitored, updates may lead to mutnal
inconsistency of replicated data. To illustrate, suppose that an update is performed
on an attribute of a low level object. This update cannot be propagated to the corre-
sponding attribute of the high level object because the low level object does not store
any reference to the high level object. (Note that although writing up is permitted
under the Bell-LaPadula paradigm, an important requirement is that the existence of
high level objects must be hidden from low level objects. Therefore, low levels objects
cannot have references to high level objects.) The third problem with this approach is
that the notion of inheritance hierarchy becomes overloaded since it is used both for
conceptual specialization and for supporting multilevel entities.

To solve the above problems, a different approach based on composite objects and
delegation has been recently proposed by Bertino and Jajodia [54]. The notion of
composite object is a modeling construct that allows to consider an object and a set
of component objects as a single object [320]. Delegation allows an object to perform
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some of its functions by simply delegating their executions to other objects. In this
approach, an entity £, with attributes of n; different levels of security, is modeled by
a number n; of single-level objects. An object O, would contain all attributes having
security level I;. Moreover an object O;; would contain a composite attribute whose
value is the object Oy;_,. Thus, a multilevel entity would be decomposed in several
single-level objects such that an object at a level I; has as component objects the objects
whose security levels are lower than I;. Whenever an object needs to retrieve values of
attributes of lower level objects, this object can delegate the appropriate component
object the execution of the retrieval operations. An attractive aspect of this approach is
that it allows the same object interfaces. An interface of an object is the set of messages
that are defined for the object. to be provided to users as if multilevel objects were
directly provided, while retaining at the same time the simplicity of the message filter
approach and of the single- level objects.

There are several aspects of composite references that have been refined to take
into account security requirements. As previously discussed, different types of com-
posite references have been identified by Kim, Bertino, and Garza [320]. They can be
categorized as follows:

1. exclusive dependent reference
if an object O is component of an object O’, it cannot be component of another
object; moreover if O’ is removed, O is also removed

2. exclusive independent reference
if an object O is component of an object O, it cannot be component of another
object; the deletion of O does not imply the deletion of O

3. shared dependent reference
an object O can be component of several objects; O is removed when all parents
objects, on which O depends for existence, are removed

4. shared independent reference
an object O can be component of several objects; the deletion of the parent
object does not imply the deletion of O.

Some of these categories may result in violations of security requirements. For
example, the exclusivity constrains can be used by a low user to infer the existence of
a high object. To overcome this problem, two additional forms of exclusive composite
references have been introduced. The first form consists of a composite reference which
is exclusive with respect to a class. That is, no two instances of the same class may
share a component, however, there could be instances of other classes with references
to that component. The second form is similar to the first, with the difference that the
exclusivity constraint is with respect to a class hierarchy. That is, no two members of
the same class can share a reference to the same compornent. (The members of a class
are the instances of the class and the instances of all its subclasses.) The motivation
for introducing those additional form of exclusivity constraints is to support some form
of semantic integrity for composite objects. The approach proposed by Bertino and
Jajodia [54] also covers muitilevel entity types that are organized in specialization
hierarchies, including the case of multiple direct supertypes.

Finally, it is important to note that while the use of composite objects combined
with inheritance hierarchies allow to model a large variety of application entities, when
dealing with real applications the number of entity types and specialization hierarchies
among them can be quite large. Therefore, it is crucial that the process of generating
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an object-oriented schema be supported by some automatic tool. A security specifi-
cation language has been proposed by Bertino and Jajodia [54] whose purpose is to
describe the entity types and the specialization hierarchies together with their security
requirements. Those specification can then be translated in terms of an object-oriented
schema through a set of translation rules, based on the approach we have previously
discussed.

2.5.2 Object Updates and Secure Garbage Collection Mech-
anisms

Under the approach described in the previous subsection, updates do not pose any
obstacles to security. If an object o is part of some composite object, any updates to
the attributes of o are directly visible to the composite object.

By contrast, the delete problem is more difficult to deal with. There are basically
two ways in which the delete operations have been implemented in various OODBMSs:
systems allowing users to perform explicit delete operations (like ORION [319], and Iris
[189]), and systems using a garbage collection mechanism to remove objects that are
no longer reachable from other objects (like GemStone [79] and O, [150]). In systems
belonging to the second category, an explicit delete operation is not available to the
users.

Systems with explicit delete operations allow an object to be deleted even if there
are references to it. If a message is sent to a deleted object, the system returns a
notification to the invoker object. Therefore, the invoker object must be ready to deal
with the exception arising from a dangling reference. This approach is used by the
ORION system, and it is also suggested by Zdonik [642]. Note that in those systems,
OIDs of deleted objects are not re-used. This approach works well with the composite
object approach. For example, consider objects 01 and o2, such that o2 is a component
of 01. If object 02 (a component of object 01) is removed, the next time a message is
send from object 01 to object 02, object 01 will be notified that the referenced object
does not exist.

The above approach has been refined in two directions. The first, called upward
cascading delete, is similar to the approach proposed by Jajodia and Sandhu [292]
for the delete operations in the multilevel relational secure model. In that approach,
each time a tuple ¢ of a given security level ! is removed, all polyinstatiated tuples
corresponding to ¢ and having a security level greater than ! are also removed. In our
framework, this approach means that the deletion of a component should cause the
deletion of its parent object. For example, if object 02 (a component of object o1) is
removed, then also object o1 should be removed. Note, however, that object o3 does
not know the OID of object 01 (because o2 is an object whose security level is lower
than the one of 01). Therefore this approach cannot be implemented by simply having
object 02 sending a delete message to object o;.

The second approach, called here conservative delete, is the opposite of the previ-
ous one, in that it aims at preserving information for high level objects. Under this
approach, the low level object would still be deleted; however, a new corresponding
high level object would be created. For example, if object 02 (a component of object
01) is removed, then a new object oy is created having the same attribute values as
o2 but having the same security level as 0;. Note that o1 will still be notified that o2
has been removed. However, all information contained in o will be still available to
object o1.
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The approach for supporting both the previous delete modalities is based on using
the message filter as an active component; it will need to notify objects at high levels
that events have occurred concerning related objects at low levels.

In systems based on garbage collection an object is automatically removed by the
system when it is no longer referenced by any other object. This approach, if not
properly modified, would cause some problems in a secure environment. Indeed, a
low object would not be removed if a reference exists from a high object to this low
object. Therefore, a low user may infer the existence of a high object referencing the
low object. Note that even though the low user will not be able to infer the OID of
the high object, a signaling channel could be established. Another serious drawback
is that the garbage collector would have to access objects at various levels of security.
This would require the garbage collector to be a trusted component.

We are investigating a different approach which does not require the garbage col-
lector to be trusted. The approach requires a garbage collector for each security level.
The garbage collector associated with a level ! removes an object at level { only if all
references from other objects at level { have been removed. Since the garbage collector
at level I does not see references from objects at levels higher than ! (because it does
not see those objects at all), it will remove an object o at level ! as soon as all references
from objects at the same level as o0 have been removed. Note that removing a reference
from a high object to a lower object cannot cause the low object to be removed. Indeed,
suppose that removing a reference from a high object o to a low object o’ canses o’ to
be removed. This means that the reference from o to o’ is the last existing reference
to o'. However, this situation cannot arise because the garbage collector at the level
of o' would remove o’ as soon as the last reference to o’ from an object at the same
level has been removed. Therefore, if a reference from a high object to a low object is
removed, we have two cases: (i) the low object has already been removed; (ii) the low
object has another reference from its same level and then it is not removed. In both
cases, the removal of the reference from the high object does not cause any change in
the status of the low object. It is important to point out that information needed by
the garbage collectors are also partitioned on the basis of security. This means that the
information that a high object has a reference to a low object is kept at high level. This
is automatically achieved because putting a reference from an object o to an object o/,
where the level of o is greater than the level of o’ can only be executed by a subject
with the same level at o. Therefore, all information generated as side-effects of this
update (such as the information for garbage collection) are classified at the same level
of 0.

Note that this approach causes the problem of dangling references. Indeed, a low
object can be removed even if it has some references from high level objects. One
possibility is to allow dangling references and to return a notification, whenever an
object sends a message to a low removed component which has been removed, as in
the case of explicit delete. Another possibility is to use the approaches of upward
cascading delete and conservative delete. Both those approaches, however, require
that all deletions issued by the garbage collector pass through the message filter. This
is automatically achieved if the garbage collector internally uses messages.

2.5.3 Polyinstantiation

The problem of polyinstantiation has been studied in the framework of multilevel
relational data model [292]. A multilevel relation is a relation containing tuples that
have different security levels. Polyinstantiation arises when there are two or more
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tuples in a multilevel relation having the same value for the primary key. Enforcing
the uniqueness of key value in multilevel relations would lead to a covert channel. A
possible solution consists of requiring that the key be unique not with respect to the
entire relation, but with respect to the set of tuples having the same security levels.

As discussed by Jajodia and Sandhu [292] tuples at different levels in a multilevel
relation are related. Indeed, each instance at an access class ¢ represents the version
of reality appropriate for the access class ¢. It is important to note that a user with
clearance for a given level may see all tuples of levels equal or lower. One problem is
therefore that the user must understand which low level information are correct and
which one have been inserted to provide a cover story, and thus may be discarded.
A consequence of this fact is that discrimination of correct information against cover
information is left to the application programming.

We are currently investigating approaches to this problem in the framework of
object-oriented data models. In particular, we are investigating the use of methods as
a way to embed and centralize the appropriate knowledge for distinguishing between
correct information and cover stories. As an example consider an entity type ‘Employee’
with attributes Name, Skill, Salary, and Age. Furthermore suppose that Name and Age
are unclassified, while Salary is classified. Moreover, suppose that Skill is a multivalued
attributes. Remember that in object-oriented data models multivalued attributes can
be directly represented, without any need for normalization. that can assume both
classified and unclassified values (for example, the fact that an employee has certain
skills is secret, while employee’s other skills are not). A possible design for the entity
type ‘Employee’ in terms of single-level object would be by defining two objects. A
first object o, whose level is unclassified, would contain the attributes Name, Age, and
Skill. The Skill valne for the unclassified object will contain only those skills that do not
need to be kept secret. A second object o’, whose level is classified, would contain as
attributes Salary and Skill, and in addition a composite attribute containing a reference
to object o (according to the composite object model defined in the first subsection).
Note that the Skill attribute in the classified object (i.e. o') would only contain the
skills that must be kept secret. Now suppose that the unclassified skills are not a cover
story. In this case, whenever the values of the attribute Skills must be retrieved from
the classified object (i.e. o'), the method retrieving the skills must retrieve the values
of the attribute Skills from the unclassified object and unioning them with the values of
the attribute Skills from the classified object. By contrast, if the classified skills are a
cover story, the method retrieving the skills from the classified object will only need to
retrieve the values of the attribute Skills from the classified object. This example shows
that the encapsulation feature of object-oriented data model actually allows to shield
the applications from having to deal with discriminating correct information against
cover information. This discrimination is embedded into the methods encapsulating
the object. Note that this solution can be improved by also considering methods
expressed in a declarative language. This makes it easier to formulate, understand,
and manipulate the discrimination criteria for cover information.

2.5.4 Comparison With Relevant Work

The problem of security in object-oriented databases has been previously addressed by
Millen and Lunt [397] and by Thuraisingham [583]. The approach of Millen and Lunt
[397] is based on single-level objects. The strategy proposed by Millen and Lunt for
handling multi-level entities is based on using references to relate objects corresponding
to the same entity. Our approach is based on composite objects, and therefore is simi-
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lar, since composite objects are obtained by imposing the part-of semantics on normal
references [320]. However, our approach differs in several aspects. First, we make full
use of the features of object-oriented data models by showing how, through the use of
methods, it is possible to define objects which, even though they are single-levels, are
able to provide the same interfaces, as if multi-level objects were directly supported.
Moreover, we have introduced some extensions to the composite object model to better
modeling the notion of exclusive references, so that no secunrity breaks are introduced.
Then, we have provided an extensive analysis of the use of composite objects when
multi-level entities are organized in type hierarchies, taking into account also the case
of multiple direct supertypes. Moreover, we have investigated the object delete prob-
lem. The approach proposed by Thuraisingham [583] mainly discusses rules stating
the security policy that must hold among the various objects in an object-oriented
database, such as for example that the security level of a subclass must dominate the
security levels of its superclasses. However, no discussion is presented on the additional
complexity of the security monitor due to the enforcement of the security policy rules.
Moreover, [583] does not discuss the problem of handling multi-level entities.

2.6 Research Issues in Discretionary Access Con
trol

An important research issue is whether the content-dependent authorization mecha-
nism, illustrated in Subsection 4.2, is redundant when user-defined methods imple-
ment authorization rules as part of their execution. A main difference is that content-
dependent authorization rules defined by a constraint language, like one mentioned in
Subsection 4.2, are declarative, while authorization rules defined as part of methods
are expressed in an imperative language. The usage of the constraint language sim-
plifies the definition of authorization rules by users, and saves the users from writing
several methods. However, the expressive power of the constraint language is limited
with respect to the expressive power of a general programming language. Therefore,
both declarative content-dependent and procedural content-dependent aunthorizations
seem to be useful. However, more investigations are needed on this question. Iun
particular, there is the need of a comprehensive formal model of discretionary au-
thorization for object-oriented databases encompassing both content-independent and
content-dependent authorizations. The model should also address administration and
ownership issues that are not addressed in the model defined for the ORION system
[460]. Related to this there is the definition of methodological guidances supporting
the authorization administrators and database designers in the task of designing the
proper authorization rules for a given database.

Another relevant problem with the discretionary authorization models previously
discussed, as well as other discretionary authorization models defined for relational
systems, is that their implementations do not provide assurance against Trojan horses.
As discussed in [308], Trojan horses require relatively simple mechanisms to subvert the
discretionary protection mechanisms. For example, a malicious user wishing to illicitly
access some data offers an attractive program to a user who is aunthorized to access
these data. The program contains some code that performs the advertised service for
the second user, while simultaneously performing the illegal action wished by the first

user. The program could for example copy the data into a file to which the first user
is authorized to read.
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We are currently looking at ways of providing protection from Trojan horse attacks
in mechanisms meant for discretionary access controls. The approach we are inves-
tigating is based on keeping for each object an access list and on using the message
filter as a trusted agent able to verify that information flows among the objects in the
system are legal. Since in object-oriented systems all exchanges of information among
objects is based on messages, it should be possible to determine whether illicit trans-
mission of information is about to take place. It is also important to note that in an
object-oriented database system some of the high-level semantic operations are stored
into the database as methods, instead of being dispersed into the application programs.
By making formal verifications of some of these methods, it should be possible to rely
on some trusted methods, that is, on methods that actually perform the advertised
services. Note that the verification of some of the methods represents a compromise
between the verification of the entire collection of application programs as well as of all
the methods and no verification at all. While verifying all application programs and
all methods is not feasible because the code to verify would be too large, the option of
no verification at all may lead to severe restrictions in the possible computations that
can occur in the system. The possibility of relying on trusted methods will allow us
to relax some of the restrictions that must be placed in a system in which all methods
are assumed to potentially contain Trojan Horses.

2.7 Conclusion

Access control is a crucial functionality for any data management system. It is not
sufficient that a system makes information available to users. The system has also to
ensure that the information is protected from unauthorized accesses and modifications.
Many security models have been proposed for conventional data models. By contrast,
security in object-oriented database systems still presents several open issues. Features
of object-oriented data models and languages, such as inheritance, subtyping, and en-
capsulation, bring new protection requirements which make the existing security mod-
els not adequate. Protection of information must be provided without compromising
the advantages provided by the object-oriented approach over conventional systems.
A model is yet to emerge that satisfactorily covers all protection aspects related to
object-oriented database systems, and many problems still remain to be solved. How-
ever some interesting, but not complete, approaches have been investigated addressing
the development of security models specifically targeted to object-oriented database
systems.

In this chapter we have illustrated the protection problems in object-oriented
database systems and reviewed some security models recently proposed. We have
discussed both mandatory as well as discretionary security issues. In the presentation
of the models, we have stressed how some features of the object-oriented paradigm,
which automatically provide some form of protection, can be exploited for security
purposes. Finally, we have outlined some open problems in the field and illustrated
current researches aimed at their resolution.



Chapter 3

The Decomposition Property of Non-Deterministic
Databases

Kumar Vadaparty*,Shamim Nagvi!
3.1 Introduction

Motivated by the need for increased modeling power for advanced applications involv-
ing design, scheduling, planning, etc., a number of attempts have been made to extend
database technology [188, 339, 351, 33, 7, 3, 600, 264]. Indeed a major selling point for
the newly emerging area of object-oriented databases is the increased modeling power
provided by such systems. Although well motivated, such increased modeling power
comes with a price: query evaluation is more expensive in the database programming
languages (DBPLs) associated with these extended models. Traditionally, database
technology has striven to develop declarative query languages in which the user speci-
fies the query and the system evaluates the query in the best possible way. However,
implicit in this evaluation is a guaranteed upper bound on time (performance guar-
antees). Obviously, such a goal can not be reached if the DBPLs are extended from
restricted languages (relational algebra, Datalog, etc.) to full-fledged programming
languages (such as C++4 ). Thus, we are faced with two competing goals: increase
the modeling power of declarative query languages, and performance guarantees for
DBPLs.

One approach to deal with these competing goals is to extend the modeling power
incrementally (accounting for the most important needs first), and see if query lan-
guages maintaining performance guarantees can be built for these extensions. One
such extension to modeling power was described in [274, 597, 408] wherein it is shown
that dealing with choices enables us to model more expressive domains. For exam-
ple, in design situations we can state that the implementation medium of a certain
part can be chosen from the set [Cobalt, Nickel]. Such a set of choices is called an
OR-object. A database with OR-objects corresponds to several possible worlds; for
instance, the previous database fact corresponds to two possible worlds: “Part#1 can
be implemented using Cobalt” and “Part#1 can be implemented using Nickel”. In
[274] OR-objects model data involving choices, e.g., the above choices can be stored
as I'mplement(Part#1,0) where Dom(o) = {nickel, cobalt} gives the domain of the
OR-object 0. The two possible worlds corresponding to the choices can be obtained by
replacing the OR-object with a member of its domain: Implement(Part#1, Cobalt)
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and Implement(Part#1, Nickel). Such a refinement is the database analog of making
a choice. Note that OR-objects encapsulate a specific kind of disjunction, namely, dis-
junction in one or more attributes of the predicate. Thus, a disjunction such as P(a)V
Q(b) can not be captured by OR-objects. However, it was observed in [274, 275, 597]
that even this restricted disjunction can improve modeling power considerably. How-
ever, utility aside, such an extension of the relational model with OR-objects, increases
the data complexity of conjunctive queries to coNP-complete[276, 277]. This exacer-
bates the second of our two competing goals, namely the problem of performance
guarantees.

Combinatorial optimization applications (such as scheduling) also consider choices
in data, and consequently address the issue of attacking intractable queries. One useful
method of attack is to use domain specific heuristics to prune the search space. The
question at hand, thus, is how can the idea of heuristics be exploited in the context of
databases with OR-objects? In other words, if we assume that our users are domain
specialists and have considerable knowledge about the domain of application, can we
provide formal tools to operationalize their domain heuristics? An important property
of any such tool is that the tool itself should be domain independent. This chapter
addresses precisely this issue and provides some solutions.

A notable step in this direction is the work of [273] who consider the following
question. Given a query ®, can we determine values for certain design parameters
such that, as long as databases conform to these values of the parameters, ® can be
evaluated in PTIME (i.e., what values of the design parameters force ® to be tractable)?
The queries are limited to positive existential conjunctive queries with no predicate
occurring more than once in the query. Two design parameters were identified for this
purpose:

1. the typing function, and
2. the degree of co-referencing.

For the class of databases that satisfy certain conditions imposed on these two design
parameters, ® is guaranteed to have polynomial data complexity. However, if these
conditions are violated, then ® is gnaranteed to become intractable (coNP-complete).
In other words, the conditions on the design parameters are maximal (assuming P #
N P) for maintaining tractability of ®. Informally, the typing function specifies which
attributes are allowed to have OR-objects. The degree of co-referencing is a measure
of the inter-relationships of the elements of the OR-object. The values of both design
parameters can be set by a user who is familiar with the underlying semantics of
the. application domain. For example consider the query ® = Jz[Inezpensive(z) A
Researchy(z)] where the two predicates specify properties of universities. Note that
one can have choices of universities in either of the predicates. In [273] it is shown that
® has PTIME complexity if at most one of the two predicates contains choices, and has
coNP-complete complexity otherwise. Thus, database designers may disallow choices in
one of the two predicates by an appropriate change in the typing function. In this way,
heuristics of the application domain can be operationalized in the database system. The
particular predicate in which OR-objects are disallowed is determined by the designer,
using the domain knowledge (thus operatlionalizing the domain knowledge).
However, the approach of [273] has some limitations: it applies only to proper
queries, i.e., queries in which a predicate does not appear more than once, and, more
importantly, it does not address the issue of what to do if we are confronted by a
coNP-complete query and a fixed typing function. For instance, suppose both the
predicates in the above example are required to have choices in the data because of
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lack of complete information. Then, for this class D of databases that allow choices
in both predicates, [273] simply declares that the query is coNP-complete. Can we do
anything more?

Note that even though the data complexity of ® for D is coNP-complete, there
may exist subclasses of D for which ® can be evaluated in PTIME. The questions we
address in this chapter are: can we guarantee PTIME behavior for the coNP-complete
query ® for certain subclasses of D? What kind of approaches can we expect to use in
order to obtain such subclasses? Are those approaches domain-independent? In other
words, can the same approaches be used on any other query ®’ and class of databases
D (where @' is coNP-complete for D)?

It is important to understand the domain independent nature of the heuristic sup-
port that we desire. A central assumption in databases is that the data in a database
is uninterpreted. It has no inherent semantics. It is only through interactions with
a query that data acquires a meaning. Thus, when we seek tractable subclasses of D
we would like to respect this central assumption. Our techniques that identify such
tractable subclasses are independent of the query so that they will work for any query
and class of databases.

We believe that this chapter makes some initial progress towards obtaining answers
to the above questions. Our methodology works as follows. We identify a property
called “decomposition property” and show that the classes of databases satisfying this
property enable polynomial time query evaluation. This property can be defined as
follows. A class of databases D has decomposition property for a query ®, if for any
D € D, it is the case that D |= ® can be determined by first determining if D; |= ® for
every 1 <t < m, where D = Dy U.. . UDy,. We refer to D;’s as modules or “clumps”.
These modules depend on the query ® and also on the database D. Thus, the problem
of evaluating the query in the entire database can then be reduced to evaluating it for
each of the modules. Interestingly, it seems that there is a strong relation between
the decomposition property and locality of choices. Because choices occur naturally in
many situations, our approach seems to have practical impact as well.

Example 3.1.1 (An Example)

Suppose that a database has facts such as fi = Inezpensive(ul) V Inezpensive(u2),
f2 = Researchy(u3)V Researchy(u2)V Researchy(ud), i.e., there is choice data in both
the predicates. Suppose that a domain specialist knows that the choices are localized:
that is we may have facts such as fz = Inexpensive(rutgers)vInespensive( Princeton)
where both rutgers and Princeton are in NJ, but we do not have facts such as
Inespensive(rutgers) V Inespensive(Standford) where the universities involved are
far apart (across several state boundaries). Thus, the domain expert predicts that facts
over choices are localized at the state level, with a few facts containing choices stradling
state boundaries. Such localized information gives rise to “clumps” or “modules”.

We can depict the clumpiness of data by constructing a database-graph, as follows:
facts such as f1, f2 can be represented by nodes of a graph with an edge between two
nodes if the corresponding facts have a possible world that entails the query. In our
example above, the nodes corresponding to fi and f will have an edge because the
set {Inecpensive(u2), Researchy(u2)} is a possible world of the facts, and entails
the query 3z[Inexpensive(x) A Researchy(u2)]. Figure 3.1 shows such a graph for an
example database. There are seven facis fi,..., fr that constitute “clumpl”, and nine
facts fo, fs, ..., f15 constituting “clump2”.

In this chapter we formally define the notion of a clump, show the allowed inter-
actions between clumps, and show how to determine D = @ by composing the results
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Figure 3.1: An example of “clumpiness”.

of entailments of the query on each of the clumps of D. Clearly, in such an analysis
the time spent is bound by the number of clumps and the processing time per clump.
Assuming that a domain specialist can make a prediction a priori about the size k of
the largest clump (size is the number of disjunctive facts within a clump), our anal-
ysis enables one to identify a class D of databases for which @ is tractable (O(n*)).
Note that a domain specialist often can determine such k’s. In the above example, a
specialist who knows about universities can predict that no more than 10 such facts
(nodes) may lie in a given “clump”. Thus, our analysis enables one to evaluate the
query Jz[Inezpensive(z)A Researchy(z)]in polynomial time using this heuristic (even
though it is coNP-complete in general).

Note that such clumps occur very commonly in many domains where locality is a
common factor: in testing of circuits, one can localize the mistake to a particular zone.
Thus a disjunctive fact such as Wrongoutput(nodel) v Wrongoutput(node2) will have
both of the nodes nodel and node2 from the same zone or PCB. In scheduling problems,
one can localize the machines to be assigned to a task ¢ by their capabilities: thus,
Assignedto(t, cpul) V Assignedto(t, cpu2) would involve cpul and cpu2 that belong to
the same class of machines (comparable FLOPs, frequency, etc.)

We would like to emphasize that our approach depends crucially on the presence
of locality in choice data. Thus, it can be used in those places where this locality plays
an important role. We would like to caution the reader that there exist queries in
which locality does not work. For example, consider the database to represent cities
in India, a country with dense cities; suppose that the query involved population:
Jzy[City(z) A City(y) A Population(s, y, 10)] asking if there are two cities with total
population more than 10 million. In this case, almost any two (distant) cities could
participate in the graph and clearly, we can not hope to obtain clumps (or, in other
words, the clumps will be very large).
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An interesting approach is that this locality principle can be used retroactively in
designing the circuit or plan so that it may be possible to diagnose or understand the
design in an incremental fashion. Indeed it may be argued that in order to facilitate
understanding of the application, we must design the database in such a way that most
of the complexity is localized rather than spread throughout the database. Consider
a database representing a complex piece of software or circuit design and that we are
interested in understanding or diagnosing the design, i.e., we know the sorts of queries
that users will be asking. If the complex behaviors of the design are a function of the
entire design then a query may not be evaluable in any semantic subset of the database.
However, if complex behaviors were localized, we may be able to isolate semantic
modules of the database that could be responsible for that complex behavior. In such
a case, the modules can be evaluated incrementally, yielding a PTIME evaluation of an
otherwise intractable query. One factor that causes complexity in design and planning
situations is the set of available choices for a task at hand. The locality principle then
suggests that facts about choices be localized.

This chapter is organized as follows. Section 3.2 motivates the need for data com-
plexity, and provides the required background results. Section 3.3 defines the notions
of size, density and witness of a query, and shows the use of these notions. Section 3.4
develops the modulewise evaluation strategy by proving the decomposability results
for a number of classes of databases. Section 3.5 gives the possible future extensions.

3.2 Basic Notions

In this section we motivate the need for considering data complezity, OR-databases, and
show how the data complexity jumps from PTIME to coNP-complete in the context of
OR-databases. This discussion is intended to provide the desired background for the
discussions in succeeding sections.

3.2.1 Entailment, and Data Complexity

By a query we mean a closed conjunctive formula in First Order Logic, with existential
quantifiers only. Such formulae capture simple boolean queries. For example, consider

the boolean query “ @@ = Is John the manager of some department manufacturing
Toys?”. Let

D = {Manager(John, depl), Manufacturer(depl, toys'), Manager(Jacob, dep2)}
Then clearly, the answer to the query is “yes.” Consider the formula
® = 3d [Manager(' John',d) A Manufacturer(d,’ toys')]

We say that the formula ® is true in D (D entails ®) iff there is a mapping p for
the variables in @ such that when p is applied to ®, we get a subset of the database.
This notion of entailment is denoted by D |= ® (standard notion of entailment). The
above database I entails the formula ® through the mapping (d/'depl’). It is easy to
see that D |= @ iff the query Q is true in D. We say that & captures ) and refer to
® as a query. Thus, in the rest of the discussion, “formulae” and “queries” are used
interchangeably.

We will be interested in Data Complexity [598, 95] of queries. Given a query ® and
a denumerable set D of databases, the data complexity of ® with respect to D is the
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complexity of

{D|DeD and Dk &}

The motivation for data complexity is as follows: suppose we are given a database D
and a query evaluation algorithm for evaluating a query in D. It is natural to expect
that the query evaluation algorithm works correctly even if the database is updated.
In fact, we expect that the algorithm is invariant under all or some updates. This
notion can be made precise as follows: suppose [D]t denotes the closure of D under a
set of pre-specified update operations. Then, we expect the algorithm evaluating @ to
evaluate it correctly for any database in [D]*. The complexity of any such algorithm
is bounded from below by the complexity of the set

{D|De[D" and D=3}

which is the data complexity of ® with respect to [D]*. Thus, data complexity provides
a lower bound on any algorithm that we can hope to design for evaluating queries in an
update transparent manner. The data complexity of positive conjunctive existential
queries for relational databases (closed under the update operations of DELETE a
tuple and INSERT a tuple) is in PTIME (actually in LOGSPACE]) [598, 95]. The
following observation reconstructs this result.

Observation 3.2.1 ([598, 95])
Let ® be a positive conjunctive existential query. Then the complezity of

{ D | D conforms to the arities of relations in ® and D |= @ }

is in PTIME.

Proof: The idea is as follows: let k£ be the number of variables in ® and let M be the
set of all domain constants in any database D. Then, D = ® iff there exists a2 mapping
¢ from the variables in ® to the constants M such that u(®) is a subset of D. Clearly,
the number of possible mappings is a fixed polynomial in the size of M and hence even
the straightforward approach of testing these mappings one by one gives polynomial
time complexity. g

However, unfortunately, when we allow disjunctive information in databases, this
nice tractable property no longer holds. In fact, it was shown in [276, 272] that the
data complexity of simple conjunctive queries is in coNP-complete even if we allow
restricted disjunctive information denoted by “OR-objects”.

3.2.2 Choices and Data Complexity

It was observed in [274] that choices in the form of “OR-objects” plays an important
role in scheduling, planning, and design applications. We illustrate this here and show
how the issues of entailment and data complexity can be discussed in the context of
databases with OR-objects (called OR-databases). In the following the table TRAVEL
shows a travel schedule for various employees of a company. The objects 01 and o2
denote OR-objects, and their domains are shown next to the table. The first entry,
specifies that “John has a choice of going to CA or NJ.” The second entry has 4 similar
meaning. The third entry involves a complete specification: “James goes to CA.”
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Travel A possible World of Travel
Employee | Place Domains Employee | Place
John 01 Dom(o1) = {NJ,CA} , John NJ
Jack 02 Dom(o2) = {M A, CA} Jack MA
James CA James CA

The table TRAVEL has several possible worlds, each obtained by substituting the
OR-objects by a value from their respective domains, i.e., by making a choice from an
OR-object. One such possible world is shown in the adjoining figure. In general, then,
a database containing choice data represents a set of possible final instances or worlds.
These possible worlds are also referred to as models. )

We say that a query is true in an OR-database if it is true in every possible world of
that database. To illustrate the notion of entailment in disjunctive tuples, consider the
database D = {P(0), Q(a), Q(b)} with domain(o) = {a,b} and the query Iz [P(z) A
Q(z)]. The database corresponds to two possible worlds, each corresponding to a
particular choice of the OR-object, 0. It can be observed that in each of the possible
worlds, the query is true; hence we say that the query is entailed by the database.

The following observation proves that indeed there exist queries whose data com-
plexity is coNP-complete in the context of disjunctive information.

Observation 3.2.2 ([276, 272])
There exist queries that have coNP-complete data complezily in the contest of databases
with disjunctive information.

Proof:
Consider any graph G(V, E) with V as vertices and E as edges. Let {R, G, B} indicate
three colors. We say that the graph G is colorable if there is a mapping from the
vertices to the colors such that no two endpoints of an edge are colored by the same
color.

The following set is known to be coNP-Complete [212]:

{ G | G is not colorable }

In other words, the problem of determining if for any coloring scheme, it is the case
that at least two vertices connected by an edge are colored by the same color is coNP-
complete. We use this problem to show that the data complexity of a particular query is
coNP-complete. Suppose that from the graph G we construct a database D(G) consist-
ing of two relations Verter and Edge such that Vertez = { v | v is a vertex of G} and

Edge = { (1,5) | {i,4) is an edge of G}. Also we construct a relation with OR-objects
as follows:

Color
vertexr | possible colors
m 01

The domains
Dom(o1) = {R,G, B}

Dom(on) = {R, G, B}

Un On
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Clearly, the query
® = Azyz [Vertez(z) A Vertez(y) A Edge(z, y) A Color(z,z) A Color(y, )]

is true in every possible world of the database D(G) iff G is not colorable. This shows
that the data complexity of ® is coNP-complete. g

Thus, in general, the complexity of evaluating queries in OR-databases is coNP-
complete. In [273] data complexity of a particular class of positive existential conjunc-
tive queries was analyzed: this class is called proper queries. In a proper query, no two
literals have the same predicate. The results of [273] can be summarized as follows:
first identify two design parameters called (i) typing function and (ii) degree of corefer-
ence; typing function specifies whether a particular column can take OR-objects, while
the degree of coreferencing restricts the extent to which OR-objects can appear repeat-
edly. Now, given any proper query &, the analysis of [273] enables us to determine
the values of the design parameters such that for the class of databases conforming to
these parameters, the data complexity of the given proper query is in PTIME. Thus,
for example, consider the query ® = 3zP(z) A Q(z). Then the analysis of[273] states
that the data complexity of @ is in PTIME if either P or @} is restricted not to take any
OR-objects, and OR-objects can repeat in the column that they are allowed to occur.
The interesting aspect of [273] is that if the restrictions stipulated are not conformed
to, there is a guarantee that the data complexity of that query will be coNP-complete.
Thus, we obtain what is called complete syntactic characterization. This approach was
called complexity tailored design in [273).

However, the above approach has some limitations: if a query ® is found to have
coNP-complete data complexity for a class D of databases, then, [273] does not provide
a way to deal with it any further. This chapter addresses the issue of identifying subsets
of D such that for those the data complexity of ® is in PTIME.

3.3 Size and Density of a Witness

As stated earlier, our aim is to identify tractable subclasses of D for the query ®, where
it is known that ® has coNP-complete data complexity for D. We identify such classes
for any conjunctive query ® and any class of databases D that has distinct OR-objects.
Thus, the queries we consider need not be proper, unlike [273]. However, we assume
that the OR-objects are distinct!, and each predicate has at most one OR-argument.
The latter is not a serious restriction because, a large class of queries with more than
one OR-argument in their predicates can be split (using a join attribute) into predicates
with at most one OR-argument[273].

Our methodology works as follows. We identify classes of databases that satisfy
a property called “decomposition property”, defined as follows. A class of databases
D has the decomposition property for a query @, if every D € D can be written as
a union of D; for 1 € i < m such that the following holds: whether or not D |= &
can be determined by composing the results of D; = @ for every 1 < i < m, where
D =D;U...UD,,. Werefer to D;’s as modules. These modules depend on the query

Two OR-objects are distinct if there is no constraint that relates the choice over their
elements. For example, let 01 and 02 be two OR-objects that contain choices of courses for
John and Mary. Consider the constraint that John and Mary choose the same course. Such a
constraint relates the choices over ol and 02 and are natural in many applications. We disallow
such constraints in this chapter.
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® and also on the database D). The decomposition property immediately guarantees
that the data complexity of ® for D is determined by the size of the modules of D. If
k is the largest cycle (as we define later) in a module, then the data complexity of
is given by O(2F x DIuervsize modulesizel?*°79°¢t¥) 5 number of modules) time
to determine if the module entails the query (here k is a fixed-constant, specifying the
size of maximal cycle in the module, as described later). Thus, the data complexity of
® with respect to the class of databases D is a polynomial in the size of the database
(D). We identify different such classes Do, ..., Dk,... for different parametric values
of k. Note that this situation of assigning a maximal size of the module arises very
often in practice as described in Section 3.1.

Thus, there are two issues: modules and their inter-connections. Having agreed
to pay a fixed time (parametric in k) O(2* x modulesize?¢™¥***¢)  to determine if a
module entails the query, we expect the modules to be as “big” and as “dense” as
possible (trying to get the maximum out of what we are willing to pay).

In this section, we first define a notion of “size of a witness of a query” and show
that in the case of OR-databases, this size is not bounded, whereas in the case of re-
lational databases, this is bounded. We show that bounded size of the witness yields
(a straight forward) proof of the polynomial time evaluation of queries in relational
databases, whereas the unboundedness of the witness makes that straightforward al-
gorithm exponential. We show that although size is an important aspect, it alone is
not sufficient for our purposes. We next introduce a notion of density of a witness. It
is this notion that is used in the next section to develop the module-wise evaluation.

3.8.1 Size of a Witness

We first define the notion of a witness which is often used in the logic programming
and database terminology, although not always explicitly.

Definition 3.3.1 (Witness)

Let © be a closed conjunctive query, D a database, and i a mapping from the variables
of the query to the constants of the databaseD. We call a set S C D to be a witness
of ® in D if every ground atom corresponding to applying p to the literals of ® is a
member of S. Clearly, S |=®. S is minimal if for no subset S’ of S is a witness of ®
in D.

Suppose that the size of the minimal witness is bounded by the size of the query
(denoted by |®|). Then, clearly, evaluating if the query ® is true in D is in polynomial
time in the size of the database: basically, consider all subsets of D of size |®| and see
if any subset of atoms entails the query ®. Fortunately, the following ensures that if
D is indeed a set of atoms, then it is the case that any minimal witness is bounded by
the size of the query.

Observation 3.3.1 If D is a set of positive atoms and ® a positive conjunctive closed
query, then the size of the minimal witness of ® is bounded by the number of literals
in ®.

The proof of the above observation follows easily from the definition of a witness.
Note that the largest size of any mapping is bound by the number of literals in the
query.

However, the above observation does not hold if we allow OR-objects in the database.
First we would like to make the notion of minimal witness precise in the context of
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OR-objects. We assume throughout the chapter that OR-objects are distinct. Thus,
given a database D with OR-objects, it can be re-written as a First Order Theory by
expanding the disjunctions implied by the OR-objects. From our definition of OR-
objects, it is clear that this theory is in a special conjunctive normal form: each of the
disjuncts are formed from the same predicate symbol. Clearly, D can be viewed as a
set of clauses.

Now, a witness S to a query @ in a database D with OR-objects can be defined as
follows: S C D is a witness of ® in D iff every possible world (see Section 3.2.2) of S
entails ®. We call S minimal, if for no subset S’ of S the above holds. The following
lemma shows that the size of a minimal witness 1s not bounded by the number of
literals in a query in the context of OR-databases. In fact, it shows a stronger result.

Lemma 3.3.2 There exists a query @ such that for any natural number i € N there
exists a database D; such that the minimal witness of ® in D; is larger than i.

Sketch of Proof:
Consider the query ® = 3z [P(z) A Q(z)].

For the case of 1, the desired database is D; = {P(a), Q(a)}

For the case of i, consider the database Dy = {P{a1)V...VP(a:),Q(a1),...,Q(a:)}.
Note that D; constitutes minimal witnesses. g

Thus, a straightforward approach of testing a fixed number of tuples of the database
to see if they entail the query does not work in the case of databases with OR-objects.
Since the size of the minimum witness can be as large as the database itself, it follows
that a straightforward approach leads to an exponential algorithm. The following
lemma, however, shows that an unbounded witness does not necessarily mean coNP-
completeness.

Lemma 3.3.3 {Unbounded witness does not imply coNP-Completeness)
There exists a query @ and a class D of databases such that the size of witnesses for
® in D is unbounded but still the data complexity of ® for D is in PTIME

Sketch of Proof:

Consider the query ® = J&[P(z) A Q(z)] as before, and D the desired class of databases
to be the class of databases in which OR-objects do not occur in the relation ©. From
the previous lemma it follows that ® does not have a bounded witness for this class.

We show that the data complexity of @ for D is still in PTIME. Consider a clause
¢ of P. Clearly, c is of the form P{a;) V... P(ar). We see if the relation @ has tuples
of the form Q(a1),...,Q(ax). Note that Q has no disjunctions. If there are no such
tuples in @, then we conclude that the clause ¢ does not contribute to the minimal
witness, and take the next clause of P. If there is at least one clause of P that satisfies
this requirement, then we conclude that D }= ®; else we conclude that D & ®. Clearly,
the above algorithm is in PTIME (O(n?)). @

Thus, the query ® = Jz[P(z) A Q(z)] does not have bounded witness even for the
class of databases in which only P is allowed to have OR-objects. But still, ® could be
evaluated in PTIME for that class. Thus, bounded witness is only a sufficient condition
for tractability.

We now develop a notion of density of a witness. In the previous example, the
following holds:

{P(a1) v ...V P(er),Qarx}} EP(a1) V...V Plag—1) V®
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Thus, in order to construct a countermodel (i.e., a possible world that does not entail
the query), we need to consider only the first k—1 disjunctions of P(a1)V...VP(ax). In
other words, for the purpose of comstructing a counter-model, we might as well remove
the disjunct P(ax) from P(a1) V...V P(ax) to form P(a1) V...V P(ak-1).

Thus, using the above stepwise refinement, the new clause has only k£ —1 disjuncts.
Arguing similarly with the other definite tuples of Q, one at a time, we conclude that
there is no counter-model for ¢ (we eventually conclude that any such counter-model
will have zero disjuncts of P — a contradiction).

We call the above database a “low density” database becanse one can use a “step-
wise” or incremental reasoning to determine if the query is entailed by the database.
The following example shows that this limited or incremental reasoning can be applied
to databases which are not necessarily as restricted as above.

Example 3.3.1 (stepwise procedure applies to more complex databases)

Consider the same query ® = 3z[P(z) A Q(z)] and the database shown in Figure 3.2.
The database D = {Q(a), Q(e), P({a, b)), P({d, €]}, Q([b, d])}. (The square brackets de-
note choice data, e.g., P([a,b]) denotes P(o) where o is an OR-object whose domain is
{a, b}. This notation is used only as a shorthand.) This database is constructed in the
form of a tree. Note that the vertices are essentially the clauses of the database, and

two vertices are connected by an edge if they together have a possible world in which
the query is entailed.

Q([b,d])

P([d.e])
P([a,b])

Q) Q(e)

Figure 3.2: A “tree like” database enabling stepwise reasoning.

Note that one can perform a bottom-up stepwise refinement in the above database
instance as follows: starting with the left most child, one can conclude from Q{a) and
P({a,b]) that the only counter-model, if there is any, for the query should be the one
in which a is removed from P([a,b]). Similar stepwise reasoning yields that e can be
removed from P([d,¢]). Continuing this further, we conclude that at the root we do

not have any choices left for Q([b, d]) from whence it can be concluded that there is no
counter-model for the above database.
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Note that the above database D constitutes a minimal witness of ®. Thus, the above
tree-structure and the associated stepwise refinement indicate that even though the size
of a witness is unbounded, what is more important is the ability to apply the stepwise
refinement. We call a database dense if stepwise refinement can not be performed
directly on it to determine if it entails a query. By stepwise refinement we mean, a
procedure that uses only bounded set of tuples to conclude if a particular choice can
be removed, for the purpose of computing a counter-model (the bound is the number
of literals in the query). This stepwise refinement is analogous to, but different from
the extended Chase-mechanism discussed in [271].

The next subsection identifies “dense” instances which can not be evaluated in a
stepwise manmner.

3.3.2 Density of Witnesses

We say that a database D has density property for a query @, if stepwise reasoning
is not applicable to determine if ) | ®. We illustrated in the previous subsection
that “tree like” databases do not have the density property (see Figure 3.2). In the
following we show that database with “cycles” satisfy the property of being “dense”.
To understand the notion of cycle, consider the following example:

Example 3.3.2 (Why cycles?)
Consider the query ® = 3zy[H(z,y) A H(y, :r:)] where the second argument of H is an
OR-object. Consider the database

D = {H(a,[c,€]), H(e,[a, f]), H(c, [a, £1), H(f, e, a}), H(f,[c, a]), H(a, [b, F])}

See Figure 3.3 in which this database is represented as a graph using the same approach
as in the previous example: if two nodes have a possible world that entails the query,
then put an edge between them.

It is easy to see that the above database does not support stepwise refinement.
In fact, we reed to look at all possible worlds of the entire database before we make
any decision. More precisely, D |= H(a,b) V ®, and for the purpose of constructing
counter-models, we can delete the choice f from the choices of the tuple H(a,[b, f]).
Thus, in order to perform the refinement (i.e., reducing the size of an OR-object), we
need to consider the entire database, not a bounded set of tuples.

Thus, modules with cycles seem to capture the interesting property that the mod-
ule as a whole needs to be considered for refinement. In other words, a cycle can not be
further broken into smaller components for the purposes of refinement. Consequently,
any straightforward algorithm needs to reason with the entire module (of size k) re-
quiring (’)(2’“) time. Thus, we choose components with maximal cycle size as k as the
desired “clumps” or “modules” for constructing Di. We would like to remark that we
do not claim that cycles imply an exponential lower bound. We use modules consisting
of cycles as units because they are amenable to stepwise evaluation.

3.4 Modulewise Evaluation

Recall that our methodology is to define “decomposition property” and use it to identify
subclasses DZ,..., DE,... that enable polynomial time evaluation for a given query ®;
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H(a,[c.e])

H(c,[a,f])

H(e,[a,f])

H(f.[c,a])

H(f,[e,a])

H(a,[b,f])

Figure 3.3: A “cycle” like database that does not enable stepwise reasoning.

here the subclasses are subsets of D® for which ® is known to have coNP-complete
data complexity.

A class of databases D has decomposition property for a query ®, if for any D € D,
it is the case that D |= ® can be determined by determining D: = ® for every
1 <1< m, where D = D; U...UD,,. We refer to I;’s as modules. There are
two issues: the kind of modules, and the kind of “connection” or interface between
modules in a given database D of a given class Dy.

In the previous section we showed that the modules are collections of nodes that
have a maximal cycle of size k¥ where k is a pre-fixed parameter as discussed in Sec-
tion 3.1. The next question is how do we expect to break the database into components.
In other words, how do we decompose a database into modules? We define what is
called “acyclic” collection of components. In other words, [} € Dy iff D can be broken
into an “acyclic collection” of components or modules of size k. Then we prove that
indeed D |= ® can be determined by reasoning with only the components.

This section formalizes the notions of database graphs, nodes, edges, cycles, mod-
ules, and finally, establishes the desired decomposition property.

Definition 3.4.1 Given a database D and a query ®, we construct a hyper-graph
G(D, ®), called instance-graph as follows. The nodes of G are the atomic formulae of
D. {f1,..., fx} is an arc of G iff it has a possible world that entails the query .

If the graph happens to be a multi-graph, we expect the nodes to be numbered (in
some lezicographic order) so that distinct edges are maintained.

Definition 3.4.2 Degree of a node in a hyper-graph is the number of arcs incident
at that node. A path (simple) is a sequence (v1,A1,...,vp, Ap) such that all v; are
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the vertices of the hyper-graph, and all A; are the arcs of the hypergmph;‘furthermore,
255 <p, v € Aja.

Henceforth, we assume that the instance graph is connected. Otherwise, we can
apply our analysis to each unconnected component of the graph.

Definition 3.4.3 A path is a cycle if vi = vp. A hyper-graph is acyclic if it has no
cycles. Every acyclic hyper-graph corresponds to a “tree” in a natural sense. The
degree of an arc is the number of other arcs that share its nodes. A leaf arc is one
whose nodes are shared by ezactly one other arc. The arc that is connected to a leaf
arc is called its parent arc. The node(s) shared by a leaf arc and its parent are called
“bridge” nodes.

See Figure 3.5 for an illustration of these notions.

Observation 3.4.1 No two arcs in an acyclic hyper-graph share more than one node.
Otherwise it becomes a cycle. See Figure 3.4.

Proof:

ArcAg Arc Ay
Al ={vl,v2,v3,v4,v5}
A2 ={v4,v5,v6,v7, v8, v9}

vy V6

Ve

Figure 3.4: If two or more nodes are shared by two arcs, then there is a cycle.

Note that the desired cycle is {(vs, A1, vs, A2, v5). @

Definition 3.4.4 A query is singly-matching if for any set of tuples, there is at most
one possible world that entails the query.

For example, the query 3z[P(z} A Q(z)] is not a singly matching query because
P([e,d]), Q([a, b]) entails the query in two possible worlds. However, it can be proved
that the query Jzy[P(z,y) A Q(y, z)] restricted so that the second argument of P and
the first argument of @ are allowed to take OR-objects, is a singly matching query,
and yet has coNP-complete data complexity.

Now, we prove that for any singly-matching query ® and the class of acyclic
databases D§ = { D | G(D, ®) acyclic}, it is the case that the data complexity of
® is in PTIME. In order to prove this fact we first show that this class of databases
satisfies the decomposition property on its modules.
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Definition 3.4.5 (decomposition property)

For a given query ®, a’class of databases D* has decomposition property, if there is a
k such that the following holds for every D € D*: D can be decomposed into databases
D= U:Z1 D; and |D;| < k and the problem of D |= ® can be determined by composing
the results of D; = ®.

Note that the decomposition property immediately establishes the PTIME property
of ® for D%.

Theorem 3.4.2 For any given query ®, the class DF has decomposition property.

Proof:

Let G(D, ®) be the instance graph. We show that D has the decomposition property
where the desired modules of I are the arcs of the instance graph. The desired constant
of the decomposition property is the size of any arc of G(D,®), which in turn is bound
by the size of ©. B

We use induction on the number of arcs in G to show this resnlt. Base case: G has
at most one arc. Trivial.

Assume that the induction hypothesis holds for every database with the number of
arcs of at most m. Consider a database with m + 1 arcs. We show how to decompose
this database. Let [ be a leaf arc of D. Let p be the bridge of . Let { = {v1,...,vx}.
There are the following cases:

o all nodes of I; are definite. Theln D trivially entails ®.
o At least one vertex of I (other than the bridge) is an OR-formula. Call it v.
o All but the bridge of I is an OR-formula.

See Figure 3.5.
Case: At least one vertex other than the bridge of ! is an OR-formula:

Let v € I be an OR-formula H([a,, ..., aj],l;). Let mi1 be the model of I such that
my |= @ Let a; of H correspond to the model m;. Choose another a! 3 a; and
af € {a1,...,a;} and construct m{ = m; — {H(a:, b)}U {H(a!,F)}. Note that mq p~ .
This is because @ is singly matching.

Consider the graph G’ obtained from G by deleting all the vertices but the bridge
of I and deleting the leaf-arc. Let D’ be the database corresponding to G'. We show
below that D = ® iff D' |= ®. Thus, whether D = ® can be determined by de-
composing D into D' and the arc I. Since G(D’, ®) has fewer arcs than G(D,®), the
induction hypothesis guarantees that it can be decomposed into modules satisfying the
decomposition property. Hence the theorem will follow if we prove that D = ® iff
DE®

Suppose D’ |= ® for every possible world. Since D’ C D, the desired result follows.
Suppose that D’ & ®. Then, let m’ be the counter model of D’ ie., m' = ®. Now
consider the database m = m'Um;. Clearly, m’ is a model of D. Furthermore, m & ®.
Yor, suppose m niodels ®. Then, since neither m’ nor mi model @, it must be that
some tuples of m] and some other tuples of m} together model ®. In other words,
the arc ! is not connected to just one arc, but two. Thus, there is a cycle in G, a
contradiction.

Case 2: The bridge p is an OR-formula, and every other node of [ is
definite:
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Rest of the graph

Parent—arc\

™~
Leaf-arc | Leaf-arc

Figure 3.5: A graph corresponding to a database.
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Let p be denoted by H([a1, ..., ap],b). Let my be the model of I containing H (as, B).
Then mi = m1 — {H (ag,g)}. Clearly, m] is a set of all definite formulae that exist
in every model of D. This is because all the formulae of [ except p are definite. Let
p' = H([a1,...,0i-1, 841, -, 0p)], 5') In other words, p’ is obtained from p by deleting
a; from the OR-object of p. Let G’ be the graph obtained by deleting the leaf arc {
from G and deleting all the nodes associated with I from @, and adding the new node
p'. Let D' be the database corresponding to G'. We show that D = & iff D’ |= ®.
This will in turn prove, as in the previous case, the theorem.

Suppose that D’ = ®. Then we need to show that D = . Note that D' ¢ D. In
fact, all formulae of D' are in D except for p’. Instead of p’, D has the formula p. Thus,
to show that D = @, we should consider also those models of D in which p is entailed
by Hi(a:, i;) Since p’ does not have a; in its OR-object, Hi(a;, E) is not in any model
of I'. However, in any model of D that contains Hi(ai,b), m} U {Hi(a:,b)} entails
the query @, because it constitutes the model of I. Thus every model of D entails .

Suppose D' [~ ®. Then, there is a model m' of D’ such that m' = ®. Then, the
database mz = m' Um} is such that m, is a model of D and m, & ®. Thus, D £ @,
as desired. g

In other words, the above theorem proves that if D is acyclic, and @ is singly
matching, we can determine if D |= @ by considering the arcs of G(D,®) one at a
time, in a modular manner. The PTIME characterization of D¢ follows immediately,
as the theorem below records the result.

Theorem 3.4.3 The data complezity of any query ® for DE is in PTIME.

We extend the above result in two ways, (i) the case when there are cycles in
G(D, ®), and (ii) when the query is not singly matching.

In the case of multiply-matching queries, each arc can have more than one model
that entails the query. Hence, we can not extend the above proof directly to multiply-
matching queries.

If the graph has cycles, we can divide it into components such that each component
has at most a k-size cycle. Thus when we collapse each component containing a max-
imal cycle of size k into a single arc (called “super arc”), the original graph becomes
acyclic in these super-arcs. If a database is such that its instance graph is acyclic in
k-sized cycles, then we say that D is in Dx. Note that since each super-arc can have
maultiple models that entail the query, in this case also, we can not extend the above
proof directly.

Thus in both the cases we need to account for multiple models of a (super) arc
entailing the query. The same approach can be used in both the cases, and the following
theorem establishes the first result.

Theorem 3.4.4 Let @ be a multiply-matching query, and
DE={D| G(D, ®) is acyclic}
Then, D has the decomposition property for ®.

Proof: Asin the previous theorem, there are essentially two cases: (i) the parent of a
leaf arc is an OR-formula, (ii) the parert of a leaf arc is a definite formula but there
is some other node in the leaf-arc that is an OR-formula. Let I be a leaf-arc, and p be
its parent.
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Case (i):

Let | = {A1,...,Ar} where A;’s are the arcs of the leaf-arc I, and V = U4, 4
denote the set of all nodes in the leaf-arc I. Recall that each arc is a set of nodes.
Let p = Hi(o1,b) be the parent of the leaf-arc ! where the domain of oy is given by
Dom(o; = {a1,...,am}. Let I' =1~ {p}; thus, I is the set of all nodes of the leaf-arc
except the parent. Let

S={a| a€Dom(o)and ({H(a,8)}Um)=® for every model m of I'}

Thus, S C Dom(o) is such that for any model of ! involving a € S substituting o in I
entails the query @. Let p’ be the new parent node defined as follows: H (o, i;) where
Dom(o’'} = Dom(o) - S. .

Consider the new graph G'(V’, A") obtained from G(v, A} as follows: to obtain V'
from V, delete all the nodes of I and add p'; to get A’ from A, delete the arc ! from
A Thus, AA=A—1,and V' =V —1U{p'}. Let D’ be the database corresponding to
G(V', A’"). We show that D |= ® iff D’ = ®. As in the previous theorem, this would
prove that D satisfies the decomposition property.

Suppose that D' = ®. Every model m’ of D' entails $. We need to show that every
model of D also entails ®. Consider any model m of D. It either contains a model of D’
in which case it entails @, or it does not contain a model of I}'. Therefore, consider the
latter case: from construction of D' it follows that m is of the form m’ U {H(a,8)} U}
where m' is a model of D', H(a, I—;) is a model of p the parent of the leaf-arc, and finally,
I} is a model of I, the leaf-arc except the parent p. Since m is not a superset of m/,
it follows that H(a,d) is such that a ¢ o'. Therefore, from construction of o' from o,
it follows that a € S where S is as defined before. From the definition of S it follows
that {H(a,g)} Ulj |= . Hence, clearly, m models ® because {H (a, E)} uli Cm.

Now suppose that D’ £ & We show that there is a model of D such that it does
not entail ®. Since D' & ®, there exists a model m’ of D’ such that m’ & @. ;From the
construction of D', it follows that the model m' can be written as m' = m} U {H(a,b)}
for some a € Dom(o’). This is because, D' is obtained from D by removing all the
nodes of I and adding p’ = H(o',}). Thus ¢ € Dom(o') = Dom(o)— S. Now consider a
model I} of I’ such that ¥ U {H (a,b)} does not entail ®. From the construction of o' it
follows that such a model of I’ exists. Now, we claim that m” = m} Ul U{H(a, b)} is
such that m” is a model of D and m” j& ®. Since m} f= @ and (I, U{H(a,b)}) & ®, it
follows that for m” to entail P, it must be the case that some nodes of Ij together with
some nodes of m] entail ®. Then, this contradicts the assumption that ! is a leaf-arc
(and in turn contradicting the assumption that G is acyclic). Hence, it must be the
case that m” & @.

Case (ii):
In this case p is a definite formula. The proof of this case is analogous to the corre-
sponding case of the previous theorem. g

Next, we extend the above two theorems for graphs involving cycles. As stated
earlier, graphs with cycles are viewed as acyclic graphs with “super-arcs”. A super-arc
is, essentially, a maximal component of the graph with a cycle of size k. The set DF
is defined as the set of all databases whose instance graphs (with respect to ®) can be
viewed as acyclic when each maximal component containing k-sized cycle is collapsed
into a single “super arc”. The proof of the following theorem is analogous to that of
the previous theorem (with the obvious and minor modifications).

Theorem 3.4.5 For a query ® (singly or multiply matching), the class DE has de-
composition property.
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3.5 Future Extensions

We are currently working in a number of directions.

o First note that our characterization works only when the OR-objects are distinct.
An immediate extension is to see how to extend this for multiply occurring OR-
objects. This will be useful because we would like to capture natural constraints
over choices such as “John and Mary would like to choose the same course.”

e Our characterization of acyclic graphs prohibits more than one node of sharing
between one leaf arc and a parent arc. However, in the context of hyper-graphs,
more than one node sharing should be allowed, at the same time disallowing
arbitrary sharing. We have some ideas on how to restrict this sharing. We
would like to work in this direction so that we can capture bigger classes of
tractable databases.

¢ We would like to see how to perform this characterization in the context of
queries with choices.



Chapter 4

The Architecture of an Object Base Environment for
Simulation

Phillip C-Y. Sheu*,Larry I. Peterson’

4.1 Introduction

Object-oriented computation in the broad sense is computation described as a sequence
of requests to objects through a single access method such as message passing. It is
generally accepted that object-based systems such as Smalltalk have provided a simple
and elegant paradigm for general-purpose programming which can be meshed well with
data models. In brief, the class/method mechanism handles well the requirements for
type definition and information hiding. The message protocol provides a useful way
of controlling the updates that can be performed on a data object. In addition, the
inheritance mechanism makes database schemas easy to modify, and new variants can
be constructed easily as subclasses.

The above features naturally lead to the use of the object-oriented paradigm in
instrumenting and supporting simulation activities. On the other hand, the nature
of object-oriented representations suggests that an object-oriented simulation program
can be executed in parallel. To our knowledge, more than a dozen object-oriented
simulation languages/systems have been developed; some have considered parallel pro-
cessing. A survey of such systems/languages can be found in {572} [200]. Most of such
systems/languages extend an object-oriented programming language with the necessary
constructs for simulation, in particular “...the notion of simulation time and mecha-
nisms for entities in the language to manipulate simulation time.” [326]. However, the
issues of object management and object retrieval have not been fully addressed. As
for parallel processing, focus has been placed on developing efficient algorithms which
allow events be processed parallelly to the maximal extent.

This chapter describes the design of a parallel object-oriented simulation environ-
ment. An object base is defined to be a system which contains a large set of active
as well as passive objects. For active objects, not only the data portion, but also
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the control and knowledge portions of an object are stored and managed. Parallel
evaluation of simulation programs is accomplished by compiling objects into sets and
production rules so that they can be evaluated with parallel, set-oriented operations
which effectively utilize the capacity of parallel processors with minimal communica-
tion overhead. It is organized into the following sections: Survey of Related Work,
Object Representation, Management of Active Objects, Simulation, and Conclusion.

4.2 Related Work

Work related to the simulation environment described in this chapter can be classified
into three categories: parallel simulation systems, object-oriented databases, and active
databases.

Parallel Simulation Systems The problem of parallel processing of simulation
systems has attracted much attention recently. A number of parallel computation mod-
els and their associated problems have been investigated [200] [326]. The models can
be classified into two categories: synchronous and asynchronous. In a synchronous,
parallel simulation system, processes and events are scheduled and executed by the
simulator with a global clock. On the contrary, each process in an asynchronous,
parallel simulation system maintains its own clock; in addition, processes and events
are scheduled and executed in a fully distributed fashion. This means there exists
no scheduler to synchronize the events globally. According to [200], “...few simulator
events occur at any single point in simulated time; therefore parallelization techniques
based on lock-step execution using a global simulation clock perform poorly or require
assumptions in the timing model that may compromise the fidelity of the simulation”.
Accordingly, “Concurrent execution of events at different points in simulated time is
required, but ..., this introduces interesting synchronization problems...”. Most of such
synchronization problems are resulted from data dependencies among different pro-
cesses which run under different speeds. Approaches to the synchronization problems
can be in turn classified into two categories: conservative and optimistic. A conserva-
tion approach prevents any synchronization problem from happening, but it degrades
performance. An optimistic approach allows synchronization problems to occur, and
rollbacks are often necessary once these problems are detected.

Object-Oriented Databases In the past, several object-oriented databases have
been proposed. In brief, researchers and developers have approached object-oriented
database implementation along two directions: extending the relational model (e.g.,
POSTGRES [384] [342], GENESIS [164], Iris [134], and PROBE [592]) or applying the
ideas of object-oriented programming to permanent storage (e.g., GemStone [135]).
Most of the systems in the first category have been designed to simulate semantic data
models by including mechanisms such as abstract data types, procedural attributes,
inheritance, union type attributes, and shared subobjects. Most of the systems in
the second category extend an object-oriented programming language with persistent
objects and some degree of declarative object retrieval.

Both approaches have drawbacks in processing a large number of active objects.
The first approach suffers from the unstability problem resulting from the separation
of control and data. The second approach, on the other hand, loses the advantages
provided by fact-oriented database operations.
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Active Database Systems Theidea of incorporating rules into a database system
has exist as integrity constraints and triggers as early as in CODASYL, in the form
of ON conditions. More recently, the idea of combining rules and data has received
much serious consideration. The term “active database” has been used frequently in
referencing such database. For example, rules has been built into POSTGRES [342]:
there is no difference between constraints and triggers; all are implemented as a single
rules mechanism. In addition, POSTGRES allows queries be stored as a data field
so that it is evaluated whenever the field is retrieved. In HiPAC [138], the concept
of Event-Condition_Action (ECA) rules was proposed. When an event occurs, the
condition is evaluated; if the condition is satisfied, the action is executed. It can be
shown that KCA rules can be used to realize integrity constraints, alters, and other
facilities. Rules have also been included in the context of object-criented databases.
In Starburst [285], for example, rules can be used to enforce integrity constraints and
to trigger consequent actions. In Iris [134], a query can be monitored by first defining
it as a function and later creating a monitor for the function.

On the other hand, there has been a growing interest in building large production
systems that run in a database environment. The motivations are derived from two
areas. First, expert systems have made an entry into the commercial world. This has
brought forth the need for knowledge sharing and knowledge persistence. These are
features found in current databases. Secondly, many emerging database applications
have shown the need for some kind of rule-based reasoning. This is one of the principal
features of expert systems. Production systems is a commonly used paradigm for the
implementation of expert systems. The confluence of needs from the areas of Al and
database has made the study of database productions very important.

Traditionally production systems have been used in Al, where data are stored
in main memory. Various needs, as mentioned above, have lead production systems
designers to use databases for data storage. We refer to these as database production
systems (DPS). Commercial DBMS’s do not have the necessary mechanisms to provide
full support for such systems. Views can be used in lieu of rules, but only in a limited
way. Recent work has produced more powerful mechanisms to handle a large class 6f
rules [31] [93]. However, the focus has been on retrieval, especially evaluating recursive
predicates, and proposed approaches do not handle updates as in systems like OPS5
and HEARSAY-II. Recent efforts by [571] [341] [375] [84] have addressed this issue, and
much attention has been placed on parallelizing the evaluation of production systems
(see, e.g., [234] [283]). To our knowledge, little effort has been made for production
systems that work on objects or distributed evaluation of production systems.

4.3 Object Representation

To illustrate the concept of object base for simulation, we have chosen to extend C-++
as the object representation language. It is chosen based on the observation that C++
has acquired enough attention and acceptance as the object-oriented language in the
computer community. These extensions are described in the following subsections.

4.3.1 Complex Objects

A complex object is an object consisting of a set of (possibly complex) objects in the
sense that (1) The domain of an attribute can be any class; and (2) The value of an
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attribute can be a set of objects. A complex object is an abstraction of its compo-
nent objects. Consequently, a method associated with a complex object implements
a function of its component objects as a whole; so are the attributes of the complex
object. Non-complex objects are called simple objects. To realize the concept of com-
plex object, it is necessary to explicitly incorporate the notion of “set” in the object
language:

Set Classes Given a class o, the class of a.]I/‘possible ordered sets which can be
derived from instances of « is declared as:

class set_of o {

methods

The following declaration defines a set a of class a:

set_of-o a;

Set Projection Given a set or an object a of class ¢, the following notation desig-
nates the projection of @ on attributes Al, ..., An:

alA1, .'..,An

4.3.2 Active Objects and Models

The constructs provided in C+4 are sufficient to describe passive objects, i.e., objects
whose activities are triggered when a method associated with the object is called. In
real applications, a special class of objects need to be defined in order to describe
objects which are continuously active according to some control mechanism. Such
objects are called ‘active objects [85].

Control An active object can be characterized by a set of states and a set of state
transition rules. In the extended language, a class of active objects is declared as a
subclass of the class active, for which any attribute, once defined, can be declared to
be a state as follows:

state attribute,...,attribute;

The control portion of an active object is expressed as a set of production rules,
which is designated as the attribute control (whose domain is set-of-production) of the
object. A production is asserted in the following form:

condition = statement;

where condition is any logical expression over states and inputs, and can include
any quantifier over sets:
Universal Quantifier
A variable in a logical expression can be universally quantified by the quantifier:

(forall <variable_id> in <set_id>)



4.3. OBJECT REPRESENTATION 69

Existential Quantifier
A variable in a logical expression can be existentially quantified by the quantifier:

(exist <variablesd> in <set_id>)

Membership
The following function returns 1 if <wvariable_id> is an element of <set.id>:

< set_id> :member(<variable_id> );

Similar to complex objects, we can define a complex active object to be a set of
(possibly complex) active objects. With this definition, a complex active object can be
regarded as a concurrent production system?

Communication For a complex active object, we classify the styles of communica-
tions among its component objects into two categories: synchronous and asynchronous.
Communication between two objects is defined to be synchronous if:

1. The calling object suspends its execution after a message is sent to the other
object; and

2. The calling object resumes execution immediately after a reply is received from
the called object.

Communication between two objects is said to be asynchronous if the calling object
continues its execution after a call is made. Asynchronous communication is achieved
in the extended language via messages. The class message is defined as follows:

class message {
public:

time time-stamp, reference;
object sender, recipient;
set-of-object arguments;
void send();

boolean receive();

H

An asynchronous call to method @ associated with object ¢ with arguments is
made by first creating a message object, assigning appropriate values to its attributes,
followed by sending the message with the send operation:

8.send();

where § is the message just created. On the other hand, any message sent to an object
is picked up by the boolean function receive, which is called in the form of:

m.receive();

!Briefly, a production system consists of a set of rules, or “productions”, which is of the
form (condition) — (action), a database or “context”, which maintains the state/data of the
system, and a rule interpreter. The condition portion of each rule (LHS) is composed of some
logical combination of the results obtained from comparing some “state variable(s)” to a fixed
value(s) or to some other state variable(s). They are tested continuously. If the condition is
true, the consequent action (RHS) of the rule is executed.
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The function returns true if a message has been received; in this case m is instantiated
to the message received. It returns false otherwise. A message m is regarded as the
reply to a previously sent message § if:

m.reference = §.time-stamp
m.sender = b.recipient
m.reciptent = 6.sender

According to the above, an ordinary C++ function call c.a(z1, ..., z5) implements
a synchronous communication session; it is equivalent to a send operation followed
immediately by a receive operation.

Inputs, Outputs, and Links In the extended language, some attributes of an
active object can be chosen to be the inputs and outputs of the object as follows:

classifier attribute,... attribute;

where classifier can either be the keyword input or the keyword output. The assign-
ment of inputs and outputs allows different objects be connected directly in order to
form an interconnected complex object. A linkage between two objects can be estab-
lished by the operation link:

link(a.r,c.s)

This operation connects a.r, presumably to be an output of object a, to c.s, presum-
ably to be an input of object b, so that any assignment to a.r is made to b.s as well
instantaneously.

Clock and Model To support simulations, the attribute clock is associated with
each active object, and a set of methods is available to manipulate the clock. Finally,
any subclass of the class active is called a model.

Class Template Insummary, the general form of the class declaration for an active
object class is:

class <class_id> {
<class_id> <wvariable_id>,[...<variable_id>];

<class_id> <method.id> (parameter_1:domain_1,...,
parameter_n:domain._n);

classifier attribute, ..., atiribute;

int clock;
set-of-production conirol = {
<logical-ezpression> = actions;

}

In the above, a classifier can be one of the following keywords: state, input, and
output.
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Associative Object Retrieval The availability of sets as described in the above
also allows objects be retrieved in an associative fashion. It is assumed that the fol-
lowing functions/statements are used to access the elements in a set:

1. <set_id>:insert(<variable_id> );
2. <set_id>:delete(<variablesid> );
3. (foreach <variable_id> in <set.id>) statement;

4.4 Management of Active Objects

Given a set of active objects, the problem of object management is concerned with the
impact created by any change made to the system. It is desirable that adjustments can
be made automatically according to any change so that the system is always consistent.

4.4.1 State Space and Criteria

Given an active object P with n states s1,...,8n, we define the state space of the object
to be Domain(s:) x Domain(sz2) x --- x Domain(s,). Among the states, we assume
that one is chosen as the initial state and a number of them are chosen as the final
states. We define the set of reachable states of P to be the set of all possible states which
can be reached, either directly or indirectly, from the initial state. For the purpose of
discussion, the following criteria are chosen as the constraints when an active object is
updated:

Liveness An active object should have no state which is a dead-end state, where a
dead-end state is a state from which no further state transition can occur and it
is not a final state.

Consistence An active object should be consistent in the semse that, in any state,
there exist no conflicting actions, where two actions conflict each other if their
effects logically violate each other.

Otbher criteria, such as reachability and deadlock-freeness, can be considered in a
similar way.

4.4.2 Adding and Removing A State

If an active object is live and consistent, these two operations are processed as follows:

Adding A State Assuming sn41 is added to object P and the object becomes P’,
the state space of P is enlarged to Domain(s1) x Domain(sz2) X --- X Domain(sn) x
Domain(sn+1). Any state v in the original state space now corresponds to Domain(sny1)
states (v,u1).....(v,u,), where 1 = Domain(sn+1) and the set of u.’s spans all possible
values of sny1. Let us assume that v is not a final state. Since v is not a dead-end
state in P, there must exist a rule in P for which v satisfies its left hand side. Clearly,
in P', each of (v,u1).....(v,u,) still satisfies the LHS of the same rule. Consequently, P’
remains to be live. On the other hand, since no new rules (and actions) are added to
P’, no conflicting actions may be taken in each of the new states. In summary, adding
a state variable to a live and consistent object does not damage such properties.
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Deleting A State Deleting a state is more complicated than adding a state. As-
suming s; is removed from object P and the object becomes P’, the state space of P is
shrunk to Doemain(s1) x --- x Domain(si_1) x Domain{s;}1) X --- x Domain(sy).
Domain(s;) states (v,u1).....(v,u,), where R = Domain{s;) and the set of u;’s spans
all possible values of s;, now converge to a single state v. Since none of the original
states (v,u1).....(v,ur), where R = Domain(s;), is a dead-end state, it is clear that v
is not a dead-end state. Consequently, P remains to be live after s; is deleted.
Deleting a state is complicated due to the requirement of consistence. The compli-
cation arises from the fact that the left hand side of some rules may include conditions
on $;.Simply dropping such conditions from those rules can create the following prob-
lems: (a) An updated rule can violate the intention of the user; (b) Actions which used
to be taken in states (v,u1).....(v,2,) are now collectively taken in the state v; and some
of them may be conflicting. Instead of inspecting every state for possibly conflicting ac-
tions, the following procedure can be taken: For each pair of conflicting actions a; and
a;, identify conditions(a;) and conditions(a;). In the above, conditions{a;) designates
the set of LHS’s of those rules whose actions include a;; conditions(a;) can be defined
in a similar way. The intersection of conditions(a;) and conditions(a;) identifies the
states in which conflicting actions a; and a; can be taken at the same time. Due to
these factors, the user is consulted when a state is deleted and some rules are affected
by this change. The conflicting actions are reported in the mean time, assuming all
conditions including the deleted state are dropped. Subsequent actions from the user
are handled according to the procedures for adding rules and deleting rules (see below).

4.4.3 Adding and Removing A Rule

If an active object is live and consistent, these two operations are processed as follows:

Adding A Rule Assume a rule R of the form Cr = Ar is added to object P.
The state space clearly remains to be the same. Let states(R) be the set of states in
which Cg can be satisfied. It is possible that executing R from a state in states(R) can
result in a state v from which no rule is applicable: a dead-end state. Such states can
be detected by identifying all the states which may be directly reached from the states
in states(R) and followed by inspecting each of such states and looking for applicable
rules. If a dead-end state can be discovered, the addition of R is not safe.

The addition of R may as well create conflicting actions, since the actions associated
"with R may be in conflict with actions of some rules which are applicable in a state of
states(R). The procedure described in the section ”Deleting A State” can be applied
to detect such states.

Deleting A Rule Assume a rule R of the form Cr = Ag is removed from object
P. The state space clearly remains to be the same. Let states(R) be the set of states
in which Cg can be satisfied. It is possible that removing R can result in a state which
used to be directly reachable from a state in states(R) no longer satisfies the LHS of
any remaining rules: a dead-end state. Such states can be detected by identifying all
the states which may be directly reached from the states in states(R) and followed by
inspecting each of such states and looking for applicable rules. If a dead-end state can
be discovered, the removal of R is not safe.

On the other hand, the removal of R from P causes no problem as far as consistence
is concerned. This is because each state v of the original state space is consistent, and
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the removal of R does not create any new action in v.

4.4.4 Adding and Removing An Attribute

If an active object is live and consistent, these two operations are processed as follows:

Pfdding An Attribute Adding an attribute of a class in an object causes no
problem since the states and the rules of the object remain intact.

Deleting An Attribute Deleting an attribute from a class of an object has no
impact on the liveness of the object. Since some actions of the rules may include the
attribute to be deleted, the removal of the attribute may make the action part of such
rules incomplete. Simply dropping such updates from such rules may create problem
as the updated rules may violate the intented semantics of the object, although the
object remains consistent (as no new actions are taken). User involvement is required
in this case.

4.4.5 Adding and Removing A Method or A Class

Adding a method is like adding an attribute; and deleting a method is like deleting an
attribute. Adding a class is equivalent to adding a set of states, attributes, methods,
and rules. Deleting a class is equivalent to deleting a set of states, attributes, methods,
and rules.

4.5 Simulation

As discussed in Section 2, most of the existing object-oriented simulation systems pro-
vide an object-oriented user interface so that a simulation program can be described
in an easy and friendly fashion. Execution of an object-oriented simulation program
can be completely sequential or fully distributed as the program specifies. Although
looks attractive, executing a simulation program as a fully distributed, object-oriented
system could be inefficient due to the shortage of physical resources and the overhead
associated with process management. Bearing this in mind, our approach compiles
an object-oriented simulation program, in which each active object is represented as
a production system, into a (production) rule network. Treating each active object
as a passive object, each node of the network corresponds to a set-oriented operation.
The compiled network (or the set of operations of the network) is evaluated in par-
allel. Changes to objects are generated at the terminals of the network. The overall
architecture of the object-oriented simulator is shown in Figure 4.1.

4.5.1 Rule Processing

In general, processing of production rules or integrity constraints can become a serious
performance bottleneck when a large number of objects and rules are integrated. Since
multiple instances of the same class share the same copy of production rules, it is viable
to compile a set of rules into one system in which some set-oriented operations can be
employed to process the data (treated as sets) collectively. Furthermore, given a set
of rules, it is viable to merge those expressions that are common to more than one
rule so that duplicated effort can be avoided. We take a network approach for this
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purpose, which is similar to the RETE algorithm ([235] [340]) but is more general in
treating logical formulas and structured objects. Although integrity constraints and
production rules are treated slightly differently, both are processed based on a network
that is compiled from a set of logical formulas.

Processing Integrity Constraints Given a set of constraints {fi — 71, ..., fx
— rn}, we can first convert each comstraint f; — r; into the form f; A ~ ri(i.e., the
negation of the original rule). Subsequently, all the converted rules can be compiled
into a network (see below), where each rule corresponds to a a terminal at the bottom
of the network, and there is no violation of the rule if no results can “flow” out from
that terminal.

Processing Production Rules Given a set of productions {f; = r1, ..., fo =
Trn}, we can first compile all the left-hand-side formulas {f1, ..., fn} into a network (see
below), where each formula corresponds to a a terminal at the bottom of the network.
Subsequently, each r; (created as an action node) is connected to the corresponding
terminal, and all the qualified objects for each production will “flow” into the action
node.

Compiling Logical Formulas Given a set of logical formulas, a conjunct may
be used in different formulas and those conjuncts having the same head and the same
arguments can share the set of instantiations once they are computed; also, we can
produce the result for a conjunct from the result of another conjunct if the first conjunct
is more “general” than the second one. Here we define a conjunct P to be more general
than another conjunct @ if

1. P and @ have the same head,
2." all the constants in P can be matched with those in @, and

3. all the variables in P can be consistently unified by the variables or the constants
in Q.

Now we define a rule network as a directed graph, where each node represents
a conjunctive formula. A rule network consists of a set of nodes, each is labeled by
a logical formula and corresponds to a set of objects. If a set of nodes n,...,ny are
connected to a node n, each with an out-going arc, it means the sets produced at the
ni’s are input to » so that » can produce a set that corresponds to the logical formula
it carries. A node withont any input arc is called an input node; typically it is a class.
A node which does not have any output arc is called a terminal node. A rule network
can be constructed with the following procedure:

Constructing Rule Networks
Input: A set of conjunctive formulas Q1,Q2,...,Qn for which each element corre-
sponds to the LHS of a production rule.

Output: A rule network

Step 1

For each @, identify the set of predicates which correspend to classes, i.e., those
predicates which are class names. Create a node n, called a join node, for the predicate
set if it has not been created; otherwise identify the node that has been created (by
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some Q;, 7 < 1) and call the node n. Create another node and label the node with
the other predicates, which is collectively called a modifier, and establish an arc from
n to the newly created node. The arc goes from n to the modifier node since the
outputs produced by n should be processed, and selected, by the modifier node; any
output produced by the modifier node naturally corresponds to a tuple (of objects)
that satisfies the LHS of the rule. This step basically eliminates any duplicated effort
of creating a natural join of object classes among the rules.

Step 2

For any pair of join nodes ny and ng, if the set of predicates carried by n; is a
superset of that of na, establish an arc from nz to n1. This step guarantees that the
set produced by no can be used by ni. Since subsets may overlap, a join node can
choose, among different combinations, the best input sets to combine.

Step 3

At the end of step 1, a number of nodes that perform natural joins should have
been created. In the mean time, each rule corresponds to a modifier that selects from
the corresponding natural join those qualified objects. Consequently each join node is
connected to a number of modifiers. If there exists any predicate p which is common to
more than one modifier, a new node, called a common factor node, is created so that it
contains the MGP among such p’s; an arc is created from » to the common factor node.
Finally, the modifier node corresponding to each rule connects itself to those common
factor nodes whose corresponding predicate subsumes one of its predicates. If after this
a modifier m is connected to a set of common factor nodes c1,...,ck, the intersection of
the outputs produced by ¢;’s is taken before the final selection is performed.

As an example, given the following formulas, the resulting rule network is shown
in Figure 4.2.

class_1(X) && class_2(Y) && pi(X,Y) && p2(Y)
class_1(X) && class_2(Y) && p2(Y)
class_2(Y) && p3(Y)

The procedure described above cannot guarantee that the computational effort
resulted from combining duplicated formulas be the minimum; even for the case of
relational databases it has been proved to be difficult. It does, however, guarantee
that no formula that is duplicated among several rules be evaluated more than once.
Once a network is built, it is evaluated incrementally. Specifically, each operation is
evalunated once based on the initial state of the system. In the mean time, for each
operation, the results are stored. Subsequently, as the state of the system is changed,
only those rules which are affected by a changed object need to be evaluated during
each iteration. When an update of the database is made, operations are performed
from the bottom of the network. Omnly those nodes containing the corresponding class
predicate as the updated fact and whose arguments can be unified by the arguments of
the npdated fact are activated. After the common factors and modifiers are activated,
the operations associated with the qualified rules are performed. For each join, common
factor, or modifier node, the content of the stored result is changed according to the
change(s) in its input set(s).
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Figure 4.2: A Rule Network
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4.5.2 Logic of The Simulator

As described, our approach merges a set of active objects into a (much) smaller set of
operation processes. Simulation can be performed synchronously or asynchromously.
In the synchronous mode, a global clock is employed so that each active object is
synchronized with respect to the global clock; the system proceeds according to the
discrete events produced. In the asynchronous mode, each active object proceeds at
its own speed. In this case, joins in the rule network have to be performed on objects
with different clock values. Consider a decision o which has to be made based on the
states of two objects a and b, and a runs faster than & (i.e., clock(a) > clock(d)). If
o is a decision for b (i.e., if the associated production is evaluated for b), clearly a
previous state of ¢ has to be used in making the decision. On the other hand, if « is
a decision for a, and since in this case the “current state” for b is not available, ¢ may
assume that the state of b will not change during the period (clock(a),clock(b)) and
use the most recent state of & in making the decision so that in the worst case, it can
roll back to this decision point if the relevant states of b are indeed changed once it
catches up. The same reasoning can be extended and applied to decisions which have
to be made based on more than two objects. Each node in the rule network has to
use the correct versions of the objects in the computation. Even if the simulator runs
in the synchronous mode, it is required that the states of each object be recorded and
rollbacks be performed whenever causality errors are detected. It is necessary since
messages may be mis-ordered. Based on the above, the simulator executes a loop with
the following steps:

Event Execution In the case of synchronous simulation, the events with the small-
est scheduled time with respect to the global clock are executed; in the mean time the
global clock is adjusted to the events’ scheduled time. In the case of asynchronous
simulation, the events with the smallest scheduled time with respect to each object are
executed; in the mean time the logical clock associated with the object is adjusted to
the events’ scheduled time.

Object Selection The rule network is evalnated. At the terminals of the network,
actions are generated. This step basically selects those objects which have one or more
productions eligible for firing based on their current states. As discussed earlier, in
the case of asynchronous simulation, each join node of the network need to select an
appropriate version of the object states for each object to join due to speed mismatches.
To be specific, assume a join node o joins n classes of objects ¢, ...,cn. Also assume
at one instance of time an object r, which is an instance of class ¢, changes state
(i.e., an updated r comes into o), with a new clock value 7" Since the join should
be incremental, r should be joined with c1(r),...,ci—1(r), ciq1(r),...,cn(r), where ¢;(r},
j # 1, consists of every instance of class ¢; whose logical clock value is the maximal
possible one which is smaller than T in its history. Each tuple (of objects) produced,
say, ($1,...,8n), should be labeled by the augmented tuple ((s1,71),..., (85,7%)), where
T: is the clock value of object s; chosen to be joined, so that it becomes the “cause”
for the tuple produced.

Production Firing For each object selected, the actions associated with each
firable production rule are taken. Such an action could be an operation which changes
the value of an object, a communication operation (send and/or receive), or an event
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(which will be executed in the future). If necessary, the value of the clock associated
with the object is updated based on the operation(s).

Detection and Performing Rollbacks In a simulation program, rollbacks are
required when some causality errors - usually due to speed mismaiches in an asyn-
chronous environment - are detected. The term “rollback” implies that each active
object should maintain the history of itself so that it can go back from its current
state to some previous state if necessary. Specifically, an active object need to record
its state transitions. For any causality error detected, it need to locate the state in
which a previously received message took effect, go back to that state, and undo any
intermediate actions. More importantly, it should “unsend” any message that was sent
in a state along the rollback state chain; this may cause cascading rollbacks take place
on other objects.

Let us assume that each operation or event a is labeled by (P, T, ((s1, T1 ), (sn,
Tn)), s), where P is the production that triggered the action/event, T is the logical
clock value of the target object (of the operation/event) at which it should take place,
each (s;,T}) designates the state of object ¢; and its time base on which the production
was fired, and s is the state of the target object after the operation/event was taken.
Clearly, o need to be undone if each of ¢;, 1 < ¢ < =, for which T; < 7, is advanced
to a logical clock value that is greater than 7', and if S; designates the state of ¢
just right before T, all together Si,...,5, does not satisfy the LHS of P. Cascading
rollbacks (backward in time) with respect to the target object are possible since all the
relevant objects have caught up. This means a fast object may become a-slower object
after rollbacks. Since rollbacks for an object never occur until all the relevant “slower”
objects have caught up, rolling back an object should not affect those objects which are
faster than itself for which some operations/events were produced based on its current
state; those objects may need to be rolled back once the currently-being-rolled-back
object catches up later.

Since our object model allows objects be shared among different processes (al-
though they are accessed through messages), it is important that serializability [442]
be maintained all the time. This means the effects created by multiple processes which
are executed concurrently should be the same as those created by a (any) serial sched-
ule among the processes. To assure this, our design employs the two-phase locking
protocol, which requires all objects accessed by a process be locked before accessed,
all locks be acquired before any unlock, and all objects be unlocked before the process
terminates. Clearly, two-phase locking cannot be implemented at the method level, as
two consecutive method calls can violate the two phase requirement. Consequently, we
require each method lock any object it may access but not unlock it. The list of locked
objects should be returned to the calling process so that the process can unlock the
locked objects before it terminates.

4.5.3 Parallel Processing

The following approaches can be taken in order to evaluate a rule network, depending
on how logical objects are packed into physical objects:
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Class-Level Parallelism In this approach, each node of the network is imple-
mented as a physical object, where each input node is a class object and each internal
node is an operation object. The network is evaluated as an active network, operating
in a pipelined fashion. Specifically, each operation object retrieves inputs from its in-
put object(s) and produces the outputs, which are available to the operation object(s)
at the next higher level. Unlike operation nodes, each class object functions as a data
store from which data can be retrieved by operation objects.

Set-Level Parallelism In this approach, each terminal node is implemented as a
set of objects, where each of them corresponds to a subset of a class. The network
is transformed into an equivalent one in which each terminal node corresponds to a
subclass object. The transformation can be done in a straight-forward fashion based
on the following principles:

1. (R=R1UR2)/\(S=51U52)=>R[><IS=(R1MSl)U(R1NS2)U(R2l><I
Sl)U(R2D<152)

2. (R = R1 U Ry) = selectp(R) = selectp(R1) U selectp(R2)

Clearly, this approach can achieve a higher degree of parallelism; however it is more
complicated to implement. In addition, the number of operator objects can grow
exponentially as each class is split into smaller and smaller subsets.

4.5.4 Example

This example consists of a number of divisions divided into two sides: blue and red.
The divisions are initially located on the border of a battlefield which is modeled as a
square of grid tiles. The scenario is set up so that all the red divisions are spread on
the east border of the battlefield and the blue divisions are spread on the west side.
Once initiated, the blue divisions march to the west and the red divisions march to
the east, during which each division is characterized by its strength, speed, direction
of movement, and its location. When two divisions of opposite sides encounter each
other, the strength of the weaker is reduced to zero; in the mean time the strength of
the stronger is reduced by the that of the weaker. Any division whose strength is 0
is removed from the system. At any instance of time, the number of divisions in each
grid tile cannot exceed two.

The system as described can be expressed as a production system as follows. For
simplicity, locking and unlocking operations for shared resources are not included in
the rules.

division(d) && (d.color = red) && grid(g) && neighbor(d,g) && (g.capacity
< 2) = marchleft(d), (d.clock = clock + 2}, (g.capacity = g.capacity +
1} (Rule 1)

division(d) && (d.color = blue) && grid(g) && neighbor(d,g) && (g.capacity
< 2) = march_right(d), (d.clock = clock + 2), (g.capacity = g.capacity +
1) (Rule 2)

division(d) && (d.color = red) && division(e) && (e.color = blue) &&
same_grid(d,e) && (d.strength leq e.sirength) = (d.strength = d.strength
~ e.strength), (e.strength = 0) (Rule 8)

division(d) && (d.color = red) && divisionfe) && (e.color = blue} &&
same_grid(d,e) && (d.strength < e.strength) = (e.strength = e.strength -
d.strength), (d.strength = 0} (Rule 4)

il
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division(d) && (d.strength = 0) && grid(g) && in_grid(d,g) = d.delete()
&& (g.capacity = g.capacity — 1) (Rule 5)

The rule network constructed for the above network is shown in Figure 4.3. As shown,
after Rule 1 and Rule 2 are evaluated, all divisions which can move are scheduled to
move into their new locations after two time units. After Rules 3 and 4 are evaluated,
the strength of any moved division is adjusted; and those with 0 strength are removed
after Rule 5 is evaluated. As can be observed, in the rule network, each rule is evalnated
for those objects whose states are just changed by the other rules. In other words, the
focus can always be placed on those objects whose states were just changed. This
is different from the fully object-oriented approach. If the simulation system is fully
distributed and object-oriented, each of the above rules need to be evaluated by each
active object during each cycle, even if the object is not qualified to move.

4.6 Object-Oriented Evaluation of Rule Net-
works

This section presents an object-oriented approach to rule processing. It is “object-
oriented” since each entity in the system is an active object, which acts with its own
dedicated control sequences according to its functionality (e.g., constant nodes, predi-
cate nodes, variable nodes). Upon receiving a message from another object, it executes
its dedicated control sequence which may return a result or initiate an operation of
other objects for further processing. All operations in objects are proceeded asyn-
chronously. Since no object has global knowledge about the database, cooperation
among objects is necessary in interpreting a production. Compared to the fully object-
oriented approach, each object in this approach is much simpler in the sense that it
does not need to evaluate a production system as required by the fully object-oriented
approach. It does, however, have the minimal intelligence to participate and contribute
to the rule evaluation process.

4.6.1 Structures of Extensional Databases and Query Net-
works

In order to store an object (which is represented as a predicate), three types of nodes
are employed: object constant nodes, object predicate nodes, and object attribute
position (OAP) nodes. Specifically, an object of class p with attributes ay,...,an is
stored as an object predicate node p, a set of object constant nodes a;,...,ar, and a
set of OAP nodes pi,...,pn. For each class p, the set of objects of p, designated as pe,
is collectively stored as an interconnected network, which consists of the following: an
object constant node for each distinct constant which may appear as an attribute of
an instance of p, n OAP nodes p; ,...,pn, and | p. | object predicate nodes so that for
each object of p., assuming its attributes are ay,...,a,, the object constant node @i, 1
< i < n, is connected to an object predicate node (which stores the predicate symbol
p) and each a; is connected to the OAP node p;.

It is assumed that each object constant node knows the addresses of those ob-
ject predicate nodes and OAP nodes which are connected to it. Similarly, each OAP
node and each object predicate node know the addresses of its associated attributes.
Inside an object constant node, the set of addresses to its connected object predicate
nodes are grouped based on attribute positions; these groups are called address groups.
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Figure 4.3: A Rule Network
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Consequently, an OAP node is used to interface the object network and the external
environment. It acts as a buffer node which gets a message from the outside of the
network and regenerates the same message to the connected nodes in the network. It
also combines the replies from the connected nodes in the network and sends a reply to
the outside of the network. With OAP nodes, we can hide the actual fact network from
the outside of the network. Conceptually, the use of OAP nodes employs an indirect
addressing mode in order to avoid the establishment of connections to object constant
nodes whenever a rule is evaluated. Comsequently, when an operation is evaluated,
only the connections from each predicate argument nodes in the operation network
{see below) to the OAP nodes in the object network need to be established. Within
each node, it stores the identity (node type) of the node, its value (if it is an object
constant node), some dedicated control sequences, and the addresses of the nodes it
is connected to. Inside an object constant node, the addresses of its connected object
predicate nodes are recorded and grouped according to their positions. Note that each
distinct object is uniquely stored.

On top of the objects, a join operation f = f; A ... A f, is built as an operation
network, where each f; denotes an operation predicate node which is connected to a set
of operation argument nodes (where each of them could be an operation constant node
or an operation variable node). A logical expression can be associated with each vari-
able argument node which designates any select criteria for the argument. Depending
on its position in the argument list, is connected to an appropriate QAP node, which
should exist in the object network already. We shall assume that a controller exists on
top of all the objects and each object knows the address of the controller. However, the
controller only knows the address of each operation predicate node when an operation
network is constructed.

4.6.2 Object-Oriented Rule Evaluation

Consider an operation and an object of class p with attributes as,...,a,. If the object
knows the structure of the operation, we can have the following observations:

1. For each constant a, note that @ can be an attribute of more than one object,
assume we know which variables of which operation predicate nodes can be
instantiated by a. The object predicate p(ai,...,an) can instantiate the operation
predicate node p(z1,...,2r), where each of 2;, 1 < ¢ < n, is a constant or a
variable, and ¢; is the select criteria associated with z; if it is a variable, if for
each 7, 1 < ¢ < n, the following conditions are held:

(a) ai = x, if z; is a constant;
(b) ci(a:) is true, i.e., a; can instantiate z;, if z; is a variable.

Furthermore, for any z; and zx, 1 < j,k < n,j # k,ifz; =V and 2 = V for
some variable V, we say there is an intra-predicate tupling condition between z;
and zx. Clearly, for any intra-predicate tupling condition between z; and zx,
a; should be equal to ax. In this case, we say a; satisfies all the intra-predicate
tupling conditions for p. .
The above implies that each object predicate object, which is connected to its
attributes, can determine if it can instantiate a predicate of the operation. This
is because (1) Each of its attributes knows which variable instances of the pred-
icate can be instantiated by itself, and such knowledge can be collected at the
object predicate object; (2) The object knows the structure of the operation,



84

CHAPTER 4. ARCHITECTURE OF AN OBJECT BASE ENVIRON.

and therefore knows which variable instances are associated with, and in what
order in, each predicate node of the operation.

. For each constant a, note that @ can be an attribute of more than one object,

assume we know which variables of which predicates of an operation can be
instantiated by a and group all such (variable instantiated — variable) pairs
into a set BVIS,, where BV IS stands for Binding Variable Instances Set. For
an object predicate p(a1,...,an), it can satisfy the operation f = fi A ... A fa
through a predicate p(z1,...,2x) if the following conditions are held:

(a) p(ai1,...,6n) can instantiate p(z1,...,2n);

(b) For any variable V,if z; =V, and there exists another predicate g(y1,...,yr)
where y; = V, we say there is an inter-predicate tupling condition between
z; and yx. Clearly, for any inter-predicate tupling condition between z;
and yi, where ; = V and yx = V, then both (a;,z;) and (a;,yx) should be
contained in BVISq;. In other words, a; should instantiate both «; and
Y-

The above implies that each object, which is connected to its attributes, can
determine if each of its attributes can satisfy all the inter-predicate tupling con-
ditions for an operation. (1) Each ofits attributes knows which variable instances
of the operation can be instantiated by itself, and such knowledge can be collected
at the object predicate node; (2) The object predicate node knows the structure
of the operation, and therefore knows which variable instances are associated
with, and in what order in, each predicate node of the operation.

. A partial solution for an operation B can be formed in an object predicate p,

whose attributes are assumed to be @1,...,an, through a predicate node p(z1,...,zn),
if each a; can satisfy the inter-predicate tupling conditions. Note that if a par-
tial solution can be formed for B, it is not guaranteed that a complete solution
exists, where a complete solution is a partial solution in which all variables are
instantiated. A partial solution of B can be expressed as ¢,...,0, where o, 1 <
i < m, is either a substitution (expressed in the form of a/V, meaning a constant
a instantiates a variable V) or a variable. Two partial solutions «y,...,an and
B1,...,8n for B can be merged into another, yet more complete, partial solution
T1,..-,7n such that

(a) ri = a, if a; is a substitution and f; is a variable;
(b) ri = B, if B; is a substitution and «; is a variable;

{c¢) r: = a; (or Bi), if both a; and f; are substitutions or variables (Note that
in this case «; and §; have to be equal).

Two partial solutions for B are tncompatible if they cannot be combined.

. Based on 2 and 3, each object predicate node can form a partial solution, if

exists, for an operation. Consider an operation B = p1,...,pn, where (1) Each p;
has arguments (i1,...,%iu(i)); and (2) pi and p;41 share at least one variable. A
complete solution for B can be formed as follows:

(a) Each object predicate node whose predicate symbol is p; determines a par-
t1al solution, if exists, for B. If the partial solution is a complete solution,
stop.
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(b) Each object predicate node whose predicate symbol is p; which has a par-
tial solution for B passes the partial solution to each abject predicate node
whose predicate symbol is p; which is connected to it through the common
constant(s) and asks each connected object predicate object whose predi-
cate symbol is p; to expand the partial solution. This can be done in each
of the object predicate nodes whose predicate symbol is p2 by combining
the passed partial solution and the partial solution determined by itself. If
they are not compatible, stop; if the combined partial solution is complete,
stop.

(¢) Each object predicate node whose predicate symbol is p» which has a partial
solution for B passes the partial solution to each object predicate node
whose predicate symbol is ps which is connected to it through the common
constant(s) and asks each connected object predicate node whose predicate
symbol is ps to expand the partial solution. This can be done in each of
the object predicate nodes whose predicate symbol is ps by combining the
passed partial solution and the partial solution determined by itself. If
they are not compatible, stop; if the combined partial solution is complete,
stop. This process is repeated until each of the object predicate nodes
whose predicate symbol is p,, is processed.

4.7 Conclusion

In this chapter, we have presented the design of a parallel object-oriented simulation
environment. The environment provides an object-oriented interface that allows the
control and the communication aspects of active objects be easily specified. It also
allows complex objects be composed easily. Representing the control of each active
object as a production system, the environment considers the state space of each object
in determining the impact of any change made to the object.

While the idea of rule-based simulation is not new (see, e.g., [282] [387] [608]), our
approach converts a large number of active objects into a much smaller set of oper-
ations applying to sets of passive objects. As a consequence, common computations
can be shared among different objects. Compared to a fully distributed, asynchronous
approach, it avoids the problem of managing a large number of active objects when
the available physical resources are limited. An alternative object-oriented rule evalu-
ation approach has been also proposed for parallel environments which contain a large
number of relatively simple processing elements.
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Transition From A Relation To Object Model
Implementation*
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5.1 Modeling Complex Data

Emerging “next generation” applications such as multimedia, engineering(CAD/CAE),
and geographic information systems require managing databases that are more com-
plex than those in applications such as banks and airline reservation systems. Cur-
rent RDBMS (Relational Database Management Systems) are limited in their support
for these applications. The limitations typically include lack of support for complex
data structures and operations, integrity checking, and triggers, etc. They are con-
fined to simple, predefined alphanumeric types. On the other hand, OOPLs (Object-
Oriented Programming Languages) and OODBMS (Object-Oriented Database Man-
agement Systems) allow develbpers to define their own object/data types. These user-
defined types are indistinguishable from the pre-existing types from the system view
point.

Modeling hierarchical data {composite object) in RDBMS is cumbersome. The
developer has to create numerous tables to model the complex data. When being
requested to retrieve data in the composite object, the system has to join many of
these tables ou the fly which is a time-consuming job.

In OODBMS, an object can consist of a collection of other objects by two ways.
One way is throngh embedded objects. That is, an object is stored directly in another
object as one of its fields. The other is through pointer, or object referencing. In this
case, the address of an object is stored in another object as a field. Because there
are object identifier to each object including composite object, explicit links between
objects and information to cluster data, the performance is improved when such objects
are stored in an OODBMS. The time-consuming join operations in RDBMS is saved
by direct object referencing in OODBMS.

Aimed at supporting the new applications, researchers have adopted two different
ways. One is to build OODBMS from ground up (revolutionary approach). Such
systems include O: [151], ObjectStore [347] and GemStone [83]. The other is to
extend an existing RDBMS to support abstract data types {evolutionary approach).

*This research is supported in part by a grant from AIRMICS and UNISYS.
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{Department of Computer Sciences, Purdue University, West Lafayette, IN 47907
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Such systems include POSTGRES [557], Starburst [379] and O — Raid [153]. Both
ways have been successful and have their advantages and disadvantages. While the
revolutionary approach is focused on supporting abstract types from ground up and
allows the system to be finely tuned, the development cost and time is relatively great.
On the other hand evolutionary approach allows reuse of RDBMS software which is
cost-effective and could shorten the developing time of the software significantly. The
flexibility of the design and implementation in this approach is restricted and the
performance is bounded by the underlying system. In the following discussion we will
be focused on the evolutionary approach. We start on surveys of systems using this
approach and focus on the O-Raid system we developed at Purdue University.

5.2 Survey of Extended Relational Systems

POSTGRES In addition to business applications, POSTGRES expands to sup-
ports object management and knowledge management. Object management entails
storing and manipulating nontraditional data types such as bitmaps, icons, text and
polygons. Knowledge management includes the ability to store and enforce a set of rules
that are part of the semantics of a application. Such rules enforce integrity constraints
and allow the derivation of data that is not directly stored in the database [557].

It also supports class, class inheritance and user-defined functions in the DBMS. In
the POSTGRES approach, Classes are modeled by relations. A tuple within a relation
represents a class instance. The attributes define the instance variables. A relation
may inherit the attributes and the functions defined for another relation. POSTGRES
defines a relation called superclassrelation. This has three attributes, class, superclass
and segnum. The class and superclassatiributes store the class name and the superclass
name respectively. The segnum attribute stores a number, used for resolving conflicts.

Object referencing in POSTGRES is realized through storing procedure valued at-
tributes in a relation. Such attributes can contain a QUEL gquery to retrieve tuples
from other relations. Accessing the procedure valued attribute automatically executes
the query, retrieving the desired data. The procedure valued attribute thus serves as
a pointer to another object.

Starburst Starburst supports user-defined types through extending a relational
DBMS. Its goal is to provide the desirable features of object-oriented, logic, deduc-
tive and other DBMS technologies, while still retaining all the strength of a relational
DBMS [379]. It supports user-defined production rules. These rules could form a for-
ward chain that enforce data constraints through performing actions when predefined
conditions are satisfied (triggered).

Starburst supports user-defined types and functions. The user-defined functions
must be statically linked with the rest of the Starburst system. Dynamically linking a
user-defined function with the system is underdevelopment [379]. There two ways of
storing complex objects in Starburst. One is to store the entire object in a ‘long field’.
This means that the system has minimal ability to apply selection predicates based on
the contents of this ‘long field’ in a query. The other is to store the components of an
object as rows in a table. This allows objects to constructed by composing these rows
using different relational views. Similar to POSTGRES, Starburst supports object
referencing by embedding queries in data fields. These queries defined the data objects
to be constructed.
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Figure 5.1: O-Raid System Layout

O-Raid O-Raid extends in layers the implementation of an existing distributed re-
lational system called RAID [61] (See Figure 5.1). O-Raid integrates the relational
and object models. As a result it retains the simplicity of the relational model while
providing the functionality of the object model. Specifically, the relations in O-Raid
can contain attributes of user-defined types, i.e., the tables can contain objects in their
columns. The user-defined types are generally classes. A class is a set of objects having
common features. In the class definition, the common features of objects are defined
by instance variables (members) and methods (functions). The state of an object, i.e.,
the values of the instance variables in the object, can only be changed though the
execution of methods defined in the class.

O-Raid supports both inter-object referencing (or pointer referencing) and intra-
object referencing (or embedded object referencing, where an object is stored within
another object). In queries persistent pointers to user defined types in attribntes of
a relation is allowed. A persistent pointer in O-Raid is represented by three integers,
object identifier (OID), relation identifier (RID), and a offset (OFFSET) [420] that
uniquely identify the object and its class. Objects, classes, and inheritance are sup-
ported together with a predicate-based relational query language. O-Raid objects are

compatible with C+- objects and may be read and manipulated by a C++ program
without any “impedance mismatch”.
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Figure 5.2: Query Language (RAID vs. O-Raid)

5.3 O-Raid System Design and Implementation

In O-Raid [153, 60] we are exploring the extensions to the relational system to imple-
ment an object-oriented system.

5.3.1 Expand Query Language

We have extended the standard SQL query language called SQL++, to support queries
involving objects [420]. Figure 5.2 compares the features of the query languages sup-
ported in RAID and O-Raid.

In queries the objects are manipulated (retrieved or updated) using methods defined
in the object class in C+-. O-Raid [153] is built on top of the RAID [61] distributed
relational database system. An O-Raid relation needs to be mapped to a RAID relation.
Specifically, a relation involving user-defined types has to be transformed to a new
relation with attributes of simple types. The object-relation data model poses new
requirements for the schema specification facility, also referred to as Data Definition
Language (DDL) facility: '

e Relation containing objects: To support an extensible collection of data types, a
facility for registering classes (user-defined types) is essential. The structure and
methods for complex objects needs to be registered with the database.

o Dynamic loading and execution of methods In O-Raid the methods used for ma-
nipulating the objects are dynamically loaded and executed. The facility for
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dynamic loading and execution of method needs method symbol name as op-
posed to method signature. Thus when a class is registered we need to generate
a table mapping all its method signatures to corresponding method symbols.

¢ Schema for databases spanning multiple sites In O-Raid the relations can be
replicated at all database sites (full replication), or the relation can be replicated
at selected set of database sites (partial replication). The replication of selected
fragments of a composite objects is also supported.

5.3.2 Extend Data Definition Facility

To create a database, users must specify the schema on which the structures of the
database is built. A schema specification facility called dbedit is developed for spec-
ifying database schemas and to generate the corresponding meta information in the
database. Classes are defined using C++ [560] programming language and they specify
the structure as well as the methods that manipulate the data. The extensions to the
traditional DDL include:

e Registerclass-name. This allows a user to store new user-defined types in to a da-
tabase including the code that defines and implements the classes and functions
(methods).

¢ Create table table-name ...
This allows users to create a table with its column to be of user-defined types

and to be able to invoke new functions in order to construct objects and filter
data in the queries.

o Distribute table table-name. This could specify a table to be replicated over
multiple sites. It could be used for selective replication of data.

We will illustrate the schema specification facility of O-Raid system through an
example. Suppose we want to creat a two-site document database:

e The Document contains 4 sections, namely introduction, indexing, replication and
conelusion.

o Since 2 users from 2 different sites (raid9 and raid11) have different access pat-
terns, it requires that introduction and conclusion sections be fully replicated,
section indexing is only created at raid9 site, and section replication only at
raid11 site (See Figures 5.3).

The Document and Section classes could be defined in C++ as follows (see Fig-
ure 5.4 and 5.5):
The above user-defined classes can be registered to the system by the command:

REGISTER_CLASS Document;

The components of REGISTER_CLASS are shown in Figure 5.6, in more details:

o CH+ Parser: Input: C++ programs; Output: Class information, including
class name, class size, superclass, member types and their size in bytes.

o Gen Relation: Input: the output of the last step; Action: generate metadata
files to store the class relation and class attribute information.

e.g. A tuple 4 0 1 "Document” "pintro_sec” 7 9 1 ”Section” in the CLASSAT-
TRIBUTE means that attribute pintro_sec belongs to relation Document, is of
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| Introduction [I= Introduction

Indexing Replication
Conclusion [=— - Conclusion
Site raid9 Site raid11

Figure 5.3: A 2-site Document Database. Identical copies of sections are con-
nected by lines with arrows. Site raid9’s view of the documents enclosed in the
dotted boundary.

type class Sectionspanning column 7 to 9 and is a pointer to object (The 1 after
9; if 0, it means embedded object). 4 0 1 says that tuple id is 4, version is 0 and
1 means the tuple is used.

¢ Gen_Method Map: Action: Compile the C++ file and generate the corre-
sponding object file (.0). Generate a table mapping all its method signatures to
corresponding method symbol names.

e.g. Document::Document(char *, char *)is a method signature, and

—-8DocumentPcT1 is a method symbol name, which dynamic loader can use
directly to execute the constructor method Document().

¢ Update_Class_Method: Action: The object files and method signature tables
created in the previous step are stored in the database. The table is stored in a

metadata file called CLASSMETHOD.

Support Dynamic Loading and Execution of Methods: When user in-
vokes a function (method) in her query, the method signature is directly available from
the query. But the dynamic loader needs the method symbol name of the precompiled
method code for execution. Thus the Method Signature Table is consulted to convert
method signature to method symbol name before being able to dynamically execute a
method during query processing. The table is generated as follows:

¢ invoke the UNIX command nm on the class object file (. o) and select the mangled
names for the methods.

¢ process them with a demangler program and build the desired table. The deman-
gler program generates the method signature from a mangler method symbol.

A method signature table of our example Document class is shown in Figure 5.9.

Schema Specification The procedure of specifying the database schema of our
example to the O-Raid database system is shown as follows:
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// Document.h
class Section { // both raid9 and raidil
public:
char heading[TITLE_LEN];
char text[MAX_TEXT];
Section(char *t);
void printobj(Q);
};

class Section9 { // for raid9 site
};
class Sectionil { // for raidit

};

class Document { // both raid9 and raidit

public:
char name [MAX_NAME] ;
char title[TITLE_LEN];

class Section  *pintro_sec;
class Section? #pindex_sec;
class Sectionll *preplic_sec;
class Section  *pconcl_sec;
Document (char *n, char *t);
void printobj();

3

Figure 5.4: Header file Document.h for definition of class Document.

93
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// Document.cc

// Constructor and Methods definitions

Section::Section(char *t) {
strcpy(heading, t);
strcpy (text,">>");

}

void Section::printobj() {
if(this!=NULL) {

printf("Heading: %s\n", heading);

) :

}

// 8imilarly for Section9 and Sectionil

// For class Document

Document: :Document (char *n, char *t) {
strcpy(name, n);
strepy(title, t);
pintro_sec = NULL;
pindex_sec = NULL;
preplic_sec = NULL;
peconcl_sec = NULL;

}

void Document: :printobj () {
printf("Name: %s\n", name);
printf ("Title: %4s\n", title);
pintro_sec->printobj();
pindex_sec->printobj();
preplic_sec->printobj{);
peoncl_sec->printobj();

Figure 5.5: Source file Document.cc for Constructor and Method code.
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Register Class

C++ Parser

Gen_Relation

Gen_Method_Map

Update_Class_Method ‘}

Process order

Figure 5.6: The components of REGISTER_CLASS command.

0 01 "“Section" "s" 5 6 0 "Section"

3 0 1 "Document" "d" 5 18 0 "Document"

4 0 1 "Document" "pintro_sec" 7 9 1 "Section"
7 0 1 "Document" "pconcl_sec" 16 18 1 "Section"
8 0 1 "documents" "d" 3 16 0 "Document"

Note: From left to right, column by column it is “tuple id”, “version”, “used flag”,
“relation name”, “attribute name”, “start column”, “end column”, “level of object
indirection”, “class name”.

Figure 5.7: Metadata file: CLASSATTRIBUTE
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0 0 1 "Section" 10 640 "Document.o"
1 0 1 "Section9" 11 640 "Document.o"
2 01 "Sectionl1" 12 640 "Document.o"
3 0 1 "Document" 13 208 "Document.o"

Note: In the last row *Document” is a class relation; 13 is the class id for that relation;
208 is the number of bytes for that class; > Document.o” is the name of the object file
in which the class is implemented.

Figure 5.8: Metadata file: CLASSRELATION

0 01 "___7SectionPc" "Section::Section(char #)"

1 0 1 "___8DocumentPcT1" "Document: :Document (char *,
char *)"

4 0 1 ¥_printobj__7Section" "Section::printobj()"

5 0 1 " _printobj__8Document" "Document: :printobj ()"

Note: Columns left to right are “tuple id”, “version”, “used flag”, “method symbol
name”, “method signature”.

Figure 5.9: Method Signature Table: CLASSMETHOD



- 5.3. O-RAID SYSTEM DESIGN AND IMPLEMENTATION 97

Invoke dbedit on a database name (dbedit Comp)
with the following DDL commands:

install; {* initialize database directory *}
config(raid9.cs.purdue.edu /uraid9/databases);

{* declare raid9 and its directory as one site
Similarly for raidll *}

registerclass Document;

{* Register classes defined in Document.cc
into the database Comp *}

classread; {* Reread the existed classes *}

{* A table with an attribute of type Document *}
create table documents(Document d);

{* 2-site replicated tables *}

distribute table documents, Document, Section
(raid9.cs.purdue.edu /uraid9/databases);
distribute table documents, Document, Section
(raid11.cs.purdue.edu /uraid1l/databases);

{* Single site tables *}

distribute table Sectionl1(raid11.cs.purdue.edu
/uraid11/databases);

distribute table Section9(raid9.cs.purdue.edu
/uraid9/databases);

replicate; {* Action *}
quit;

Note: The comments of each command (in bold face) are put in between {* and *}.

5.3.3 Data Manipulation Language (DML)

Users interact with the database directly through DML facility by submitting queries.
Extensions to the queries include:

e Insert into table-name: <attributes>. Here the attributes could be a simple
type value, e.g. integer or a constructor method (function) call with arguments.

o Select * from table-names where predicate. In the “where” clause, the predicate
can not only be simple attribute such as name = “John” but also involve filtering
functions supplied by users such as contain key( “database”).

¢ Introduce variables that allow users to store, retrieve and update intermediate
results by other queries. For example, assign to variable: select query; update
variable set statement.
. Two kinds of variables are supported in O-Raid user interface. One is the tem-
porary variable whose life time is the login session of the user. The other is the
global variable whose life time is permanent. The global variable has the same
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effect as a relation. Compared with the global variable, temporary variable has
much less overheads in execution of queries.

Instantiate the Database We continue with our example. The database is in-
stantiated by submitting queries to the user interface as follows:

o Tnvoke RAID servers and Ul process on the database
/uraid9/databases/Comp.

o Input the following DML commands to UL

insert into documents:<Document(”ind.zep”,
?Indexing and Replication Experiments”)>;

create variable @s: &Section(”Introduction”};
update documents set d.pintro_sec = @s;

create variable @s: &Section9(”Indexing”);
update documents set d.pindex_sec = @s;

create variable @s: &Section11(” Replication”);
update documents set d.preplic_sec = @s;

create variable @s: &Section(” Conclusion”);
update documents set d.pconcl_sec = @s;

The insert into command constructs an in-memory object through constructor
method Document() defined in Figure 5.5. The object is converted into tuple and
inserted into relation documents.

The command create variable @s: &Section(”Introduction”) first construct an
in-memory object through constructor method Section() defined in Figure 5.5. The
address of the object is assigned to temporary variable s (denoted by prefixing character
@). .
) The command update documents set d.pintro_sec = @s sets the attribute d.pintro_sec
of the relation documents to point to what the variable s is pointing to, which is the
object created in the previous command.

Query Execution in O-Raid After a user query is parsed, related relations are
brought into the memory. The attributes of the relations involved in the query are
checked to see if they are of user-defined types, for example, Seminar is a user-defined
type. For attributes of user-defined types, e.g. the attribute s in the example select
query, an object is constructed for each tuple in the relation colloquia. Here each
tuple contains an entry for a seminar. The query predicate is then evaluated on the
constructed object and depending upon the true/false value the object is selected or
rejected.

If the user-defined methods are involved in the predicate, the methods signa-
tures are mapped to the methods symbol names. For example, the method sig-
nature Keys::containkey(char *) in the sample select query is mapped to the
method symbol name _containkey_4KeysPc via the methods symbol table created
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when register class command is invoked. Based on the symbol names, the pre-
compiled method code is then loaded and linked dynamically with the process that is
handling the user query and the method is executed. For update queries in the end
of query processing, a translation from objects to tuples of the relation (reverse con-
version) takes place before writing relations to the database. O-Raid interact with the
underlying RAID system through Read/Write operations and init_transaction, com-
mit_transaction primitives provided by the RAID system.

Graphical User Interface A graphical user interface called O-UI has been en-
gineered using Suite system [152] to allow access and direct manipulation of O-Raid
database relations and objects [434] (Figure 5.10). This interface facilitates the users
in composing their queries to an extent that parts of the user queries are provided
automatically.

Earlier, we had built a simple teletype interface for O-Raid called S-UI, which
accepted a query typed by the user and displayed the query result (if any) in a tabular
form. The interface was simple and portable but had several limitations. The display of
relations with a large number of tuples or attributes was difficult to view. The tabular
display of data was awkward for relations containing objects. A flexible mechanism for
display of objects was desired. We wanted to display objects through a special display
method defined for that class, which specifies how the objects of that class should be
displayed[6]. Another limitation was that the query result could not be reused for
a subsequent query. This increased the effort required to obtain desired information
through a series of steps (query refinement). Also, the manipulation of relations could
only be done by specifying update queries.

To overcome these limitations we embarked on building the O-UI graphical inter-
face. We wanted to build the graphical interface based on the direct manipulation
paradigm [521], with features such as mouse based interactions, pop-up menus, win-
dows, icons, and graphical display of data. Another goal was to minimize the amount
of information the user has to know (such as query language syntax, etc.) and reduce
the data that needs to be typed.

5.4 Performance Studies

We have conducted experiments on O-Raid to identify the overheads involved in ex-
ecuting SQL++ queries [540]. This allows us to assess the effort required to extend
a relational system with objects, evaluate the efficiency and usability of some of the
design and implementation decisions we have taken, and gain experience in using data-
base objects. We found that about 15% overheads incur on the response time of query
processing. We consider this reasonable as O-Raid provides more expressive power and
convenience to the users than its relational counterpart.

For replicated database, we build a two-site database, using Read-One-Write-All
(ROWA) replication control algorithm. Table 5.1 and 5.2 show the comparison of the
overheads under local, remote and full replication access for select and insert queries
respectively. The' full replication scheme has the benefit of lowest cost for local read
access, but has the highest cost for write.

Based on this observation, a selective replication scheme for composite object is
proposed in [541]. The composite object called document is created with four section
subobjects. Two users are simulated to access the document object. The access prob-
ability for the two user sites is shown in Table 5.3.



100 CHAPTER 5. TRANSITION FROM A REL. TO OBJECT MODEL
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Figure 5.10: Query Interface and Relation Display Window

Query Trans-
Type lation Read Writes TOTAL

local 132 318 121 589
[131,132] | [317,319] | [118,123] | [585,592]

remote 133 354 167 673
[131,135] | {352,357] | [164,171] | [668,677]

fall 125 321 120 585

replic [ [125,126] | [320,322] | [116,123] | [581,588]

Table 5.1: Comparison of processing time (in ms) for select queries with objects
on 25 tuples
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Query SQL Trans-

Type parsing | lation Writes TOTAL
Local 10 7 172 193
Insert [9,10] [7,7] [167,176] | [189,197]
Remote 10 7 232 255
Insert [10,11] | [7,7] | (226,239] | [248,261]
Two-site 10 7 242 263
Insert [9,10] [7,71 [234,250] | [255,271]

Table 5.2: Comparison of processing time (in ms) for insert queries with objects

Section Name sitel © site2
“Introduction” 0.25 0.25
“indexing” 0.375 0.125
“replication” 0.125 0.375
“conclusion” 0.25 0.25

Table 5.3: Access probabilities by sitel and site2 users

Table 5.4 and 5.5 contain the response time for select query and update query
under three replication schemes, namely full replication, selective replication and no
replication. In the selective replication scheme, the sections “introduction” and “con-
clusion” are fully replicated on the two sites. However, only a single copy of the “in-
dexing” and “replication” sections is maintained at sitel and site2 respectively. The

two sites can both be on a LAN, or one at local and the other across the Internet.

From the above data we could see that the selective replication scheme shows strong
benefits over the fully replicated and the single copy schemes in the WAN as well as
in the LAN environment, considering the combination of retrieve and update opera-
tions [540]. The selective replication scheme allows users to fine tune the replication
and achieve high performance.

Emulated full replic seletive replic no replic
Host sitel | site2 | sitel | site2 | sitel | site2
LAN 238 233 249 253 236 299

ecn.purdue | 252 240 256 260 257 360

uiuc 256 256 278 299 248 552
uta | 252 247 293 342 247 806
helsinki.fi 251 239 341 431 245 1534

Table 5.4: Select query response time (ms)
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Emulated full replic seletive replic no replic
Host sitel | site2 | sitel | site2 | sitel | site2
LAN 331 335 321 322 279 353

ecn.purdue | 371 375 348 350 295 420
uiuc | 438 452 392 353 287 604

uta | 527 526 440 476 288 861
helsinki.fi | 812 814 703 707 301 1619

Table 5.5: Update query response time (ms)

5.5 Research Issues

We are currently investigating several issues including indexing of relations containing
objects [295], selective replication of parts of composite objects [59], providing inte-
grated access to a variety of data sources through the federated objects [585], and
supporting transactions on fragmented composite objects [584].

Replication The traditional scheme of replicating an object in its entirety, for in-
creasing the availability, would incur high performance and storage overheads when
applied to composite objects such as multimedia documents and large pieces of soft-
ware. Our extension allows a replication scheme, which allows replication of selected
parts (subobjects) of the composite object. Such composite object replication can be
used to tune the replication granularity to meet both the availability and performance
requirements of distributed applications, and at the same time minimize the storage
costs. For example, a “document” object may be a composite object consisting of
pointers to four section objects, namely the “introduction”, “indexing”, “replication”,
and “conclusion”. Each of these sections can be independently distributed and repli-
cated by choice.

Indexing We are extending O-Raid to support path indices [58, 295]. Path indices
allow efficient selection of composite objects based on the nested member attribute
values. The goal is to identify the cost of creating and maintaining indices and the
performance benefits resulting from path indices. The study will help us develop poli-
cies regarding use of path indices for different applications. We are considering support
of indexing on methods that represent derived attributes. For methods with no argu-
ments, indices will be built after the method values are precomputed. This technique
of precomputation cannot be used for methods with arguments. In general, for these
methods there mnay not be any efficient strategy for maintaining indices. However, we
are looking for a partial solution. We plan to identify characteristics of the commonly
occurring methods (with arguments) and develop suitable index structures for them.

Fragmentation We use object fragmentation as the basis for the transaction pro-
cessing mechanism, which to a great extent avoids intersite communications and block-
ing delays [584]. In this approach much of the transaction processing is handled at the
local participant database level. This makes the scheme especially appealing in the
presence of local autonomy requirements. As opposed to the static fragmentation
schemes, this approach is based on a demand-driven dynamic reconfiguration of object
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fragments. The reconfiguration is supported by two mechanisms: object reincarnations
and negotiation protocols. Object reincarnation models situations such as cyclic con-
sumption of resources where the object fragment values have to be reset after a certain
time interval. The negotiation protocol reconfigures the object fragments in a given
time interval to meet the varying demand for resources. We have developed a formal
model for different fragmentation schemes and designed constructs for specifying frag-
ment distribution. We have also designed scheme for supporting object reincarnations
and negotiation protocols in a distributed database system.

Composite/Federated Object We model existing related distributed data by
a composite object, where each data source is treated as a fragment of the composite
object. A collection of methods are defined to allow manipulation of the related dis-
tributed data in a controlled and consistent manner. The composite object so created,
referred to as federated object, is a pragmatic approach to data integration. Unlike,
heterogeneous database systems, in this approach each data source is not required
to have full database system capabilities. Instead, the data sources can be simple
files, or application generated binary files. Federated objects are especially suitable for
computer-support-cooperative work (CSCW), where coordination and communication
among a group of people is required, and the type of collaboration is dynamic in na-
ture. A dynamic data reconfiguration mechanism is proposed to allow efficient access
of data. Federated objects are constructed from existing data resources using a C++
class library, which provides the mechanisms needed for access and manipulation. The
toolkit approach provides flexibility of adding application-specific mechanisms during
the data integration process.



Chapter 6

An Object-Oriented Knowledge Model for
KBMS-supported Evolutionary Prototyping of Software
Systems

Stanley Y. W. Su*, Yuh-Ming Shyy!
6.1 Introduction

6.1.1 Motivation

The development of complex software systems is a costly endeavor. If prototypes can be
rapidly constructed to test the structural and behavioral properties of these systems as
the developers gain more knowledge about their requirements, then complex systems
can evolve from a series of prototyping efforts [28, 29]. In this chapter, we take a
knowledge base modeling approach to evolutionary prototyping of software systems by
treating each prototype system as a high-level executable model of the target system,
which defines the structural and behavioral properties of the target system at any level
of abstraction (from a large program module to a single program statement) as desired
by the prototyper. The executable model evolves gradually through a series of schema
modifications and refinements to provide more and more details about the requirements
and implementations of the target system. At each stage of evolution, the model (i.e.,
the prototype) can be executed to test its functionalities and performance. All the
debugging, modification, and maintenance can therefore be performed directly against
the executable model throughout the software lifecycle as shown in Figure 6.1.

As we all know, all software systems are computer programs and, based on Wirth
[618] and Kowalski [332], we have the following formula: “Program = Data Struc-
ture 4 Logic 4+ Control”. If a knowledge model can uniformly model all types of
software systems in terms of their (i) structural properties (corresponding to the data
structure aspect of a program and the control structure among program segments),
(ii) operations/methods (corresponding to the procedural semantics of program al-
gorithms), and (iii)) knowledge rules (corresponding to the declarative semantics of
program logic and control), then any software system in the traditional concept can be
evolutionary modeled by this knowledge model throughout its software lifecycle. Note
that, although the semantics represented by rules can be implemented in methods,
high- level declarative rules make it much easier for a prototyper to clearly specify the

*Department of Computer and Information Science, University of Florida, Gainesville, FL
32611, U.S.A.
fVersant Object Technology, Menlo Park, CA 94025, U.S.A.,
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semantics instead of burying the semantics in application codes and thus simplify the
tasks of testing, modification, debugging, and maintenance. It is not necessary to make
the traditional distinction among software systems (e.g., application systems, operat-
ing system, and data base management system) because all of them are executable
models of the underlying object-oriented knowledge base as shown in Figﬁre 6.2. The
structural and behavioral properties of all object classes which model programs and
application domain objects are stored in an object-oriented knowledge base under the
management of a Knowledge Base Management System (KBMS) and can be shared
and reused among the users of various application domains.

We have extended an object-oriented semantic association model OSAM* [564, 565,
634] with reflexivity and control associations as an extensible framework for KBMS-
supported evolutionary prototyping described above. The advantages of this approach
are three-fold. First, by using a single unified knowledge model and schema notation,
we eliminate the mismatch between the traditional data-oriented models [108, 266]
and the process-oriented models [142, 426, 452, 406] to support both structural and
behavioral prototyping within an object-oriented framework. Secondly, all types of
software systems, application domain objects that these systems deal with, and related
meta information can be uniformly modeled by the knowledge model and managed
and processed by an underlying KBMS, or the so-called “Next-Generation Database
Management System” [196, 4], which uses this knowledge model as its underlying
model. Thirdly, instead of serving as throw-aways or being limited to conceptual
design, the model of a target system can evolve from specification to implementation
throughout the software lifecycle as shown in Figure 6.1. We have also developed a
knowledge base programming language called K as a high-level interface to define,
query, and manipulate the knowledge base as well as to code methods [522, 523]. In
this chapter, we shall concentrate on the knowledge model itself and its application in
evolutionary software development.

6.1.2 Related Works

As an extension to relational, semantic, and object-oriented data models, knowledge
rules have been incorporated into many research works in next-generation database
systems such as HiPAC [92], ODE [7], OSAM* [564], Postgres {377}, and Starburst
[378]. However, these models do not provide facilities for explicitly modeling method
implementations.

Object-Oriented data model provides a uniform framework by encapsulating both
the structural properties and part of the behavioral properties (in terms of signature
specifications of methods) of a target system into object classes. Nevertheless, the
implementation part of each method is still left as a blackbox and cannot be further
modeled. Because the specification of methods does not carry enough behavioral infor-
mation, the implementation is often prone to errors. Several research works have been
done in an effort to provide an integrated diagram notation for static and dynamic
aspects of software systems. Both Kung [338] and Markowitz [389] tried to combine
ER data model and data flow oriented process specification as a single graphic design
tool for conceptual modeling. However, they do not explicitly model process imple-
mentations and therefore cannot support evolutionary prototyping of software systems
throughout their entire lifecycles. Besides, as behavior properties (processes) are not
incorporated into an object-oriented framework, they cannot take advantage of object-
oriented paradigm such as inheritance and object-oriented database system support.

Brodie and Ridjanovic [80} proposed ACM/PCM (Active and Passive Component
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Modeling) methodology for structural and behavioral modeling of database applica-
tions using an integrated object/behavior schema. Three types of control abstractions
(sequence/parallel, choice, and repetition) are used to represent the behavioral relation-
ships between an operation and its constituent operations. Sinee behavioral properties
are explicitly modeled only at a gross level of detail by relating operations to form
high-level, composite operations, there is not enough information for the behavioral
schema to be executable and evolve into the target system at the implementation level.

Kappel and Schrefl [307] proposed object/behavior diagrams as a uniform graphic
representation of object structure and behavior based on a semantic data model and
petri-nets. Behavior diagrams are split into (i) life-cycle diagrams which identity pos-
sible update operations and their possible execution sequences with synchronization
constraints, (ii) activity specification diagrams which represent method specifications,
and (iii) activity realization diagrams which represent method implementations at any
level of details. Though closely related to our work, object/behavioral diagram is more
of a graphic design tool than a formal knowledge model. Because there is no kernel
model to model object/behavior diagrams themselves, software systems represented by
these diagrams cannot be uniformly modeled and managed by some underlying KBMS.
For example, a user will not be able to inquire about the structural and behavioral
properties of objects.

The rest of this chapter is organized as follows. In Section 6.2, we give an overview
of the knowledge model. Structural and behavioral abstraction mechanisms of the
knowledge model are described in Section 6.3 and 6.4, respectively. Section 6.5
summarizes this research work and gives our conclusions.

6.2 Knowledge Model Overview
6.2.1 Classes

We use classes as the knowledge definition facilities to classify objects by their common
structural and behavioral properties in an integrated fashion. Classes are categorized
as entity classes (E_Class) and domain classes {D_Class). The sole function of a domain
class (e.g., integer, real, and string) is to form a domain of possible values from which
descriptive attributes of objects draw their values. An entity class, on the other hand,
forms a domain of objects which occur in an application’s world and can be physical
entities, abstract things, functions, events, processes, and relationships. The struc-
tural properties of each object class (called the defining class) and thus its instances
are uniformly defined in terms of its structural associations (e.g., aggregation and gen-
eralization [527]) with other object classes (called the constituent classes). Each type of
structural association represents a set of rules that govern the knowledge base manip-
ulation operations on the instances of those classes that are defined by the association
types. Functional associations between object classes can also be specified by such
association types as “friend” [561] and “wsing” [71] to facilitate programming in the
large as will be described in Section 6.3.1. Manipulation of the structural properties
of an object instance is done through methods, and the execution of methods is auto-
matically governed by rules to maintain the system in a consistent state or to trigger
some pre-defined actions when certain conditions become true. In other words, the
behavioral properties of each object class are defined as methods and rules applicable
to the instances of this class. The procedural information (algorithm) of methods can
be explicitly modeled using control associations as will be described in Section 6.4.1.
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Since rules applicable to the instances of a class are defined with the class, rules rele-
vant to these instances are naturally distributed and available for use when instances
are processed. Structural associations, functional associations, and control associations
are all called “class associations” as each of them specify an association between the
defining class and the constituent classes. A schema is defined as a set of class associa-
tions, which corresponds to a real world application. A sample entity class definition of
Student is given in Figure 6.3 to illustrate the skeleton of a class definition. A detailed
description will be given in the latter sections.

6.2.2 Objects and Instances

Objects are categorized as domain class objects (D_Class_Object) and entity class ob-
Jjects (E_Class_Object). Domain class objects are self-named objects which are referred
to by their values. Entity class objects are system-named objects each of which is
given a unique object identifier (oid). We adopt a distributed view of objects to sup-
port generalization and inheritance as in [345, 634] by visualizing an instance of class
’X’ as the representation (or view) of some object in class *X’. Each object can be
instantiated (as an instance) in different classes with different representations but with
the same oid. Each instance is identified by a unique instance identifier (iid) which is
the concatenation of cid and oid, where cid is a unique number assigned for each class
in the system. Each entity class object (and therefore all its corresponding instances
in different classes with the same oid) can be either persistent or transient. After a
user session ends, all the transient objects created in this session are deleted and all
the persistent objects are stored back into the database. A detailed discussion of per-
sistence can be found in [522]. Each entity class is associated with an extension which
is the set of all its instances.

6.3 Structural Abstraction

Structural properties of objects are modeled by using various structural association
types. In Section 6.3.1, we give a brief description of the kernel association types
“aggregation” and “generalization”. A three-level information hiding mechanism is
described in Section 6.3.2. As each class can be thought of as a reusable software
module in object-oriented software development, two types of functional associations
are provided to facilitate programming in the large. The introduction of the “friend”
and “using” associations also illustrates the extensibility of the knowledge model. In
Section 6.3.3, We illustrate the model reflexivity and the structural schema notation.
A brief description of structural association patterns is given in Section 6.3.4.

6.3.1 Structural Association Definitions

Aggregation. For each object class, one can define a set of attributes (which are also
expressed as data members or instance variables in other object-oriented programming
langnages) to describe the state of its instances in terms of their associations with
other classes by using the aggregation (A) association type. Each attribute specifica-
tion corresponds to an instance of class “Aggregation” and also a named aggregation
association (A-link) from the defining class to the constituent class. The name of an
attribute must be unique within the defining class. An aggregation association defines
either (i) a value attribute if its constituent class is a domain class, or (ii) a reference
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attribute if its constituent class is an entity class. Multi-valued attributes are speci-
fied using the constructors “set”, “list”, and “array [size]”. Note that an aggregation
association between two entity classes is interpreted as a bi-directional link to support
bi-directional navigation and to maintain the referential integrity of the knowledge
base. For example, before deleting a Department instance, the system can follow the
“major” link of Student in the reverse direction to identify those students who ma-
Jjor in this department and remove their “major” links to this particular Department
instance.

Generalization. For each object class, one can use generalization (G) association
to specify its immediate superclass or subclass. Class *B’ is said to be a subclass or
specialization of class A’ (i.e., there is a generalization association from A’ to 'B’) if
for each object which has an instance in class ’B’, it also has an instance in class *A’.
Both instances have the same oid and are conceptually connected by a generalization
association (G-link).

6.3.2 Encapsulation and Inheritance

We adopt the C++ three-level information hiding mechanism [561] by classifying ag-
gregation associations and methods as either “public”, “private”, or “protected”. Note
that all the rules are treated as “protected” by definition. At the class level, all the
(1) public/protected aggregation associations and other types of associations, (ii) pub-
lic/protected methods, and (iii) rules defined by a class are inherited by its subclasses.
At the instance level, an instance of class ’A’ stores only the attributes defined for
’A’, and it inherits all the public/protected attributes from its corresponding instances
(with the same oid) of all the superclasses of ’A’. Name conflict in multiple inheritance
is resolved by requiring the user to explicitly specify from which superclass a particular
property is inherited.

Friend: This association type is used to support the three-level information hiding
mechanism described above, A “friend” (F) association specifies that all the constituent
classes are “friends” of the defining class and thus authorizes them to access the private
and protected properties of the defining class.

Using: Similar to the “#include” macro in C++, a “using” (U) association speci-
fies that all the public interfaces defined by the constituent classes will be available to
the defining class (client- server relationship). Note that though this information has
been implicitly captured in parameter specifications and method invocations, we in-
clude it at the class level for better readability and maintainability of complex software
systems. For example, a user can easily capture the overall structural and functional re-
lationships among system modules by just reading the association definition or graphic
display of the system schema rather than going into the detailed codes of each method.
Besides, the compiler can make use of the semantic information provided by the “us-
ing” associations in a system schema to automatically include all the necessary classes
for compilation. Note that the “using” association provides a modular mechanism at
a larger granularity than ordinary classes as one can either (i) functionally compose
many classes into a big module structure or (i) functionally decompose a big module
into smaller modules.

6.3.3 Extensible Kernel Model

Model extensibility is achieved via a reflexive kernel model shown in Figure 6.5 in which
all the data model constructs described above such as classes, associations, methods,
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and rules are modeled as first- class objects. One can extend the data model by modi-
fying this set of meta classes. This kernel model also serves as the data dictionary as all
the object classes in the system are mapped into this class structure. One can therefore
browse and query any user-defined schema as well as the dictionary uniformly. Note
that Figure 6.4 illustrates the overall generalization lattice, and Figure 6.5 shows the
detailed structural relationships among those kernel object classes as we will describe in
the following sections. In our structural schema notation, (i) entity classes and domain
classes are represented as rectangular nodes and circular nodes, respectively, (ii) a gen-
eralization association is represented by a “G” link from a superclass to a subclass, and
(iil) an aggregation association is represented by an “A” link from the defining class
to a constituent class. Note that the root class “Object” is represented by a special
notation because it is neither an entity class nor a domain class. The sole function
of class “Object” is to serve as the collection of all the objects in the system. After
compilation, any user-defined class (e.g., “Person” and “Student” in Figure 6.4 will
be added to the class structure as an immediate or non-immediate subclass of either
“E_Class_Object” or “D_Class_Object”, while at the same time the objects correspond-
ing to the class definition, associations, methods, and rules of the defining class will be
created as instances of the system-defined entity classes named “Class”, “Association”,
“Method”, and “Rule”, respectively. Note that this class structure is reflexive in the
sense that we use the model to model itself. For example, while any user-defined or
system-defined entity class is a subclass of “E_Class_Object”, “E_Class_Object” itself is
also an entity class (represented by a rectangular node). Similarly, “D_Class_Object”
itself is also a domain class.

As any application domain (including the model itself) is uniformly modeled and
mapped into the kernel model, the class structure can be further extended at any
level of abstraction. For example, one can use the kernel model to incrementally
extend the model itself by either (i) adding new structural association types or intro-
ducing subtypes of existing association types (e.g., “Interaction”, “Composition”, and
“Crossproduct” [564]) by specifying their structural properties (in terms of existing
structural association types) and behavioral properties (in terms of rules which govern
the knowledge base manipulation operations on the instances of those classes defined
by the association types) or (ii) extending the definition of existing association types
(e.g., add new attributes “default_value”, “null_value”, “optional”, “unchangeable”,
and “dependent” [523], as well as their corresponding rules for association type “Ag-
gregation”) so that more semantics can be captured in the schema and maintained
by the KBMS instead of being buried in application codes. Once a new association
type is defined, it becomes a semantic construct of the extended data model and can
be used in the definition of any object classes (including any other new association
type). In such a way, the data model itself can be incrementally extended to meet the
requirements of various application domains.

6.3.4 Structural Association Patterns

Since the development and execution of all software systems using the evolutionary pro-
totyping approach are supported by a KBMS, any program execution would generally
involve the processing of a persistent knowledge base. For knowledge base retrieval and
manipulation, a knowledge base programming language should include some knowledge
manipulation constructs in addition to general programming constructs. In our work
on K [522, 523], we use pattern-based querying constructs for this purpose. We modify
the context expression of OQL [11, 233] as the primitive construct for specifying struc-
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tural association patterns based on which the system can identify the corresponding
contexts (sub-knowledge-bases) that satisfy the intentional patterns. In general, each
association pattern can be defined as

class_1 [’ <intra-class selection condition> ’]’
<op> <direction> ’[’<association-name>’]’
class_2 ’[’<intra-class selection condition>’]}’
<op> <direction> ’[’<association-name>’]’ ...

where <op> could be either an “associate” (“*¥”) or a “non-associate” (“!”) operator
and <direction>can be either “>” or “<” so that the defining class of <association-name>
is always at the open side, i.e., the left-hand-side of “>” or the right-hand-side of “<”.
One can also explicitly specify a range variable over a class in the association pat-
tern as “<var>:<class>”. For example, “g:Grad[major.name=‘‘CIS’’] *>[advisor]
p:Professor !<[instructor] Course” specifies a sub-knowledge-base that contains
all the graduate students of CIS department who has an advisor (i.e., there is an “ad-
visor” link connecting this student with a professor) who does not teach any course
(i.e., this professor is not connected through the “instructor” association with any
course instance), as well as their advisors and those courses which these advisors do
not teach. Here, g and p are variables that represent the graduate students and pro-
fessors satisfying the association pattern specification, respectively. Instead of using
‘a class notation, one can also directly designate objects by replacing class name with
any user- defined variable. For example, “this *>[advisor] Professor” specifies a
context which consists of the particular student denoted by “this” and his/her advisor.
A context can be thought of as a normalized relation whose columns are defined over
the participating classes and each of its tuples represents an extensional pattern of iids
that satisfy the intentional pattern. A detailed description of more complex associa-
tion patterns and the use of association patterns to express universal and existential
quantifiers can be found in [522].

After a context is identified, one can use the context looping statement provided
by the system to manipulate objects over each extensional pattern. One can use range
variables to implicitly project over only those columns which he/she is interested and
eliminate the resulting redundant tuples. For example, the following statement will
print the name of each student who takes any CIS course. Note that we use range
variable s to do a projection over Student column and remove the redundant tuples so
that each qualified student will appear only once even if this student takes more than
one CIS courses.

context s:Student *>[enroll] Course[offered\_by.name=‘‘CIS’s]
do s.name.display();
end\_context;

6.4 Behavioral Abstraction

Behavioral properties of objects are modeled by methods and rules. In the tradi-
tional object-oriented programming, a method consists of a signature which specifies
the name of method, parameters, and the data type of a returned value (if a value is
to be returned) and the actual program codes that implement the method. However,
in the prototyping of a complex system, the prototyper may want to avoid the actual
coding of a method at a particular point in time and use instead some simpler table
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lookup codes to simulate the function of the method (i.e., given some legitimate input
data, produce some legitimate output value by a table lookup). Or the prototyper may
feel that the method is still too complicated to code directly and wants to decompose
its implementation into program segments interconnected by a control structure. In
this case, the method implementation can be represented by a control structure of
its program segments which are modeled as object classes with their own methods to
define their functionalities. In other words, each program segment (whose size could
vary from thousands of statements to a single statement) can be modeled as an object
class along with a method (the default method name is “main”) to represent the func-
tionality of this segment. To activate a program segment, one just sends a message to
an instance of the corresponding object class to invoke the proper method. Through
this decomposition process and, at each step, each method associated with an object
class is either represented by an actual or simulated program, or by a control structure
of program segments that model the method. Each control structure can be used by
the prototyping system for automatically generating the corresponding codes. As each
method is executable, the model of the entire software system is executable and can
gradually evolve into the target system by modifying and refining the executable model.
Thus, procedural abstraction and functional decomposition are also incorporated into
the proposed object-oriented framework. For the above reason, the meta model of the
“Method” class shown in Figure 6.5 consists of an execution mode and a signature of
its method name, parameter declarations, and the return type. Based on the execution
mode which is either “model” or “operational”, the system can choose one of the fol-
lowing to execute: (i) a method_model object which is the prototype model (schema)
of a method implementation, and (ii) a piece of simulated codes or actual implemen-
tation of the method in some programming language. In Sections 6.4.1 and 6.4.2, we
describe the modeling of method implementation in terms of control associations and
method_model objects, respectively. A description of rules is given in Section 6.4.3.

6.4.1 Method Model and Control Associations

It is shown in [137] that three forms of control structures (sequence/parallel, choice,
and repetition) can be used to define all partial recursive (i.e., computable) functions.
As mentioned in Section 6.3.3, one of the advantages of the extensible kernel model
is that we can extend the model itself by introducing new association types to carry
whatever information we need in association links. In order to explicitly model method
implementations in an object-oriented framework, we define a class called “Control” as
a subclass of “Association” to model the control relationships among program segments
that implement the method. Control associations are categorized as “Sequential” (S),
“Parallel” (P), “Synchronization” (Y), “Testing” (T), and “Context_Looping” (L) as
shown in Figure 6.4. A method model is defined as a class schema in which one uses
object classes to model program segments and control associations among these object
classes to model the control structure of these program segments that implement a
particular method.

Figure 6.6 represents some program segments with basic control constructs using
control associations. Each rectangular node shown in Figure 6.6 is an entity class which
models a program segment that constitutes a method implementation, and each control
association in our model represents a possible control flow in terms of message passing
between these object classes. A Context-Looping association is used to model the con-
text looping statement in which the system (i) first establishes a relation representing a
sub-knowledge-base satisfying the intentional association pattern which is modeled by
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the first class in Figure 6.6(8), and (ii) performs certain operation for each tuple of the
relation as described in Section 6.3.4. To sum up, each program segment in a method
model can be described by a triplet (C, M, P) where ’C’ is an object class, M’ is the
“main” method of ’C’ that performs the functionality of the program segment being
modeled, and ’P’ is a message passed to a specific instance of *C’ to invoke method
’M’. In other words, ’C’ and M’ can be thought of as the object-oriented procedural
abstraction of the program segment being modeled, and *P’ represents the activation of
this particular program segment. Through an iterative process, any complex software
system can be modeled to any level of details at which point the prototyper can begin
to write actual codes in the target language.

The advantages of using method models are four-fold. First, instead of visualizing
each method as a black box, a method model provides a graphic representation of
method implementation to capture the behavior properties of a method. Secondly, the
method associated with a class that models a program segment can be further modeled
by another method model. The process can be repeated to any level of abstraction as
desired by the prototyper, and the lowest level of abstraction is each individual program
statement. Thirdly, a KBMS can use method models for an automatic generation of
codes in the target language where each program segment modeled by (C,M,P) will
be replaced by the actual codes of M’ or the actual codes recursively generated from
the method model of *M’. The resulting codes can then be compiled by the compiler
of the target language for execution. Fourthly, a KBMS can directly execute a method
model by using an interpreter to dynamically activate each program segment in a
control structure following the control association links. Since all the structural and
behavioral information needed for execution are stored in the control association links,
the execution of a method model can be thought of as the processing of the set of
control association links which constitute the method model.

.. Structurally, each control association link can carry different behavior information
as defined by the following attributes where (1) “context-branch” and “sub_kb” are
defined by “Context_Looping”, and (2) “test_branch” is defined by “Testing” as shown
in Figure 6.5.

(1) context_branch and sub_kb: a Context_Looping association can be specified by
a context_branch attribute whose value could be either “next” or “exit” to represent
the iteration or exit of the looping, respectively). Note that the defining class of a Con-
text. Looping association corresponds to the program segment which, when activated,
will generate a relation representing the sub-knowledge-base satisfying an intentional
association pattern. During the execution of a Context.Looping association, the sys-
tem will also keep a pointer to the relation (the value of “sub_kb”) over which the
context looping is performed.

(2) test_branch: a Testing association can be specified by a test.branch attribute
whose value could be either “true”, “false” (for modeling the “if-then-else” statement),
“otherwise”, or any other value (for modeling the “case” statement) as shown in Figure
6.6. The defining class of a Testing association corresponds to the program segment
which can be activated to generate the proper value of “test_branch” based on which
the system can choose one of the possible control flows to follow during the execution
time.

The behavioral properties of each control association type are described by the
following algorithm of execution. We assume that for each process (in the case of
concurrent system) created by a user session, there is a “wait.set” for recording those
control association links which are waiting for synchronization. We also assume that
each entity class which models a program segment defines a method called “main” to
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represent the functionality of this program segment. To activate a program segment
modeled by class *X’, we create a transient instance of class "X’ and apply the “main”
method of class "X’ to this instance,

Case 1. There is a Sequential (S) association link L1 between class A’ and class
'B’. We activate the program segment modeled by class *A’. Then, if there is no con-
trol association link starting from class ’B’, then we activate class B’ and terminate.
Otherwise, we continue to process the next control association link(s) from class 'B’
(i.e., those control association objects whose defining class is class 'B’).

Case 2. There is a list of Parallel (P) association links between class A’ and class
'B1’, °B2’,..., and Bn’. We first activate the program segment modeled by class *A’.
Then, we fork n new processes in parallel, one for each class ’Bi’. For each class
"BY’, if there is no control association link starting from 'Bi’, then we activate *Bi’ and
terminate the process. Otherwise, we continue to process the control association link(s)
starting from class *Bi’.

Case 3. There is a Synchronization (Y) association link between class ’B’ and class
’A1°. There is also a set of Synchronization association links from class B to classes
A2’ A3, A, Let L1, L2,...,.Ln represent these Synchronization association links,
respectively. We first activate the program segment modeled by class ’A’. Then, if
“wait_set” already contains L2 to Ln, then the synchronization condition is met and
we do the following: (1) remove L2 to Ln from the “wait_set”, (2) if there is no control
association link starting from class ’B’, then activate the program segment modeled by
class ’B’; otherwise, continue to process the control association link(s) starting from
class *B’. Otherwise (“wait_set” does not contain all L2 to Ln), we terminate the process
which currently executes L1, and add L1 into the “wait.set”.

Case 4. There is a list of Testing (T) association links between class A’ and class
’B1’, °B2’,..., and Bn’. We first activate the program segment modeled by class A’ and,
based on the returned value, the system will choose one Testing association link whose
“test_branch” attribute value is equal to either (i) the returned value, or (ii) “otherwise”
if none of the test_branch values matches the returned value. Assume this chosen
association link is defined from class A’ to class "Bi’. If there is no control association
link starting from class ’Bi’, then we activate the program segment modeled by class
Bi’ and terminate. Otherwise, we continue to process the next control association
link(s) starting from class "Bi’.

Case 5. There are two Context_Looping (L) association links between class A’
and class *B1’ and ’B2’. Let L1 represent the association link whose “context_branch”
attribute value is “next” (and assume which is defined from A’ to ’B1’), and L2
represent the association link whose “context_branch” attribute value is “exit” (and
which is defined from A’ to *B2’). If “L1.sub.kb” is null, then we activate the program
segment modeled by class A’ and return a pointer to a relation representing the sub-
knowledge-base over which the looping will be performed. The “sub_kb” attribute of
L1 will be set to this pointer. If “Ll.sub_kb” points to an empty relation or all the
tuples have been processed, then we do the following: (1) delete the relation, (2) set
“L1.sub.kb” to null, (3) if there is no control association link starting from *B2’, we
activate the program segment modeled by B2’ and terminate; otherwise, we process
the next control association link(s) starting from ’B2’. Otherwise (i.e., there are more
tuples to be processed), we get the next tuple and continue to process the next control
association link(s) starting from *B1’.
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6.4.2 Method_model Object and Evolutionary Prototyp-
ing

As shown in Figure 6.4, “Method_model” is a subclass of the class “Schema”. Each
method.model object represents the executable model of a method and is described by
(1) a set of class association objects (inherited from class “Schema”), (ii} a starting point
which is a control association object in (i), and (iil) a set of local variable declarations.
Note that in order to nnambiguously preserve the semantics of the order of execution
(control flow) when a method model is mapped into a set of association objects, each
class which appears in more thar one places in the method model must be recorded
by using alias names internally. An alias name is formed by appending an underscore
and an integer to the class name, e.g., Sort_l and Sort_2. Note that without using
alias names, the system will not be able to restore the model correctly. For example,
the control structure restored from three consecutive “Sequential” associations A-B,
B-C, and C-A will form an infinite loop instead of a sequence if no distinction is
made between these two appearances of class *A’. Besides, each method_model object
must know which association object is the “starting point” of execution. From the
starting point, the method model can be restored and processed by following the control
associations.

In the following, we illustrate the concept of evolutionary prototyping and the use
of all types of control associations by developing “eval_ GPA()” which is a method of
Student as shown in Figure 2.1. Note that although “eval GPA()” is a rather simple
method which normally could have been directly coded, the technique illustrated by this
example can be applied to the modeling of complex methods of a large software system
to any level of details. Assume we have defined Transcript as an entity class whose
each instance represents the grade point of a particular student for a particular course,
and we need a program to compute the GPA of a given student. For this example,
it is obvious to model this program as a method of class Student with the signature
“eval GPA() : GPA_Value”. In the beginning, one might just write a simple piece of
simulated codes to generate some legitimate GPA_Value from some given legitimate
student instance as the receiver of this method by either performing some table lookup
or inquiring the user interactively so that this method can be executable (in operational
mode).

Later on, one may decide to model the detail of this method by decomposing its
functionality into five consecutive program segments: (1) compute the total grade
points of this student and assign this value to a local variable, (2) compute the total
credit hours of this student and assign this value to a local variable, (3) get the GPA
by dividing results from (1} and (2), (4) print a message if the GPA is below 2.0, and
(5) return the GPA. Each program segment can be modeled as an entity class with a
“main” method to represent its functionality, and each “main” method can be given
simulated or actual codes or recursively modeled as described in Section 6.4.1. Note
that for this example, both segment (1) and segment (2) can be further decomposed
as Context_Looping control structures, and the computations can be performed over
the same context concurrently. Therefore, we combine them together to illustrate
the Context_Looping, Parallel, and Synchronization associations. A method model
at a particular stage of decomposition is shown in Figure 6.7. We first declare local
variables s1, 52, and GPA to hold the accumulated grade points, accumulated credit
hours, and GPA value, respectively. The receiver of this method is denoted by the
pseudo variable “this”. We first use a Context_Looping association to iterate over
the context specified by “this #<[student] t:Transcript *>[course] c:Course” to
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evaluate the accumulated grade points and credit hours of this student in parallel. Note
that the updates of s1 and s2 are performed in parallel and must be synchronized before
the execution can be continued. After the looping is finished, we get the GPA value
by dividing s1 by s2. A message is printed if this student has a GPA lower than 2.0.
Finally, we return the GPA value. Note that in some cases it is necessary to introduce
entity classes which model null program segments in a control structure. For example,
the classes “null_1” and “null_2” in Figure 6.7 model the null program segments which
serve as the “fork” and “join” points of control flows, respectively. This example
shows that it is possible to model a method recursively to such a detailed level that
each program segment contains only a single statement. Naturally, the segment size
(i.e., the level of detail) in a model will be determined by the prototyper. By using a
graphic user interface as part of a prototyping environment, a prototyper can click the
mouse button to select any class in a method model and view the program segment
it represents as shown in Figure 6.7. A control structure of the kind shown in Figure
6.7 can be used by a KBMS to dynamically execute a method model or automatically
generate the proper executable code that implements the method as shown in Figure
6.3.

6.4.3 Rule Definition

Rules serve as a high-level mechanism for specifying declarative knowledge that governs
the behavior of methods. We modified and extended the rule language of [12, 566] so
that it can be seamlessly incorporated into the knowledge base programming language
K [522]. Each rule is specified by a set of trigger conditions and a rule body. Each
trigger condition comsists of two parts: (1) timing specification or coupling mode,
which can be either “before”, “after”, “immediate after”, or “in_parallel”, and (2)
event specification, which can be a KBMS operation or user-defined method. The rule
body consists of (i) “condition” clause which is a guard expression, and (ii) “action”,
and “otherwise” clauses, both of which can be simple or compound statement. Each
guard expression is in the form “(guardl, guard?2,...,guardN | target)” and the
evaluation of a guard expression can return either (i) true: if all the guards and the
target (all of which are boolean expressions by themselves) are true, (ii) skip: if any of
the guards is false when they are evaluated from left to right, (iii) false: if all the gnards
are true but the target is false. All the rules are assumed to be active when a user
session begins. However, during the execution of a user program, one can explicitly
activate or deactivate any particular rule by sending the “activate()” or “deactivate()”
messages to a specific rule object, respectively.

Each active rule of class X will be checked (i.e., the evaluation of the rule body)
according to the coupling mode at either (i) before the triggering event, (i) immedi-
ately after the triggering event, (iii) in parallel with the triggering event, or (iv) not
immediately after the triggering event, but at the end of the parent event which causes
the triggering event. The rule body of each rule is evaluated as follows: (i) if the
condition-clause returns true, then the action-clause (if provided) is executed, (ii) if
the condition-clause returns skip, then do- nothing, and (iii) if the condition-clause
returns false, then the otherwise-clause (if provided) is executed. For example, the rule
ClIS_rulel specified in Figure 6.3 will be executed at the end of those methods which
are applied to a student instance and update the major of this particular student. The
otherwise-clause will be executed if this particular student is a CIS major (guard is
true) and his/her GPA is not greater than 3.0 (target condition is false). Similarly,
General.rulel will be checked after the method “suspend”.
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6.5 Conclusions

In this chapter, we take a knowledge base modeling approach to evolutionary prototyp-
ing of software systems by introducing a unified and reflexive object-oriented knowledge
model as an extensible framework for (i) capturing both the structural and behavioral
properties of any target system at any level of details, and (ii) reflexively modeling
the knowledge model itself as a kernel model so that all the meta information (struc-
tural and behavioral properties of objects) can also be modeled as object classes. Five
types of control associations (sequential, parallel, synchronization, testing, and con-
text_looping) are introduced for explicitly modeling the behavior properties of methods
in terms of control flow and message passing relationships between object classes. We
have developed a prototype of the knowledge base programming language K [522, 523]
on top of ONTOS 2.1 [278] as the first step toward a full-fledged KBMS-supported
software development environment for supporting evolutionary prototyping. We are
currently extending the graphic user interface of OSAM*.KBMS [346] to support the
definition and processing of control associations. Any user-defined structural/behavior
schema will be translated into K code for execution and also mapped into the kernel
model for storage. A prototype processor which can dynamically interpret K code
and control association objects is also under development at the Database Systems
Research and Development Center of the University of Florida.

Acknowledgement - This research is supported by National Science Foundation
under grant #CCR-9200756. The development of an executable KBMS and the trans-
lator of K is supported by the Florida High Technology and Industry Council under
grant #UPN900978.
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Figure 6.2: A Universal KBMS-Supported Software Development System
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~atity.class Student is
rssociations:
a?;sl:m:iall.:'.zm:J'.c:n of Person;/* Student is a subclass of Person */
3 triend of Faculty; /+ authorize Faculty to access the private and
‘protected properties */
aggregation of
public: /= definition of public attributes */
enroll: set of Course; /# a student can enrcll in a set of courses
s/
college_report: array [4] of GPA_Value; /* annual report of every
college year */
major: Department;
protected: /% definition of protected attributes =/
S#: S#_Value;
methods: /# the signature of methods */

public:

method eval GPA() : GPA_Value;

private:

method suspend() : void; /* no return value */
method inform_all_instructor() : void;

Tules:

rule CS_rulel is

/* after updating the major of a student, if the new major is "CIS"
then the GPA of this student must be greater than 3.0,
otherwise we suspend this student */

triggered after update major

condition (this.major.name = “CIS" | this.eval GPA() > 3.0) /=
guarded condition */

otherwise this.suspend()

end CS_rulel;

rule Student::General_rulei is

/* after suspending a student, if this student enrolls in any
course,

then inform all the instructors of this student +/

triggered after suspend()

condition this.enroll != NULL

action this.inform.all_instructor()

end General_ruleti;

implementations: /* actual coding of methods */

method eval GPA() : GPA_Value is

local si, s2 : real := 0; GPA : GPA_Value; /* local variable
declarations */

begin

context this *<[student] t:Transcript *>[course] c:Course

/* looping over a context */ '
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do parbegin /+ for each <this,t,c> tuple, do the following */
31 := 81 + c.credits * t.grade_point;

/* calculate the accumulated grade points s/

s2 := 82 + c.credits; /= calculate the accumulated credit hours s/
parend;

end_context; /* end of context looping */

GPA := s1/32;

if GCPA < 2.0

then "GPA Below 2.0".display();

end_if;

return GPA;

end eval._GPA;

end Student;

Figure 6.3: The Class Definition of Entity Class Student in K
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Student :: eval_GPA(): GPA_Value

local s1,52 : real := 03
GPA : GPA_Value;

this *<[student] t: Transcript
*>[{course] ¢: Course

GPA :=sls2

GPA <29

"GPA below
2.0" display()

51 :=sl + c.credits *

t.grade_points

s2:=82 +
c.credits

return GPA

Figure 6.7: The Method Model of “eval-GPA()




Chapter 7

Applying OOAD in the Design and Implementation of an
Intelligent Geographic Information System

Ramesh Subramanian® ,Nabil R. Adam'
7.1 Introduction

Object-oriented Analysis and Design (OOAD) is currently an active area of research,
and several OOAD techniques have been suggested for the Object-oriented design of
computer-based applications (e.g. [124, 141, 147, 148, 184, 296, 356, 357, 358, 355, 359,
400, 405, 435, 468, 532, 615]). Notable among the suggested techniques are: the method
of Coad and Yourdon [124], the approach by Meyer [400], the Responsibility-Driven Ap-
proach by Rebecca Wirfs-Brock from Tektronix [616, 617, 615], Ensembles, which is on-
going work at Hewlett Packard led by Dennis de Champeaux [141], the Object-oriented
Role Analysis, Synthesis and Structuring method (OORASS) by Trygve Reenskaug at
the Senter for Industriforskning in Oslo, Norway [468], Frameworks by Johnson at
Urbana-Champaign [296] and the Demeter method developed by Karl Lieberherr at
Northeastern University [356, 357, 358, 355, 359].

Recently, some studies that survey, compare and contrast the various OOAD ap-
proaches and techniques have appeared in the literature (e.g., see [617, 413, 187]).
These studies seek to categorize the various approaches by identifying their capabsli-
ties, and their focus is towards identifying the particular effectiveness of one approach
over the other. In one particular study, Wirfs-Brock and Johnson [617] view the above
approaches as complementing each other. To our knowledge, there has been no study
that tests the efficacy of the approaches by applying them to actual, complex and real-
life modeling problems. This situation places the practitioners in a difficult position,
since nobody wants to commit scarce time and resources towards adopting a particular
approach that has not been adequately tested on industry-sized problems.

Adopting approaches that have been inadequately tested could also cause other
problems, since in practice, the analysis and design stages have important ramifica-
tions on the implementation stage. For instance, {as explained in [248, page 147}),
a “disjoint mapping” would result, if an OO design is implemented in a non-object-
oriented language. One of the strengths of the OO approach is the use of the same
language environment for the analysis, design, and implementation phases [26, 74].
That is, the analysis is done in terms of the objects that make up the actual system.

*CIOS Department, School of Business, University of Alaska-Anchorage, Anchorage, AK
99508, Email: afrs@acad2.alaska.edu

tMS /CIS Department, GSM, Rutgers University, Newark, NJ 07102,
adam®@adam.rutgers.edu
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The results of the analysis are transformed into a software design that is expressed
in terms of objects. Finally, the design is implemented also in terms of objects. This
consistency throughout the analysis, design, and implementation phases avoids the po-
tential mismatch that could result during the transition from one phase to the other.
Maintaining this consistency also requires that the OOAD used to carry out first steps,
namely analysis and design, be adequately tested for its real life application.

In this chapter we detail a modeling study that seeks to address the above issue.
Namely, we detail a real-life, complex modeling problem, and illustrate, step by step,
how to analyze the problem domain and design a model using one of the OOAD
approaches, namely the Responsibility-Driven Approach. We consider this study to
be a first step towards a practical analysis of the suitability of the various OOAD
approaches for modeling specific problems domains.

The chapter is organized as follows: in Section 7.2 we detail the characteristics of
the geographic database application that we model. In Sections 7.3 and 7.4 we discuss
the methodology that we adopt to develop our model, and describe the Responsibility-
Driven Approach. In Section 7.5 we detail, step by step, our approach to developing
the geographic data model. In that section we also detail how our model acquires
and handles knowledge about spatial contexts and user perspective. In Section 7.6 we
briefly touch upon the implementation of our Model, and show how the various features
of our Model and Query Processing System are used to process certain imprecise queries
by using an actual query processing scenario. We present our conclusions in Section
11.6.

7.2 Geographic Databases: Modeling & Query
Processing

There exists a large number of potential applications related to Geographic Infor-
mation Systems (GISs}. Examples include: applications concerned with storing and
manipulating the characteristics of political spatial entities such as states, counties and
towns; those that are concerned with storing and manipulating information pertaining
to certain naturally occurring geographical features such as lakes, rivers, mountains
and oceans; others that deal with the mapping of population distributions, land re-
source utilization, the spread of vegetation and certain special districéssuch as electoral
districts, water pumping districts, and school districts.

Geographic data modeling requires the definition of high-level objects such as coun-
ties, towns, and districts from low level data elements such as points and lines [5]. Fur-
thermore, spatial objects possess certain unique characteristics — for instance, even
though the state of a spatial object may remain unchanged, its representation and re-
lationships with other objects may be perceived differently in different contextsor user
perspectives. Thus, if a country level perspective is assumed then the representation
of the cities can be considered as points. If a city level perspective is assumed, then
a city and its components can be considered as polygons. In the same fashion, at a
particular perspective level, a bridge can be considered to be a line, but at a higher
level of perspective, it could be assumed to have a point representation.

Thus, depending upon user perspective, the assumed representation of spatial ob-
jects could change. This can impact the results of a query such as “What is the
distance between X and Y?” — depending upon the perspective of the user, the rep-
resentation of the objects under comsideration may change, thereby impacting the
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results produced. This example shows that implementing even a semantically well-
defined operator such as “distance” could become a complex exercise, if we try to
incorporate the notion of user perspective and object representations in relation to
the perspective. Examples of other semantically well-defined operators include “in-
tersect” and “area”. While several spatial database researchers have defined and
implemented such semantically well-defined spatial operators, very few of the im-
plementations incorporate the notion of dynamically deriving different user perspec-
tives and object representations. For details of previous work in spatial databases see
[223, 424, 101, 102, 36, 474, 249, 438, 237, 485, 486, 229].

In addition to semantically well-defined operators, we were interested in another
class of operators that are actively being studied in the literature. These are the ili-
defined or relativistic spatial operators. One prominent example of this is the study of
the operator “near” by Robinson [472], in which he developed a C program that uses
fuzzy logic and human machine interaction to derive an approximation of “near”.

“Near” (or “close-t0”), “between” and “adjacent-to” are examples of semantically
ill-defined spatial operators. Such operators do not have a precise definition in the
literature. Also, their interpretations change with user perspective. Thus, two towns,
for example, may be considered to be close to each other at one perspective, but not
80 at another perspective. Similarly, two streets may be considered to be adjacent to
each other even though there may be a building block between them.

From the above discussion, it can be seen that spatial (geographic) databases differ
in character from conventional databases in the representation of inter-object relation-
ships. In conventional database applications, relationships among data objects are all
known beforehandand can therefore be represented explicitly in the database. In spatial
databases, on the other hand, numerousimplicit relationships may exist among spatial
objects, and it is impractical to represent all of the relationships explicitly. Therefore,
several such relationships need to be derived dynamically. This necessitates the devel-
opment of new models and query processing strategies for efficient representation and
manipulation of spatial data.

In our study we develop a model that supports the following:

o Defining high-level spatial objects from low-level data elements.

o Facilitating the explicit representation of certain naturally occurring relation-
ships among spatial objects (e. g. the containment hierarchy that is exhibited
by most spatial objects) and at the same time providing adequate facilities for
deriving, on a dynamic basis, the many and complex relationships that exist
among objects.

o Incorporating the notion of user perspective and different object representations
in relation to perspective.

o Facilitating the implementation of a class of semantically ill-defined (hereafter
will be referred to as imprecise) spatial operators such as “close-to”, “between”
and “adjacent-to”. Here, the user must have the flexibility to specify his/her
own operational parameters for processing the operators.

o Facilitating application flexibility i. e. , the ability to extend the model and its
implementation to other similar applications.

¢ Encapsulating deductive reasoning that facilitates spatial query processing per-
taining to the imprecise query operators.

We are interested in applying our model to such application areas as districting
(electoral and water), and public utilities maintenance management. Districting is the
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process by which a certain area of land is divided into several pieces, in order to satisfy
certain requirements and needs. For example, an electoral district may be drawn based
on the population size, composition of the population and other constraints such as
compactnesst and contiguity® of the district. A pumping district may be allocated
based on the current population and expected growth of the proposed district as well
as the availability and ease of access to a water supply facility such as storage tank or
pumping station.

A system such as the one developed in this study would provide the tools required
for making the districting process easier. That is, the new geographic data modeling
and query processing techniques would provide the means for “interactive districting”.
We are particularly interested in using our model and implementation for answering
the following types of queries:

o Is polling-center Y close-to every sub-area of voting district X?

e What are the towns and counties which lie between districts X and Y7
¢ What are the counties adjacent-to pumping district X?

o What are the districts that are close-fo the water source X?

o Retrieve all the towns whose populations (each) exceeds 75,000 and which lie
between the pumping district X and town Y.

Given the above general requirements of our geographic application, we illustrate
in the next few sections how we proceeded to design and implement the model.

7.3 Spatial Data Modeling

7.3.1 The Design Methodology

In [616], Wirfs-Brock classifies OO design methodologies into DataDriven Approaches
and Responsibility-Driven Approaches and argues in favor of the latter approach. The
latter approach intuitively seems to have certain merits over the former approach since
it provides a convenient way of designing objects and the methods encapsulated within
them. This is achieved by focusing on the objects’ responsibiliﬁes rather than the
detailed description of the objects, at the start of the design process.

Our application domain deals with queries about geographic data and their topo-
logical inter-relationships. Geographic data are complex in nature, and the possible
inter-object relationships among them are numerous. In such a problem domain, the
model design process could be made efficient by focusing on the functions that the var-
ious objects must perform (i.e., their responsibilities) rather than trying to define all
the attributes of each individual object. This corresponds to the Responsibility-Driven
Approach. We use the Responsibility-Driven Approach for designing our model. First,
we provide below, brief presentation of the Responsibility-Driven Approach.

{Compactness can be defined (on a scale from 0 to 1) as the ratio of the area of a district
to the area of the smallest circurnscribing circle [422]

$ A district must be connected in some sense, so that it cannot be defined as an arbitrary
collection of smaller areas [422].
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7.4 The Responsibility-Driven Approach

The Responsibility-Driven Approach seeks to improve encapsulation by viewing objects
in terms of the client/server model. According to this model, a client makes a request
to a server, who provides the service requested. Both the client and the server can be
classes or instances of classes. The exact way in which a client and a server can interact
are described by a contract. A contractis a list of requests that a client can make to a
server. The client is not concerned with the exact details of the actions taken by the
server to provide the service requested. Thus, the focus in this approach is not on how
a server performs an action requested from it, but what are the services that it can
provide. ‘

When applying this design approach, the designer is concerned more with the
behavior and the responsibilities of the objects rather than their structural details.
The structural specification of an object is focused on, only at the implementation
stage. The responsibilities of an object are: the knowledge that an object maintains,
and the actions an object can perform. The actions that are performed by an object
are either performed individually, or by collaborating with other objects.

The Responsibility-Driven Design process is divided into two phases — the Ea-
ploratory phase and the Analysis phase. (This discussion is adapted from [617].)

The exploratory phase consists of the following tasks:

1. Identify Classes: The classes required to model the application are identified.
Classes identified may be of two types: Abstract Classes that are designed to be
inherited, and Concrete Classes that are designed to be instantiated. Abstract
Classes are similar to type definitions.

2. Identify Responsibilities: Here the overall responsibilities of the system are iden-
tified, then the responsibilities of the individual classes are derived.

3. Identify Collaborations: If a class collaborates with another class in performing
its responsibilities, such collaborations are identified during this task.

The analysis phase consists of the following tasks:

1. Analyze Hierarchies: The classes are organized in the form of a hierarchy. Such
a hierarchy will be useful in finding classes that are reusable. An is-a hierarchy
specializes the classes from top-down, and generalizes the classes from bottom-
up. Wirfs-Brock and Johnson suggest that inheritance hierarchies must model
the is-kind-of relationship. That is, “every class should be a specific kind of
its superclasses” ([617, p110]). The és-kind-of relationship is similar to the is-a
relationship.

2. Analyze Subsystems: A subsystem is a set of classes that fulfills some particular
purpose in conjunction with other classes in the system. Thus, acting as a
group, a subsystem of classes cooperate to fulfill a role. For instance, a graphical
application may have a printing subsystem which may consist of a printer, which
may be further specialized into line printer and laser printer {617, p111]. One
way to determine if a group of classes form a subsystem is to try to name the
group [617]. If we succeed in naming the group, then we antomatically determine
the responsibility or role of the subsystem.

3. Create Protocols: This final task in the design phase involves the implementation
of the abstract classes and their behavior, by specifying actual protocols between
the classes in the form of methods. Methods are used to describe contracts among
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classes. A base method is one that is described in a superclass and is inherited
down the hierarchy by the subclass. Another method which is inherited down
the hierarchy, is known as abstract method. Such a method is reimplemented in
the subclass in order to reflect a different (as compared to its superclass) and
more specialized processing action between the subclass and its collaborator. In
C*t* such a method is also called a wirtual function. A third type of method
is called template method which serves the purpose of providing an abstract
definition of an algorithm. Here the algorithm is made up of steps and each step
is implemented as an abstract or base method. For more details see [617, p112].
A fourth type of method, which is not explicitly discussed in [617], is one where
different responsibilities of the same class can be carried out, depending upon the
particular parameters passed to it. For example, consider the transactions that
have to be processed in a bank on a typical day. The transactions occur in serial
order, and may be a deposit, withdrawal, or transfer. If the bank has a method
process, then different actions could be defined within the method, depending-
upon the type of transaction processed. Such a type of method definition is
termed function overloading, and is useful in describing a class of actions that
can be performed by asking the same request, but with different parameters. '

In the next section we detail the development of our Spatial Model, using the
Responsibility-Driven Approach.

7.5 Developing the Data Model

7.5.1 The Exploratory Phase

In this phase, we identify the main classes that are required to model our geographic
application, their responsibilities and their collaborations. We detail our work on the
different tasks below.

Classes
We identify the following classes.

e Spatial Feature. This is an abstract class that represents a template for a
spatial feature. The responsibilities specified in this class are inherited by ab-
stract as well as concrete subclasses that may be identified and added to the
model at a later stage in the design process. Concrete subclasses that may be
added through this process are instantiated with such hlgh level spatial features

as “New York” state, or 1-95.

e Line Segment. This is a concrete class that represents a low-level spatial ob-
ject. This class can be instantiated with the line segments from a geographic
line segment file.

It should be noted that in addition to the above Classes, we identify more Classes
at a later stage in the Exploratory phase. This is detailed in later sections.

Our next task in the design process is to identify the overall responsibslities of the
system, as well as the responsibilities of individuals classes.
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Responsibilities
¢ The responsibilities of the system as a whole are:

1. Populate the geographic data model with data pertaining to the United
States. This requires the system to have certain features whereby the raw
data (line segments) are first loaded into the model. These would then
be processed to build other high-level spatial features such as States and
Counties.

2. Derive dynamically the user perspective and the object representations of
the spatial features in the model in relation to user perspective.

3. Process queries pertaining to the spatial features in the model which involve
imprecise operators such as “close-t0”, “between” and “adjacent-to”.

Analysis of these responsibilities reveals that most queries pertaining to our
application would be asked with reference to certain well understood spatial
features in our model, such as Country, State, County, and Town. Examples of
such queries include: Is County X close_to County Y7; What are the Counties
adjacent_to State X7; What are the highways that run between Town X and Town
Y?. Country, State, County, and Town are container objects that contain other
container as well as non-container objects in the model. Highways and Rivers
are examples of non-container objects.

We thus notice that the geographic features in our application can be broadly
divided into container features which contain other features and non-container
features which do not contain any other feature. Queries will be posed with
reference to the containerfeatures. Due to this fact, we define two additional ab-
stract classes, to represent the container features and the non-container features:
Reference_Spatial_Feature and Non_Reference Spatial Feature, respec-
tively.

We notice here that, Reference_Spatial_Feature and Non_Reference_Spatial-
JFeature are specializations of spatial features. Therefore, they are subclasses
of Spatial_Feature, and inherit any responsibility that may be specified in the
Spatial_Feature class. This leads to an inheritance hierarchy that is analyzed in
detail in Section 7.5.2. As noted earlier, Reference _Spatial_Features are container
features that are used as reference features in most spatial queries.

Reference_Spatial Feature and Non. Reference_Spatial Feature are A-
bstract Classes whose characteristics are inherited down the hierarchy by its
subclasses. In order to add real life spatial objects such as States, Towns and
Highways into the model, we define Concrete Subclasses of Reference_Spatial-
JFeature and Non Reference Spatial Feature. Examples of the Concrete
Subclasses of Reference_Spatial_Features are Country, State, County and Town.
Interstate Highways, Railroads, Large Rivers, State Highways, County Roads,
and Small Rivers are examples of the Concrete Subclasses of Non_Reference-
Spatial_Features.

These spatial features are arranged in a containment hierarchy, with Country
containing States, Interstate Highways and Large Rivers, etc., and States con-
taining Counties, State Highways, Small Rivers, etc., and Counties containing
Towns, County Roads, etc. More details of the containment hierarchy are dis-
cussed in Section 7.5.2.
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At this stage in the design process we notice that even though the Reference Fea-
ture subclass such as Country contain Non Reference Feature subclasses such as
Interstate Highways, Railroads and Rivers, some of these Non Reference Fea-
tures can be divided into composite segments. The segments are part-of such
Non Reference Features. Thus,

— Non References Features such as Interstate Highways and Rivers are com-
posed of:

* State-Segments which are contained entirely by States.
* County-Segments which are contained entirely by Counties.
* Town-Segments which are contained entirely by Towns.

— Non References Features such as State Highways composed of:

* County-Segments which are contained entirely by Counties.
* Town-Segments which are contained entirely by Towns.

This composite arrangement pertaining to the real world requires that we de-
fine additional Concrete subclasses of Non_Reference_Spatial_Feature. These
are State I-Hwy_Segment, County I-Hwy Segment, Town I-Hwy Seg-
ment, State_River _Segment, County_River Segment, Town_River_Seg-
ment, etc. The spatial features pertaining to these subclasses are further sub-
divided into a composite arrangement, using the part-ofrelationship. The part-of
hierarchy is given below.

Each State_I-Hwy_Segment is a part-ofsubclass Interstate Highway. Each County-
I-Hwy Segment is a part-of subclass State I-Hwy Segment. Each Town_I-Hwy-
_Segment is a part-of subclass County_I-Hwy Segment. In the same way, each
State.River_Segment is a part-ofsubclass River, and each County_River_Segment
is a part-of subclass State_River_Segment and each Town_River_Segment is a
pori-of subclass County.River_Segment.

Other subclasses similar to the above, pertaining to the different levels of the
containment hierarchy are also identified and represented.

The Rule Class: a result of identifying responsibilities of the system

Another result that is derived from identifying the responsibilities of the system
is that, in order to process imprecise queries, it is necessary to incorporate into
the system a body of knowledge about contests or user perspectives. In addition,
depending upon the problem domain, it may be required to store in the system
other problem-specific knowledge. For example, in an electoral districting ap-
plication, it may be required to store rules such as: All districts must have the
same population, and must have the same racial mix; the component regions of
an electoral district must be contiguous. We therefore, define another abstract
class: Rule. In this class, we instantiate and maintain rules that are required
for the problem domain in question. Examples of such rules are “ancestors-rule”
(for reasoning about all the ancestors of a given object) and “perspective-rule”
(for reasoning about the correct context of a given query). We elaborate more
on these rules as well as other such rules later in this section, where we discuss
the responsibilities of individual classes.

The function and use of the Rule class in our model is worthy of further dis-
cussion. The incorporation of rules in a spatial data model to reason about
the objects and their relationships within the context of a database is, to our
knowledge, not available in currently existing spatial models.
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Rules, in addition to methods offer a powerful constract for introducing behavior
into the data model. In our model, the function of a rule is different from the
function of a method. A method is a piece of procedural code that is embedded
within an object in order to perform certain actions on the database. The method
may be invoked by passing a message to the object. A rule, however, is created
separately and is not attached to any particular spatial object in the database.
Rules may be added or removed without interfering with any spatial object.
Rules play an important role in processing imprecise spatial operators. Rules
for determining the user’s perspective and the appropriate object representation
in relation to the perspective while processing ill-defined spatial operators are
incorporated into the model. Furthermore, the Rule class also provides sup-
port to incorporate specific constraints that must be satisfied in certain problem
domains.

To illustrate, consider a districting problem, where it is required to interactively
create districts from a geographic database of the United States. In addition,
these districts must confirm to certain conditions. Assume that the geographic
database consists of States, Counties and Towns. Districts are to be created
by combining certain counties together. The database contains information per-
taining to each county’s population, number of schools available, number of fire
stations available, number of community buses available, number of drivers avail-
able and number of physicians available.

Let us assume that the following are the conditions that must be met while
creating districts:

- If the population of the district is between 100,000 and 120,000, then the
number of schools required is 3.

- If the population of the district is between 180,000 and 220,000, then the
number of schools required is 5.

- If the number of schools is 5, then the number of buses required is 15.

- If the number of schools is < 5 , then the number of buses required is 10.

- If the number of school buses is between 5 and 10, then the number of drivers
required is 8.

- If the population is between 150,000 and 200,000, then the number of fire
stations required is 4.

- For each school, the number of physicians required is 2.

- If the population is between 150,000 and 200,000, then the number of physicians
required is 10.

- The district must be made up of contiguous counties.

There may be several more conditions that are required for this districting pro-
cess. An important fact to be noted here is that the conditions may change
periodically.

The query that pertains to this application is: Is the combination of County X,
Y and Z an acceptable district?

In order to process this query, first the data pertaining to counties X, Y and Z
are retrieved from the databasé. The combination of their characteristics is then
tested against each of the conditions. If the conditions are satisfied, the district
is acceptable.

There are two possible ways of representing the numerous conditions in the
model. One way is to write procedural code in which all the conditions are
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This poses a problem, because a particular combination of conditions may require
other particular combinations of conditions to be satisfied. Thus, in the above
example, the population affects the number of schools required, and the specific
number of schools affects the number of buses required and the number of drivers
required. The number of schools as well as the population of the district affect
the number of physicians required.

Thus, the specification of such procedural code will have to be very detailed. All
the possible rules and conditions, along with the procedures to actually construct
the districts that meet the conditions will have to be incorporated. A change in
one condition would affect several conditions, thus requiring changes to be made
at several parts of the code. Furthermore, if the same type of query is repeatedly
issued, the same set of procedural operations will have to be repeatedly performed,
by the methods, which raises the cost of query processing.

An alternative to this approach is to store much of the conditions in declarative
form as a set of rules that is not part of a particular spatial object but is incor-
porated within the model as instances of Rule. Tt is less complicated to use logic
rules to specify recursive dependencies and other complex conditions, and they
are also easier to understand and maintain [88, p70]. If a condition changes, only
that specific rule will have to be changed, without worrying about the rest of
the rules. The addition of a new rule or the deletion of an existing rule can be
accomplished without disrupting the rest of the model.

Another advantage of using rules to specify and store conditions, pertains to
queries which are applied repeatedly. In a rule based approach, some of the
conditions and the intermediate results of prior queries may be saved and used
by a subsequent query thus, improving the efficiency of the query processing [88,
p84].

Given the above advantages, we incorporate Rule as an abstract class within our
model.

We continue with the design process, by identifying the responsibilities of the
individual classes, below.

e The responsibilities of the individual classes are:

1. Every Spatial_Feature class has the following responsibilities:

(a) Identifies and stores boundaries of itself.

(b) Provides(requests) static characteristics, such as name and boundaries
of itself(another spatial feature).

(c) Provides distance information between itself and another spatial fea-
ture.

{(d) Provides(requests) point representation of itself(another spatial fea-
ture).

(e) Provides(requests) the minimum and maximum z and y coordinates
of itself(another spatial feature).

(f) Provides the perspective when the query object is itself, or when the
query objects are itself and another spatial feature.

(g) Provides(requests) ancestors of itself(another spatial feature).

(h) Provides(requests) spatial features close_to itself(another spatial fea-
ture).
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(1) Provides spatial features between itself and another spatial feature.

(j) Provides(requests) spatial features adjacent_to itself(another spatial
feature).

2. The responsibilities of class Line Segment are as follows:

(a) Provides start-point and end-point of itself in terms of latitude and
longitude.

{(b) Provides a line-id which is a unique identification of itself.

(c) Constructs high-level Reference_Spatial Feature such as State. (This
responsibility is required in order to build the high-level object State
from the low-level line segments. Once the State is created, then it is
possible to construct objects that are contained by the State).

3. The responsibilities of class Reference_Spatial.Feature are as follows:

(a) Provides(requests) all the classes of Reference Spatial Features it-
(another spatial feature) contains.

(b) Provides(requests) all the classes of Non Reference Spatial Features
it(another spatial feature) contains.

(c) Provides(requests) the Reference_Spatial_Feature(s) containing
itself(another spatial feature).

The responsibilities of class Reference_Spatial_Feature are inherited by ab-
stract as well as concrete subclasses that may be identified and added to
the model at a later stage in the design process. Concrete subclasses that
may be added through this process are instantiated with Reference_Spatial-
-Features.

We notice at this stage in the design process that the possible subclasses of
Reference_Spatial_Feature are Country, State, County and Town. These are
concrete subclasses which can be instantiated with spatial features such as
“USA” and “New Jersey” state. Thus, these above subclasses are identified
and added to the model.

Reference.Spatial Feature’s responsibilities are inherited by its subclasses
Country, State, County and Town. However, the implementation of the
methods corresponding to the responsibilities may differ depending on the
specific subclass. Consider for example, the method
Make_Reference_Spatial_Features.within, that corresponds to the responsi-
bility: “Construct Reference_Spatial _Features it contains”. The Country
implementation of this method constructs the States that are contained
within that country. Whereas, the same method implemented for a County
constructs the Towns within the County.

We also notice that in addition to inherited responmsibilities and thus meth-
ods, depending on the problem domain, each subclass may also contain
specific methods which are unique to that particular subclass. For ex-
ample, in an electoral districting problem, the subclass State may have
a specific method Get._districts_contained, which retrieves all the electoral
districts that are defined within that state. On the other hand, the subclass
Town may have a specific method Get_district_containing, which retrieves
those districts that the town is part of.

4. The responsibilities of class Non_Reference_Spatial_Feature are as follows:
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(a) Provides(requests) the Spatial Feature(s) containing it(another spatial
feature).

(b) Provides(requests) the line segments that it(another spatial feature) is
composed of.

Similar to Reference.Spatial_Feature, the responsibilities of
Non.Reference_Spatial_Feature are inherited by its abstract and concrete
subclasses, which may be identified later in the design process. Examples
of concrete subclasses are: Interstate Highways, State Highways, County
Roads and Rivers. These subclasses are instantiated with actual Road
features and Highway features. ’

In addition to methods that correspond to the inherited responsibilities,
each subclass may contain methods that apply to that specific subclass
only, depending upon the specific problem domain.

5. The responsibilities of the class Rule are as follows:
(a) Provides static characteristics, such as its name and its description.

(b) Performs rule processing on the (spatial feature) arguments provided,
and returns the results.

The responsibilities of the Rule class are eventually inherited by all its
concrete subclasses, which are then instantiated with rules.

We notice at this stage of the design process that possible subclasses of the
Rule class, given our problem domain, are: Container.Rule, Ancestor_Rule
and Object_Representation_Rule. These concrete subclasses can be instan-
tiated with rules that fit into the category of each subclass. The above
subclasses are identified and added to the model.

Within our problem domain, the subclasses of Rule have the following
additional responsibilities:

(a) The Container_Rule: reasons and provides the container of a given
Reference or Non Reference Spatial feature by reasoning over the ap-
propriate instance of Container Rule.

(b) The Ancestor_Rule: reasons and provides the ancestorsof a given Ref-
erence or Non Reference Spatial feature.

(c) The Object_Representation_Rule: reasons and provides the object rep-
resentation of a given Reference or Non Reference Spatial Feature.

(d) The Adjacency Rule: reasons and determines if two given Reference or
Non Reference Spatial Feature(s) satisfy the conditions for adjacency.

Clearly, more subclasses of the Rule superclass can be added, depending
upon the requirements of the problem domain.

Collaborations

In our model the following categories of collaborations are identified.

e Collaborations between Reference_Spatial Features and Line Segments - to es-
tablish boundaries of the reference spatial features, and to determine the lines
within the spatial features.

o Collaborations between Non.Reference Spatial_Features and Line Segments - to

establish boundaries of the Non Reference Spatial Features, and to determine
the lines within the spatial features.
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s Collaborations between Reference_Spatial_Features and Rules - to reason about
notions such as contexts and object representations.

o Collaborations between Non_Reference Spatial Features and Rules - to reason
about notions such as contexts and object representations.

o Collaborations between Reference and Non Reference Spatial Features - to de-
termine the Reference Spatial Feature that contains the Non Reference Spatial
Feature, and to determine imprecise spatial relationships between them by im-
plementing-operators such as “close-to”, “between” and “adjacent-to”.

7.5.2 The Analysis Phase

Analyze Hierarchies

In Section 7.5.1, we observe that Reference Spatial_Features contain other Reference
as well as Non Reference Features, whereas Non_Reference _Spatial_Features do not
contain any other features. Analysis of the “Identify Responsibilities” and “Identify
Collaborations” phases reveals that the classes Reference Spatial Feature and Non-
Reference_Spatial_Feature are specializations of the more general Spatial_Feature class,
and inherit its respounsibilities.

We also identified concrete subclasses of Reference_Spatial Feature and
Non_Reference_Spatial.Feature. Subclasses of the former are Country, State, County
and Town. Subclasses of the latter are Interstate Highway, River, Lake, Railroad, State
I-Hwy Segment, County I-Hwy Segment, Town I-Hwy Segment, State River Segment,
County River Segment, Town River Segment, State Railroad Segment, County Railroad
Segment, Town Railroad Segment, State Highway, County St-hwy Segment, Town St-
hwy Segment, County Road, Town Cty-Rd Segment and Town Street.

The hierarchy that exists at this stage of the design process is given in Figure 7.1.

We notice, however, that the hierarchy in Figure 7.1 does not reveal any information
on how the geographic objects are organized in the real world, and the relationships
among them. That is, there is no notion of the different perspective levels that are
inherent among geographic objects. All the concrete subclasses of Reference_Spatial-
-Feature are organized into one group, and ail the concrete subclasses of Non_Reference-
Spatial_Feature are organized into another separate group. The inter-relationships
between these two groups are not apparent.

An analysis of the organization of geographic objects in the real world reveals
that objects exhibit a natural hierarchical ordering. Thus, each Country contains
Reference_Spatial _Features such as States, and Non_Reference_Spatial_Features such as
Interstate Highways, and large Hydrographic Features (e.g. Large Lakes and Rivers);
each State, in turn, contains Reference_Spatial_Features such as Counties and Non-
-Reference _Spatial Features such as State Highways. Each County contains Reference
Features such as Towns, and Non Reference Features such as County Roads; each Town
contains Reference Features such as Neighborhoods, and Non Reference Features such
as Town Streets.

Further, at any level in the hierarchy, there exists only one particular fype of sub-
class of Reference Spatial_Feature. This subclass contains not more than one other
type of subclass of Reference Spatial_Feature, and one or more types of subclasses of
Non_Reference_Spatial_Feature. For example, the class Country (a Reference_Spatial-
Feature) contains one type of subclass of Reference Spatial_Feature, the class State,
and one or more types of subclasses of Non_Reference_Spatial_Feature, such as class
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Abstract class Spatial_Feature.

Abstract class Reference_Spatial._Feature superclass Spatial_Feature.
Concrete class Country superclass Reference_Spatial_Feature.
Concrete class State superclass Reference Spatial Feature.

Concrete class County superclass Reference_Spatial _Feature.

Concrete class Town superclass Reference_Spatial_Feature.

Abstract class Non.Reference Spatial_Feature superclass Spatial_Feature.
Concrete class Interstate Highway superclass Non_Reference_Spatial_Feature.
Concrete class River superclass Non.Reference_Spatial _Feature.

Concrete class Railroad superclass Non_Reference_Spatial.Feature.

Concrete class Lake superclass Non_Reference_Spatial.Feature.

Concrete class State Highway superclass Non_Reference Spatial Feature.
Concrete class State -Hwy Segment superclass Non_Reference.Spatial Feature.
Concrete class State River Segment superclass Non_Reference _Spatial_Feature.
Concrete class State Railroad Segment superclass Non-Reference_Spatial_Feature.
Concrete class County Road superclass Non_Reference_Spatial Feature.

Concrete class County I-Hwy Segment superclass Non_Reference Spatial Feature.
Concrete class County River Segment superclass Non.Reference_Spatial_Feature.
Concrete class County Railroad Segment superclass Non_Reference_Spatial_Feature.
Concrete class County St-hwy Segment superclass Non_Reference_Spatial_Feature.
Concrete class Town Street superclass Non_Reference._Spatial.Feature.

Concrete class Town I-Hwy Segment superclass Non_Reference_Spatial_Feature.
Concrete class Town River Segment superclass Non Reference_Spatial Feature.
Concrete class Town Railroad Segment superclass Non_Reference.Spatial Feature.
Concrete class Town St-hwy Segment superclass Non_Reference_Spatial_Feature.
Concrete class Town Cty-Rd Segment superclass Non_Reference_Spatial Feature.

Figure 7.1: Preliminary geographic-objects hierarchy
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Interstate Highway, class River and class Railroad. In the same way, the class State (a
Reference_Spatial_Feature) contains one type of subclass of Reference_Spatial_Feature,
the class County, and one or more types of subclasses of Non_Reference_Spatial _Feature,
such as class State Highway, State [-Hwy Segment and State River Segment. This
ordering proves to be very useful in describing perspective levels — each level in the
containment hierarchy represents a single perspective level, such as Country level, State
level, County level and Town level.

We incorporate this view of the real world containment hierarchy explicitly in our
model by specifying that:

o A Reference_Spatial_Feature at a particular level in the hierarchy can contain
not more than one other Reference. Spatial _Feature, and the contained Reference-
Spatial _Feature must be of a different type (subclass) than the container Reference-
_Spatial _Feature.

¢ A Reference_Spatial_Feature at a particular level in the hierarchy can contain one
or more Non_Reference Spatial .Features, and the contained features may belong
to different types of subclasses as long as those subclasses are not also contained
by any other Reference_Spatial_Feature.

Analyze Subsystems

The following subsystems are identified.

The collaborations between Reference_Spatial_Feature, Non_Reference_Spatial_Feature,
Line_Segments and Rules indicate the existence of a subsystem which is comprised of:
Spatial_Feature, its subclasses Reference.Spatial _Feature and Non_Reference_Spatial-
Feature, and their respective subclasses such as Country and State. Thus, if at a
later stage a new subclass, such as “Neighborhood” is to be added to the model, this
could be accomplished by extending this subsystem, without distupting the rest of the
application.

In addition to the Spatial Feature subsystem, we also identified another subsys-
tem that results from the collaboration between class Reference _Spatial_Feature and
class Rule, and class Non_Reference_Spatial_.Feature and class Rule. This subsys-
tem is comprised of: Rule and its subclasses such as “Ancestor-Rule” and “Object-
Representation_Rule”. The advantage of having such a subsystem is that the addition
of a new class of rules at a later stage could be accomplished without affecting any of
the other classes in the model.

Create Protocols

This task involves specilying the implementation of the abstract classes and their be-
havior which is specified in the {form of methods. The base classes as identified above
are: Spatial Feature and Line Segment.

The base and abstract methods for each of the classes so far identified are discussed
below.

¢ Base Methods.
The following base methods are specified for the base classes:
1. Base methods of class Spatial_Feature:

(2) Get boundary - provides the boundaries of the spatial feature by col-
laborating with the class Line Segment.
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(b) Get.distance_between - provides the distance between itself and another
spatial feature.

(c) Find_perspective- determines the perspective of a query by identifying
the spatial features that are addressed in the query, and then collabo-
rating with the Rule classes.

(d) Get-maz-z_and_min-z - computes the maximum and minimum z coor-
dinate values of spatial feature by collaborating with Line Segment.

(e) Get-mazr-y_and_min-y- computes the maximum and minimum g coor-
dinate values of spatial feature by collaborating with Line Segment.

2. Base methods of class Line_Segment:

(a) Make.Reference Spatial_Features - constructs spatial features by grou-
ping the line segments belonging to a a given spatial feature.

¢ Abstract Methods.
These methods are defined when it is required to have a particular method be
inherited down a hierarchy with each subclass having a different implementation
of the method.
In our application, an abstract method Make boundaryis described in the super-
class Spatial_Feature. This method is inherited down the hierarchy by the sub-
classes Reference. Spatial Feature and Non_Reference_Spatial_Feature, and fur-
ther down, by their subclasses Country, State, County and Town, and Inter-
state.Highway, State_Highway, County_Road and Town_Street. Here, Country,
State, etc., are each subclass of Reference_Spatial Feature existing at the same
level of the hierarchy. As noted earlier in Section 7.5.1, the implementation of
the methods corresponding to the responsibilities may differ depending on the
specific subclass. Thus, the State implementation of the method Make boundary
determines those line segments that form the boundaries of States (i.e., those line
segments which have two different States lying on each of their sides), and then
builds the boundaries of the States. Whereas, the same method implemented
for a County determines the line segments that form the boundaries of Counties,
and then builds the boundaries of the Counties.
We emphasize this point by giving another example: Consider, the method
Make_Reference_Spatial_Features_within, that corresponds to the respousibility:
“Construct Reference_Spatial. Features it contains”. The Country implementa-
tion of this method constructs the States that are contained within that country.
Whereas, the same method implemented for a County constructs the Towns
within the County.
We list the abstract methods in our application, in Appendix 7.7.

e Overloaded methods.

In addition to the Base Method, which is inherited down a hierarchy without any
change in its implementation, and the Abstract Method, in which the implemen-
tation may change down the hierarchy, we use another type of method, referred
to as Owverloaded Method.

An Overloaded method is inherited from the Base Class down the hierarchy. In
an Overloaded Method, different implementations of the same method can be
described for the same class, by providing the method with different kinds of
information, in the form of parameters. This functionality is useful in our ap-
plication. For example, a spatial feature such as County may have a method
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Figute 7.2: The Spatial Data Model

Find_object_close_to. We mentioned in Section 7.2 that close_to is a notion that
may have different interpretations depending upon the user perspective or con-
text. Now if we invoke the method Find_objeci_close.to on a particular instance
of County without giving any further information about the user perspective,
the method may carry out a default implementation. If, on the other hand, we
provide the method with additional information about the perspective, such as
perspective = Country level, or perspective = State level, the method will carry
out different implementations, depending upon the perspective provided.

Overloaded methods help us achieve better encapsulation. Had the Overloaded
Method functionality not been available, we would have had to provide the dif-
ferent perspective-varying implementations by using a series of “if-then-else”
Statements which would have limited the program reusability and understand-
ing. The Overloaded Methods identified in our model are listed in Appendix
7.7.

This completes our discussion of the Spatial Data Model. The components of the
model, and the geographic containment hierarchy that we model, are summarized in
Figure 7.2.°
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7.6 Implementation

The model was implemented using LAURE which is an object-oriented language de-
veloped at Bellcore by Casean [88]. LAURE is a powerful knowledge representation
language based on sets. It is both an interpreted and a compiled language, and can be
used easily in both modes. This feature is especially useful during the system develop-
ment and testing stages by providing a fast prototyping functionality. LAURE supports
large programs, provides efficiency simitar to C*, and offers a clean interface with C.
In addition, LAURE provides a deductive system with sound, efficient and complete
resolution of deductive rules, a feature that is very useful in our application to reason
about user perspectives and object representation in relation to user perspectives, and
to process imprecise queries.

We give below, only brief details of our LAURE implementation, since a comprehen-
sive discussion is beyond the scope of this chapter. For a comprehensive discussion of
our implementation, please see [567]. A description of the class Spatial_Feature, along
with some sample queries and answers in LAURE syntax, is presented in Appendix
7.6. The class Spatial Feature described in the appendix contains method-templates
(the actual code is not included here, since it is beyond the scope of this discussion) for
determining imprecise relationships such as “close.to”, “between”, and “adjacent_to”.

For the purposes of our implementation, we used “raw” geographic line segment
data from the U.S. Bureau of Census’ TIGER file [595]. The line segments that we
used pertained to the state of Rhode Island, U.S.A. Approximately 1500 low-level line
segments that covered a cross section of all the counties, towns, state highways, county
roads and town streets were loaded into the model, and then queries were posed to the
geographic database.

The queries that we posed consisted of both precise as well as imprecise topological
operators. Some query examples (in English) are given below. The actual query syntax
can be found in Appendix 7.6.

Q1. Add the boundary of “Bristol” county to State boundary.
Comment: Evaluates to “true” implying that the request was accomplished success-
fully.

Q2. Get the names of the counties contained by Rhode Island.
result: returns Bristol, Kent, Newport, Providence, Washington.

Q3. Get all the Non-reference-feature-contained of State Rhode Island.
Comment: returns Summit Greene Road, Plainfield Pike, Wallum Lake Road.

Q4. Is Providence town Close_to? Bristol town?

Comment: Here close_to? is an imprecise operator. Since an explicit perspective is not
provided, the system determines the possible perspective, using the embedded rules,
and then affirms that perspective with the user. Based on the user’s response, addi-
tional information is assumed or computed. Then the result to the query is computed
and returned.

@s. Get all the Towns that are Close_to! Providence town.

Comment: The processing is similar to query Q.

In addition to the above queries, it is also possible to combine query operators
to form conjunctive queries such as: “Get all the Towns that are close.to Providence
AND lie between Cumberland and Cranston OR are adjacent.to Bristol”. In all of
these cases, our implementation proved to successful and thus robust.
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7.7 Conclusion

In this chapter we presented our experience in applying the Responsibility-Driven Ap-
proach to the design and implementation of a complex, real-life geographic application.
The approach’s emphasis on identifying and designing object-classes based on respon-
sibilities rather than their characteristics proved to be very effective in achieving a
robust design and implementation that is close to user requirement and at the same
time enhancing the application’s extensibility and maintainability.

Future work includes investigating the applicability of our geographic model to a
varied set of problem domains such as electoral districting and public utilities manage-
ment.
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APPENDIX

A.1 List of Abstract Methods

1. Abstract Methods of class Spatial_Feature.

(a) Get_point_representation with null implementation.
{“Null implementation” means that the method defined for the object in
question does not have any implementation. It exists as a template which
is inherited by the subclasses of the object. A method inherited in such
a manner by a subclass may have a real (non-null) implementation, corre-
sponding to the responsibilities of the subclass).

(b) Make boundary with null implementation.
(c) Make_point_representation with null implementation.
(d) Make_min-maz-z with null implementation.

(e) Make_min-masz-y with null implementation.

2. Abstract Methods of class Reference_Spatial_Feature (superclass Spatial_Feat-
ure).

{a) Get_point.representation with implementation to get point representation
of Reference.Spatial.Feature.

(b) Make_boundary with null implementation.

{¢) Make_point_representation with null implementation.

(d) Make_min-mag-z with null implementation.

(¢) Make_min-mag-y with null implementation.

(f) Make_Reference_Spatial_Features_within with null implementation.

(g) Make_Non_Reference_Spatial Features.within with null implementation.

3. Abstract Methods of class Non_Reference_Spatial_Feature (superclass Spatial_Feature).

(a) Get_point_representation with implementation to get point representation
of
Non_Reference_Spatial_Feature.

(b) Make boundary with null implementation.
(c) Make_point_representation with null implementation.
(d) Make_min-maz-z with null implementation.

(e) Make_min-maz-y with null implementation.

It is worth noting that we make use of the Abstract Methods for such imple-
mentation details as loading the raw data which is originally at a low-level (line
segments), and then constructing high-level objects such as States, Counties,
Towns and Roads from the low-level objects. This is a very useful and im-
portant functionality of our model because it proved to us that the model was
capable of reflective capabilities i.e., the model’s components themselves could
be used for loading the raw data, and deriving high-level data and populating
the various classes that are described in the model.
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We continue our discussion of Abstract Methods by listing those which pertain to
the high level objects Country, State, County and Town. The Abstract Methods
listed below are used to get the reflective functionality discussed above.

4. Abstract Methods of class Country (superclass Reference_Spatial Feature).
It should be noted that the Abstract Methods encapsulated by subclasses such as
Country have specific implementations corresponding to their responsibilities).
(a) Make boundarywith implementation to construct Country from Line Segment.

(b) Make_point_representation with implementation to compute point represen-
tation of Country.

(¢) Make_min-maz-z with implementation to compute the maximum and min-
imum z coordinate values of Country.

(d) Make_min-maz-y with implementation to compute the maximum and min-
imum y coordinate values of Country.

(e) Make_Reference_Spatial_Features_within with implementation to construct
States contained by Country, in collaboration with Line Segment.

(f) Make_Non_Reference_Spatial_Features_within with implementation to con-
struct Non_Reference.Spatial Features at the State level that is contained
by Country, in collaboration with Line_Segment.

5. Abstract Methods of class State (superclass Reference_Spatial_Feature).

(a) Make_boundary with implementation to construct State from Line_Segme-
nt.

(b) Make_point_representation with implementation to compute point represen-
tation of State.

(c) Make_min-magz-z with implementation to compute the maximum and min-
imum £ coordinate values of State.

(d) Make_min-maz-y with implementation to compute the maximum and min-
imum y coordinate values of State.

(e) Make_Reference_Spatial Features_within with implementation to construct
Counties contained by State, in collaboration with Line.Segment.

(f) Make_Non_Reference_Spatial Features_within with implementation to con-
struct Non._Reference_Spatial_Features at the County level that is contained
by State, in collaboration with Line_Segment.

6. Abstract Methods of class County (superclass Reference_Spatial_Feature).

(a) Make_boundarywith implementation to construct County from Line_Segment.

(b) Make_point_representation with implementation to compute point represen-
tation of County.

(c) Make_min-mag-z with implementation to compute the maximum and min-
imum z coordinate values of County.

(d) Make_min-maz-y with implementation to compute the maximum and min-
imum y coordinate values of County.

{e) Make_Reference_Spatial Features_within with implementation to construct
Towns contained by County, in collaboration with Line_Segment.
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(f) Make_Non_Reference_Spatial_Features_within with implementation to con-
struct Non_Reference_Spatial_Features at the Town level that is contained
by County, in collaboration with Line.Segment.

7. Abstract Methods of class Town (superclass Reference_Spatial_Feature).

(a) Make_boundary with implementation to construct Town from Line_Segme-
nt.

(b) Make_point_representation with implementation to compute point represen-
tation of Town.

(c) Make_min-magz-z with implementation to compute the maximum and min-
imum z coordinate values of Town.

(d) Make_min-magz-y with implementation to compute the maximum and min-
imum y coordinate values of Town.

(e) Make_Reference_Spatial Features_within with null implementation since in
our application the Town class does not contain any Reference_Spatial-
_Feature.

(f) Make_Non_Reference_Spatial_Features_within with implementation to con-
struct Non_Reference _Spatial_Features delow the Town level that is con-
tained by Town, in collaboration with Line_Segment.

8. Abstract Methods of subclasses of Non_Reference_Spatial._Feature.

The classes Interstate.Highways, State_Highways, Rivers, Railroads, County-
_Roads and Town_Streets fall under this category. These are linear objects which
do not contain any other object. In order to avoid the repetition of ideas, we
provide specifications of the Abstract Methods for only one representative class
of such objects here.

(a) Make_boundary with implementation to group the component line segments
which make up the concerned object.
(b) Make_point_representation with null implementation.

(¢) Make_min-maz-z with implementation to compute the values of the maxi-
mum and minimum z coordinate values of the concerned object.

(d) Make_min-magz-y with implementation to compute the values of the maxi-
mum and minimum y coordinate values of the concerned object.

A.2 List of Overloaded Methods

1. Overloaded Methods of Spatial Feature:
In the following, “X”, “Y” and “Z” represent spatial features.

(a) X close.to? Y.
Determines if X is close to Y.

(b) close_to! X.
Determines the spatial features that are close to X.

(c) Z between? X, Y.
Determines if Z lies between X and Y.
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(d) X between! Y.

Determines the spatial features between X and Y.
(e) X adjacent to? Y.

Determines if X and Y are adjacent to each other.

(f) adjacent_to! X.
Determines the spatial features adjacent to X.

A.3 Implementation notes in LAURE syntax

A.3.1 The Spatial feature class

[ spatial_feat :: union superset (named_object)
comment '"represents high level spatial objects, e.g. State"
with
(slot name -> string) ; i.d. code
(multi_slot boundary -> line_seg)
(slot elevation -> number)
(multi_slot lines_within -> line_seg)
(method point_reprn -> point)
=> [the implementation code goes here] )
(multi_method adjacent_to ~> spatial_feat
comment "finds features adjacent to itself"
=> [the implementation code goes here] )
(method adjacent_to? (x:spatial_feat) -> boolean
comment "finds if x is adjacent to oself"
=> [the implementation code goes here] )
(multi_method between (b:spatial_feat) ~> spatial_feat
comment "finds objects between oself and b"
=> [pers as nil [ pers <~ [[[[ancestors(oself) find]
intersect [ancestors(b) findl] nth ] owner] 1]
[if [and [rep(oself) = "poly"] [rep(b) = "poly"l]
[the implementation code goes herel
else_if [and [rep(oself) ="point"] [rep(b)="point"]]
[the implementation code goes here]
else [the implementation code goes here]
15
(method between? (x:spatial_feat y:spatial_feat
perspective:string) -> boolean
comment "finds if y is between oself and x"
=> [the implementation code goes here] )
(multi_method close_to (perspective:string) -> spatial_feat
comment "finds features close to itself"
=> [the implementation code goes here] )
(method close_to?(x:spatial_feat perspective:string)~->boolean
comment "finds if x is close to it"
=> [the implementation code goes here] ) ]

NOTE: ‘‘pers’’ denotes the perspective, and ‘‘rep’’ denotes the
object representation.

149
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A.3.2 Sample Queries — (in LAURE syntax)

Q1. Add boundary of "Bristol" county to State boundary

laure> [y all [x select State [[x name] = "RI"]] [[y boundary]
add ["Bristol" get_boundary "RI"]1]

eval> t ;;ireturns ‘true’ indicating successful completion of
query

Q2. Get the names of the counties contained by a State RI

laure> [y all [[x get_all State [[x R_feat_contained] 7]] nth 1]
[""A"%" printf [y namell]

eval> Bristol
Kent
Newport
Providence
Washington

Q3. Get all NR_feat_contained of State RI

laure> [y all [x all State [[x NR_feat_contained] return]]
["“A~%" printf [y name]]l

eval> Summit Greene Road
Plainfield Pike
Wallum Lake Road

Q4. Is Providence Town close to Narragansett?

laure> [[{x select Town [[x name] = "Providence"]] nth 1]
close_to?
[[x select Town [[x name] = "Narragansett"]] nth 1]

{} geometric]

eval> (determines user perspective, computes and returns true or
false)

Q5. What are the towns close to Providence Town?

laure> [[[x select Town [[x name] = "Providence"]] nth 1]
close_tol

eval> (determines user perspective, computes and returns all towns
close to Providence)



Chapter 8

Indexical Databases

James Clifford*
8.1 Motivation

The “three great data models” [594] were created in response to a set of needs arising
in certain traditional data management and processing environments, and to a large
extent they have been successful in meeting those needs. Today, however, the expanded
use of. and familiarity with, a variety of computers and software systems are generating
more sophisticated data management and processing needs. Today’s sophisticated
users are running into a kind of “brick wall” in the current generation of Database
Management Systems (DBMS), nearly all of which are based on one of these three data
models. This phenomenon is, to be sure, not unique to the database arena; by and
large all areas of computer usage are experiencing the limits of today’s software. The
growing revolution in expert systems, decision support systems, etc., all of which are
attempts to tackle ever more sophisticated problems for which traditional programming
languages and software development methodologies are largely inadequate, attests to
this fact.

Simply put, today’s data models and DBMS’s were largely designed for storing and
retrieving facts. (Recent work in the area of “object-oriented database systems” does
not seem to have digressed from this overall perspective.) While this functionality is
sufficient for many, if not most, of the applications and functions which the corporate
DBMS is intended to service, a growing segment of the DBMS user community, having
become comfortable, in many cases proficient, with the “just the facts, please...” mode
of use is now interested in having the system support much more of their needs. Among
the kinds of information needed are the following: opinions, expectations, judgments,
personal observations, histories, predictions, expert advice, hypothesized scenarios,
design versions, locations in space/time, simulations, sources of data, model or software
used to compute the data, etc.

Certainly most, if not all, of these functions can be met by some combination of
the DBMS and a host programming language. But by and large the advantage of
a DBMS has been the accessibility of the information and the functionality of the
system to end users through an interactive query language. The “Host language +
DML” approach has, of course, always supported the transaction processing and report
production component of data processing, but the interactive query language mode is
what has made a DBMS so attractive, because, by abstracting the general functions of

*Department of Information Systems, Leonard N. Stern School of Business, New York
University, New York, New York 10012-1126.
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database querying into a general purpose set of querying functions, it allows access to
the contents of the database without the need for programming.

Today there are many research efforts underway to expand the data structuring and
data processing functionality of a DBMS to meet these expanding needs. The economic
realities of today’s world would seem to doom most of these to failure, however, for two
major reasons. One is that each such effort has targeted, by and large, only one facet
of the problem, one potential user community, if you will, and the other is the growing
commercial success of today’s relational systems and the SQL language in particular.

This chapter is an attempt to generalize the notion of an extended relational model.
Building upon the author’s experience in one particular type of relational extension,
namely an extension to capture the semantics of the temporal dimension of data at the
model level ([116], [117], [123], [122],[119], [120]), this chapter investigates a model to
encapsulate a wide class of such extensions into the notion of a generalized functional
data type.

The basic model for the semantics of this expanded model, called the Indexical
Data Model (IDM), is borrowed from intensional logic, an attempt to formalize
the pragmatic component of linguistic theory. An intensional logic looks at the phe-
nomenon of contexrt as a major contributing component to defining the interpretation
of a language. As described by Richard Montague [414]:

In interpreting a pragmatic language L we shall have to take into ac-
count the possible contexts of use. It is not necessary to consider them in
their full complexity; we may instead confine our attention to those among
their features which are relevant to the discourse in question. Thus it will
suffice to specify the set of all complexes of relevant aspects of intended
possible contexts of use. We may call such complexes indices, or to borrow
Dana Scott’s term, points of reference. For instance, if the only indexical
feature of L were the occurrence of tense operators,’ then the points of
reference might naturally be chosen as moments of time, regarded as pos-
sible moments of utterance. On the other hand, if L contained in addition
the first person pronoun ‘I’ ... two aspects of the context of use would
become relevant, the speaker as well as the moment of utterance; and a
point of reference might naturally be chosen as an ordered pair consisting
of a person and a moment of time.

The Indexical Data Model, therefore, applies the same notion of indexical se-
mantics to the realm of relational databases, in recognition of the need for potentially
many points of reference in increasingly complex database applications. Moreover, fol-
lowing the guidelines proposed in [118], the model to be proposed will be a consistent
extension, not only of the Historical Relational Data Model (HRDM) [119], but more
importantly of the underlying relational data model itself. In this way we believe that
there is some hope that commercial systems, built upon the model, have a chance of
success ~ because the model is a consistent relational extension, a DBMS built upon
the system has some chance of being truly “apwardly compatible” with existing DBMS
such as DB2 or Ingres.

tIt was precisely consideration of such a situation that informed the development of the

Historical Relational Data Model (HRDM) [119].
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8.2 The Indexical Database Model

In this section we present an overview of the Indexical Database Model. We begin
with a presentation of the structures of the model - indexical relations — which will be
seen as a general extension to ordinary relations. We then provide an overview of a
relational algebra for the model, focusing on those operators which take advantage of
the expanded representational capability of the indexical relations.

8.2.1 The Structures

Let UVD = {VD1,VD,...,V D, ,} be a (universal) set of value domains where for
each i, VD; # 9. Each value domain V D; is analogous to the traditional notion of a
domain in that it is a set of atomic (non-decomposable) values.

(For example, an example application might have V D1 = {Management, Finance,
Accounting}.)

Let UA = {A1, As,...,An,} be a (universal) set of attributes. Each attribute
names some property of interest in the application area.

(For example, we might have Ay = DEPARTMENT.)

Let UID = {IDh,ID;,..., 1Dy} be a (universal) set of index domains, where
for each ¢, ID; # @, and the cardinality of each ID; is at most countably infinite.

(For example, we might have 1Dy = {Halderman, Ehrlichman, Mitchell}, and
1Dy = {, to, 11, })

Let UI = {I1,I2,...,In,;} be a (universal) set of indices. Each index I; represents
a “contextual coordinate”[354] which contributes to the context in which a particular
fact is to be interpreted.

(For example, we might have Iy = VALIDTIME, and I, = OBSERV ERS.)

The sets UVD, UA, UID and UI are all pairwise disjoint. JDOM : UI — UID is
a function which associates with each index I in Ul its index domain ID in UID. We
denote the index domain of index I by IDOM (I). In order to give a uniform meaning
to each index I the function IDOM is defined at the database scheme level, and not
at the relation scheme level.

(For example, we might have IDOM(OBSERVERS) = ID;, and
IDOM(VALIDTIME) = ID,.)

Let VC = {®vp,,...,Ovp,,} be a set of value comparator sets, where each
Ovp; = {fvp,,..-,0vD;,} is a set of value comparators over VDi. More pre-

cisely, each Ovp; i in @vp, is a set of ordered pairs {< v;,vx > |vj,vx € VD; and
v Bvp,, vk }. Minimally, we require for each value domain V D; that {=,#} C bvp,,
i.e;, that all value domains support equality and inequality comparisons.

Let IC = {O;p,,.. eID"i} be a set of index comparator sets, where each ©1p, =
{#:p,,,...,01p, }isa set of index comparators over I.D;. More precisely, each 8;p, i
in @11)‘ is a set of ordered pairs {< idp,idq > |idy,idq € ID; and id, 91D1D idg}.
Minimally, we require for each index domain ID; that {=,#£} C #; Dy le., that all
index domains support equality and inequality comparisons.

These preliminary definition serve, in effect, to define the basic vocabulary of our

model. Armed with them, we can proceed to define an Indexical Relation scheme
R as a 5-tuple R =< A, K,VDOM,IDOM, DOM > where:

1. ACUA is the set of attributes of scheme R
2. K C Ais the designated key of scheme R.
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3. VDOM : A — UVD is a function which gives the value domain of each
attribute of scheme R; we denote the value domain of attribute A; in scheme R
by VDOM(A;, R).

4. IND : A > 2Y7 is a function which gives the set of indices of each attribute of
scheme R; we denote the indices of attribute A; in scheme R by IND(A;, R). }

5. The domain of an attribute A; in scheme R, denoted DOM (A;, R), is a function
DOM : A — VDOM(Ai,R)leOM(IND(Ai’R)) which gives the domain of each
attribute of scheme R. Note that the domain of an attribute is the set of all
possible functions from its IDOM to its VDOM.

A tuple t on scheme R is an ordered pair t =< i,] > where

1. ti: A— I — 2!POMUND(ALR) the index lifespan of attribute A in tuple
t, is a function that gives the index lifespan of each attribute A; € A. We
denote the index lifespan of attribute A4; in ¢ as t.l.A,.

2. tw: A — TUP is a function that associates with each attribute 4; € A a
temporal-based function from the attribute index lifespan ¢.[(A;), to the
domain assigned to attribute A;. That is, #(A4;) : tl(4;)) — DOM(A:) We
denote the value of attribute A; in ¢ as ¢.v.A;. Note that t.v.A; is subject to
two constraints:

(a) the domain constraint, namely, Vi[t(A;) € DOM(A;)], and

(b) the key constraint, namely, for any two distinct tuples t;,1;,
ti(K) # t;(K).

In general, we would like to allow a tuple to be only partially defined; i.e., if the
domain of an attribute A; in relation R DOM(A;, R) is the set of all functions in
VDOM (A, R)IDOM(A"’R), at any given time the tuple instance will be only a partial
function in this space. We omit the details of this point, but point out that it would be
analogous to our treatment of lifespansin {119]. In other words, the following points
would have to be addressed:

1. A notion of index span, similar to that of a lifespanin historical databases, would
need to be defined for each index

2. The issue of the homogeneity ([202], [119]) of the tuple in each of the index
dimensions would need to be addressed. In other words, proceeding from the
most to the least general treatment, each attribute-value pair could have its own
indez span for each index, or each tuple could be homogeneous in all of its index
dimensions, or each relation could be homogeneous in all of its index dimensions.

Finally, we can define an indexical relation r on scheme R as a finite set of
tuples, r = {#1,%2,...1n}, on scheme R.

8.2.2 Discussion of the Structures

As discussed in [120]), there have been two different strategies for incorporating a
temporal dimension into the relational model in the literature. In one, the schema of
the relation is expanded to include one or more distinguished temporal attributes (e.g.,

INote that it is by allowing a different IDOM for each attribute of R that our model is
inhomogeneous.
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r r [ Dec — 10000 7 7 7
7 Jan — 20000
M = | Feb — 30000
Halderman — " Dec — 40000 7
Feb Jan — 50000
7 | Feb — 60000 |
L -
r [ Dec — 60000 7
7 Jan — 50000
M = | Feb — 40000
R A
Ehrlichman — [ Dec — 30000 7
Jan — 20000
Feb = 1 peb — 10000
L .

Figure 8.1: A Complex Function as an Attribute Value

time, or START-TIME and END-TIME) to represent the period of time over which
the fact represented by the tuple is to be considered valid. This approach has been
referred to in the literature as luple time-stamping or as a first-normal form (1NF)
model; in [120]) the term ungrouped is introduced for this type of approach. In the
other approach, referred to as attribute time-stamping or as a non-first-normal form
{(N1NF) model, instead of adding additional attributes to the schema, the domain of
each attribute is extended from simple values to complex values (functions, e.g.) which
incorporate the temporal dimension. [120]) introduces the term grouped for this latter
approach.

In the ungrouped approach an “object’s” entire history is represented within a
single tuple, within which the time stamps are embedded as components of the values
of each attribute. In the grouped models, by contrast, all of the information about an
object is represented in a single tuple. [120] contrasts these two approaches and shows
that temporally grouped models are more expressive than temporally ungrouped models.
The Indexical Data Model, then, is a grouped model in precisely the same sense or
for precisely the same reasons. Thus, a value in the Indexical Database Model is not
atomic, but rather a complex function, like the one in Figure 8.1.

It is well known (see discussion in [112]) that any function of n arguments can be
represented by an equivalent function of n — 1 arguments. We can therefore choose to
represent n-place functions like:

<e, e, <...<€n,¥ > ... >2>>

by their equivalent 1-place function:

< {61,62, ...,en}, v >
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< Halderman, Jan, Dec > — 10000
< Halderman, Jan, Jan > — 20000
< Halderman, Jan, Feb> — 30000
< Halderman, Feb,Dec > — 40000
< Halderman, Feb, Jan > — 50000
< Halderman, Feb, Feb > — 60000
< Ehrlichman, Jan, Dec> — 60000
< Ehrlichman, Jan, Jan > — 50000
< Ehrlichman, Jan, Feb > — 40000
< Ehrlichman, Feb, Dec> — 30000
< Ehrlichman, Feb, Jan > — 20000
< Ehrlichman, Feb, Feb> — 10000

Figure 8.2: Example of Attribute Value as 1-Place Function

Thus, the value in Figure 8.1 could equivalently be represented as in Figure 8.2.
IDM can make extensive use of this ability — at the definitional, operational, or user
levels — to view values in either of these two fashions. In addition, since the order of
the indices is irrelevant in these functions, they can be viewed in whatever order the
user deems appropriate to the task at hand.

8.2.3 An Indexical Example: The Watergate Database

In this section we give an example from the familiar world of politics, of an Indexical
Database with three index sets. These are used to represent answers to the familiar
questions asked during the televised Senate Watergate Hearings, i.e. “What did the
President know and when did he know it?”. We generalize slightly, and have an index
set for each of these three points of reference: (i) “Who knew it”, (i) “When was it
known?” and (iii) “When was it believed it to have occurred?”

For our Watergate example, we might choose to define the following three index
sets:

I = Observers =
{Halderman, Ehrlichman, Dean, Nizon, Mitchell, Colson, Liddy} .

I = Data_Time = {July, August, September, October}

I, = Rec_Time = {July, August, September, October, N ovember}

For simplicity, we will consider only a single relation on the following scheme:
PROJECTS =< Aproiecrs, Kprosecrs, VDOMprospcrs, IDOMprosECTS

where:

1. Aprosscrs = {PNAME,APPROPRIATION, APPROV ER}
2. Kprosgcrs = {PNAME} -

3. VDOMPROJECTS is as follows:

VDOMprosscrs(PNAME) = {Watergate BreakIn, Watergate Coverup,
Ellsberg BreaklIn}

VDOMprosecrs(APPROPRIATION) = positive integers

VDOMprosecrs(APPROV ER) =
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{Nizon, Mitchell, Halderman, Ehrlichman}

4. IDOMprojgcTs is as follows:

IDOMprosecTs(PNAME) =49

IDOMprosecrs(APPROPRIATION) =
{Observers, Data_Time, Rec Time}

IDOMprosecrs(APPROV ER) = {Observers, Date Time, Rec_Ttme}

We can more simply view the structure of this relation as follows:
PROJECTS(P.NAME, .
APPROPRIATION: <Observer, Rec.Time, Data_Time>,
APPROVER: <Observer, Rec_.Time, Data_Time> ) '
where each attribute is followed, where necessary, by the ordered list of its indices.
Note that we have indicated that the attribute P_.NAME is the key of this relation,
and have decided that it is not indezical, i.e., it’s value is not a function from any of
the indices in the model.
In the rest of the chapter, in discussing examples of algebraic operators for the
indexical data model, we will refer to the instance on this schema shown in Figure 8.3.
Note that other applications would have an entirely different set of indices appro-
priate to the application. Examples could include the following:

o Sources of data, e.g. Harris, Gallup, TRW, etc.
o Models, e.g. Lotus, Quattro, Fxcel, etc.

e Versions of certain “objects”, e.g. VI, V2, ...
¢ Points in Time

¢ Points in space

o Coordinates in space and time

o etc.

8.2.4 The Operations

In [122] we discussed some of the considerations that underlay the way in which we
set about to define an algebra for historical relations. Chief among these was the
notion of “dimensional purity” for reduction operators. By this we mean that each
of the dimensions of a multi-dimensional object should be accessible through its own
reduction operator. The same consideration informs the shape of the algebra of IDM;
specifically, there will be operators to access the attribute dimension, the base value
dimension, and the index dimension. In the rest of this section, we will outline the
basic operators in an extended algebra for the Indexical Data Model as follows:

1. the set theoretical operators: union (U), intersection (M), difference (—), and
Cartesian Product {x),

2. extensions to the traditional relational operators: project (II), select (o), and
join (1), and

3. new operators: function restriction(:), and drop index (§)

This presentation is based upon the algebra of HRDM [119].
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Set Theoretic Operators

Indexical relations, like regular relations, are sets of tuples, and so the standard set-
theoretic operations — U, N, —, and x are defined over them. However, as in the
relational model, we restrict the application of these operators to union-compatible
relations. The notion of union-compatibility must be expanded to encompass having
the same number of columns over the same complex domains.

If r1 on R1 and 72 on R2 are union-compatible, then

1. 71U 72 = {t on scheme R3|t € rl or t € 72}
where R3 =< A:, K1, VDOM.,IDOM,; >

2. 11N 72 = {t on scheme R3|t € rl and t € 72}
where R3 =< Ai, K1,VDOM.,IDOM; >
3. r1 —72 = {t on scheme RI1[t € r1 At & r2}

As pointed out in {119], the result of these operations is, unfortunately, often coun-
terintuitive. The result, for example, of the union of two relations r1 and 72 will not
automatically “merge” tuples which refer to the same object during different, but pos-
sibly overlapping, indices. Following [119], we can define three object-based versions
of union, intersection, and difference, all of which rely on the concept of mergeable
tuples.

Two relations 71 and 7, on schemes Ry =< A3, K1, VDOM;,IDOM; > and Ry =<
Az, K, VDOM,, IDOM; > are merge-compatibleif and only if A1 = As, K1 = Ko,
, VDOM:; = VDOM;, and IDOM; = IDOM,.

Note that merge-compatibility requires that the two referenced relations have the
same key, and is therefore a stronger constraint than union-compatibility.

Two tuples t1 and 2 on schemes Ry =< A1, K1, VDOM,,IDOM; > and Ry =<
Az, K2, VDOM>2,IDOM; > are mergeable if and only if

1. Ry and R, are merge-compatible
2. their key value is the same over all indices, and

3. if the tuples are defined over the same index spans, their values must agree on
these indices

Condition 2 states that the tuples have the same key value, and thus are assumed
to denote the same object. Condition 3 states that at all indices in the intersection of
the inder spans of the two tuples, each pair of corresponding attributes have the same
value. In other words, Condition 3 states that the two tuples do not contradict one
another.

The merge of t; and ¢z, (#1 + ¢2) is then defined ac the tuple #; where:

i3 (A) =1 (A) U tz(A) for all A€ Az

Given a tuple t and a set of tuples S, ¢ is matched in S if there is some tuple
t' € § such that ¢ is mergeable with ¢'; otherwise ¢ is not matched in S.

With these preliminary definitions we can define more semantically-based set-
theoretic operations, denoted U,, Ny, and —,:

For example, if relations r1 on R1 and r2 on R2 are merge-compatible, then:
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r1Uo,r2 = {t|t € rl and ¢ is not matched in 2V
t € r2 and ¢ is not matched in 72 Vv
Fty €y I €2t =t +t2]}

CARTESIAN PRODUCT The Cartesian Product of two relations r and s on

Schemes R and S can be defined in the usual way as:

rlx 2 = {ton scheme R3|3t1 € rl1,32 € r2[
VA € Rl[t.w(A) = t1.0{A)]A
VA € R2[t.v(A) = 12.0(A)]}
where R3=< A1 U Ay, K1 UK, VDOM UV IDOM,,IDOM;, UIDOM; >

As pointed out in [119], however, we note that this definition can result in inhomo-
geneous tuples, because the index spans of the resulting tuple is not guaranteed to be
uniform across the attributes. Various alternative definitions could certainly be given
wherein the index spans of the resulting of the resulting tuple is adjusted in some way.
Further research is needed to determine how best to handle the question of homogeneity
or inhomogeneity in indexical databases. This and other problems with the Cartesian
Product operator in temporal databases are well-known ([396]).

Extended Relational Operators

PROJECT The project operator # when applied to a relation r removes from r
all but a specified set of attributes; as such it reduces a relation along the attribute
dimension. It does not change the values of any of the remaining attributes, or the
combinations of attribute values in the tuples of the resulting relation. Let r be a
relation over the set of attributes R and X C R. Then the projection of r onto X
is given by: mx(r) = {t(X)|t € r}

Projection Example

The query mprosgcT{funding)
would yield the relation in Figure 8.4 showing which Projects were currently recorded
in the database. Similarly, the query mprosecT sTaTvs(funding) would yield the
relation in Figure 8.5 showing what was thought by various observers and at various
times about the approval of these projects.

Note that because 7 does not specifically refer to the values in a database, it is
virtually unaffected by the fact that IDM relations are “grouped” (see [120]), (except
that complex values might “collapse”).

SELECT In [119], we defined two versions of SELECT for historical databases,
which can be viewed as Indexical Databases with a single index, representing the so-
called “valid time” dimension of the data. We called these two operations SELECT-IF
and SELECT-WHEN, and defined them as follows:

0-1F p00,0,0)(r) = {t € r|Q(s € (LN £.1})[t(A)s@a]}

o-WHEN gea(r) = {t|3 € r[t.0 = {s[t'(A)(s)Oa} At.v = t'.v].]}
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PNAME

Watergate Break-In

Watergate Coverup

Ellsberg Break-In

Figure 8.4: Projection Example 1
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PNAME APPROVER: <Observer, Rec-Time, Data-Time>
r B ( Dec — Mitehell 7T 7
Jan  — Jan ~  Mitchell
1 Feb Nizon
Halderman — r Dee — Nivon
Feb — Jan '— Nizon
Feb — Nizon
Watergate Break-In i [ Dec — Mitehell 7 7
' Jan  — Jan —  Mitchell
a Feb — Mitchell
Ehrlichman — F Dec — Mitchell
Feb Jan —  Mitehell
e = Feb —  Mitchell
r i [ Dec —  Mitchell T 7
Jan — Jan —  Mitchell
Feb — Nizon
Halderman — r Dec -+ Nizon
: Feb  — Jan — Nizon
Feb  — Nizon
Watergate Coverup r [ Dec —  Mitchell 7
Jan - Jan —  Mitchell
Feb —  Mitchell
Ehrlichman — r Dec —  Mitchell
Feb Jan —  Miichell
e = Feb — Mitchell
[ M [ Dee — Mitchell T 7
Jan — Jan —  Mitchell
Feb — Nizon
Halderman — " Dec — Nizon
Feb  — Jan — Nizon
Feb — Nizgon
Ellsberg Break-In 3  Dec — Mitchell 7
J Jan — Mitchell
an Feb —  Mitchell
Ehrlichman — I Dec — Mitchell
Feb Jan —  Mitchell
e = Feb — Mitchell
. J

Figure 8.5: Projection Example 2
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We omit the definition of the analogous operators for the generalized indexical
database model. Suffice it to say that analogs of both of these operators could be
defined, and that they would take the following parameters:

e an attribute A
e a set of < index, index_value > pairs

e a value (ie., a traditional, atomic value)

For example, the following query makes use of the o-1F operator:

C7'1’1;‘(APPROPRIATION:SOOOO,3 Observer,q Rec-Time,q Data.time € {Feb})
(PROJECTS)
would yield a relation that shows which projects were thought, by anybody (the
Observer), at any time (the Rec_Time), to have had an appropriation of 500000 some- .
time in February (the Data_time). For the example data the Watergate Breakin sat-
isfies this query (both Halderman and Ehrlichman believed this in February) as does
the Ellsberg Breakin (Halderman believed this in February). The result of this query
is therefore the relation in Figure 8.6.

The o-W HEN operator is illustrated by the following query:

o-WHEN apprOV ER=Nizon(PROJECTS)
which results in a relation showing PROJECTS ever recorded, by any observer, to
have ever been approved by Nixon, and it will only show those “perceptions” about

the PROJECTS.

New Operators
FUNCTION RESTRICTION This operator is intended to generalize the

Time-Slice operator that has been defined in temporal database models. Function
Restriction, symbolized by ¢, evaluates the i-th index of an attribute A in relation r at
a specified value 2.

t:r X A x1ixi

In general, if 7 is a relation on scheme R, A is an attribute in R and [ is an index
of Ain R, then

sag,(P)={t|3 e rft(R - A) =t(R — A) At(A) = t1(A)(1)|:]}

Function Restriction Example

The following query illustrates the use of function restriction:

LAPPROPRIATION.Rec—Time| 74, (funding)

This query would yield the relation in Figure 8.7, showing what was recorded about
the appropriatious for the projects as of January.

As is usually done with &, we can generalize this operator to apply to multiple
attributes and indices, as well as to sets of index values rather than a single value.
Thus if r is a relation on scheme R, A is an attribute in R and I ..., are indices of
A in R, then

LA'Ill{ill ,'~-vi1m)""'A'I"|(i"1 yeroringg } (T) =
{t]3 v € r[t(R — A) = (R — A) At(A) = t1(A) ()i, A
A H(A) = t(A)(In)]in]}
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For example, Figure 8.8 show the result of the following query:
LAPPROPRIATION.Observer|fatderman |
LAPPROPRIATION.Data_Timel{ jan, res} (
L<APPROV ER.Observer|gaiderman
LAPPROV ER.Data-Timel( sun,pev) ( 474109))))

which restricts the relation to Halderman’s view of things, and further only to his view
of the Appropriations in January and February, and the Approvers in January and
February.

DROP-INDEX Drop-Index, symbolized by 8§, drops an index from a specified
attribute or attributes in a relation. In effect, this operation evaluates an index at -
some specified value ¢, and theréfore transforms an n-value into an n-1-value. Its
analog in temporal databases is to evaluate the database as of some specified value,
e.g., now. Note that §, like =, changes the scheme of the resulting relation.

If r is a relation on scheme R, A is an attribute in R and [ is an index of Ain R,
then

Sar=i(r)={t|3tr €r[t(R— A) = #(R - A)At(A)I) =1]}

Drop-Index Example

8 APPROPRIATION. Rec—Time=Feb( funding)

would yield the relation in Figure 8.9 showing the Appropriations as they were recorded
in the database as of February.

Again, extending the operator to multiple attributes and indices, Thus if r is a
relation on scheme R, A is an attribute in R and I ... I, are indices of A in R, then

bAaLimig e Adnmin (7) = {3 U € rlt{(R—A) = #(R-AAU(A) (1) = i1 A, A(A)(Tn) = 1a]}

The query:

§ APPROPRIATION.Rec—Time=Fecb, APPROV ER.Observer=Ehrlichman (funding)
wonld yield the relation in Figure 8.10 showing the Appropriations as they were
recorded in the database as of February, and the Approvers as seen by Ehrlichman.

8.2.5 Partial Functions

In an ideal world our information is perfect, i.e., for each index (and combination of
indices) associated with an attribute the database records a corresponding value. In
this case there is no problem with any of the operations we would like to perform.
In a database with a complex indexical structure, however, it is likely that not all of
the data will be known or even existent. For example, data for certain moments in
time, or representing the point of view of some particular observer, or derived using a
particular model, may in certain cases be unavailable. This situation — which should
be understood as essentially different from the issue of “null values” which has a long
history of study in the context of the relational data model — has been recognized as a
problem in the special case of historical databases. In the Historical Relational Data
Model of [119] the solution of tuple “lifespans” was adopted to handle this problem.
Other researchers have employed similar techniques.

Within the context of the Indexical Data Model, the problem arises when attempt-
ing to evaluate a function at a point where it is undefined. Analogous to the notion
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PNAME APPROPRIATION: <Observer, Data-Time> APPROVER: <QObserver, Rec-Time, Data-Time>
r r F Dec ~ Mitchel 7 7 1
R
Halderman  — [ Dec — Nizon
Dec — 40000 Feb — Jan ~— Nizon

Jan — 50000
Feb — 60000

Halderman — Feb — Nizon

Watergate Break-In Dec — 30000 [ r Dec — Mitchell 7 7
. . - Jan — 50000 Jan  —  Mitchell
Ehrlichman Feb — 60000 Jan = | Feb = Mitcheit
Ehrlichman — [ Dec — Mitchell
Feb = Jan -  Mitcheil

Feb — Mitchell

[ r [ Dec — Mitchell 7 7 1]
Jan — | Jan - Mitcheil
Feb - Nizon
Halderman — [ Dec — Nizon ]~
Dec — 20000 Feb - Jan — Nizon
Jan = 20000 Feb — Nizen
Holderman  — | gon = 2000 |
Watergate Coverup Dee - 30000 r [ Dec -~ Mitchell
. Jan — 40000 Jan — Mitchell
Ehrlichman  — | Py 40000 Jan = | Feb — Mitcheil
Ehrlickman — [ Dec — Mitchell
Feb Jan — Mitchell
® - Feb — Mitchell
[ [ [ Dec — Mitehell 7 7 1
J Jan ~ Mitchell
: en = Fet — Nizen
Halderman [ Dec —~ Nizon
Dec -~ 30000 Feb — Jan — Nizon
Holderman  — Jan == 30000 Féb = Nizon
s Febt — 60000 L
Elisberg Break-In Dec — 50000 r [ Dec — Mitchell
. Ehslich Jan — 50000 7 Jan = Mitchell
Artichman = | Fep —~ 50000 . en = | Feb — Mitchall
Ehrlichman = r Dec = Mitchell
Peb — Jan — Mitchell
© Feb — Mitchell

Figure 8.9: Drop-Index Example
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of “lifespans” in HRDM ([119]), we can define for each Index, at either the attribute
level, the tuple level, or even the relation level, the concept of indez spans to handle
this problem.

8.3 Instances of the Indexical Database Model

The Indexical Database Model is a general model which, we claim, generalizes many of
the notions found in a numbéer of other proposals which have appeared in the literature.
For example, the Historical Relational Data Model (HRDM) [119] is an extension of
the relational data model with a single time index to represent the so-called “valid
time” of the data it manages. In IDM this would be a homogeneous indexical model
with a single index. In this section we recast the model of HRDM as an indexical
database model.

8.3.1 HRDM

In this section we recast the Historical Relational Data Model HRDM ([119]) as an
instance of an IDM:

o UDy = {D1,D>...,Dyn,} is the (universal) set of value domains.

o UAn = {A1, Az, ..., An, } is the (universal) set of attributes.

e Ulg={i}=T=1{...,1,1,...},1e., there is only one index, the set of times.

o UDy,UAg, and Ulg are all pairwise disjoint.

e VC = {Op,,...,0p,, }, the set of value comparator sets, is application-
dependent. (Again, minimally each value domain must support equality and
inequality comparisons.

o IC= {e-’l} = {G)T} = {=a #a <> 5, Z}

A

Historical Relation Scheme Ry is a 4-tuple Ry =< Ap, Ky, VDOMyg,IDOMy >
where:

1. Ay C UAp is the set of attributes of scheme Ry

2. Ky C Ay is the key of scheme Ry

3. VDOMy : Ag — UDy gives the value domain of each attribute of scheme
Ry.

4. IDOMzy : Ag — 297 specifies the index domain of each attribute Ag; in this
case, for all attributes Az of scheme Ry, IDOM(Ap)=T.

A tuple t on scheme R is an ordered pair, t =< v,! >, where

1. t.l, the lifespan of tuple t, is any subset of Uly

2. t.v, the value of the tuple is a mapping such that for all attributes A € R,
t.v(A) is a mapping of the type t.1 — DOM(A).

Note that it is condition 2 in HRDM which stipulates that the values of each
attribute in a tuple t are partial functions, and that the domain of these functions is
the lifespan which is defined in condition 1.

A relation r on R is a finite set of tuples ¢ on scheme R such that if ¢; and ¢, are
in r, for all indices in the index spans of the two tuples, ¢; and {; disagree for those
indices on the value of the key.
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8.3.2 Bitemporal Database Models

The notion of a bitemporal database — a database which records not only the valid time
of the data but also the transaction time when the data was stored in the database
— is a case of an IDM with two indices. Snodgrass’ Temporal Database TQuel [528],
and Ariav’s model [21] could equally well be cast as instances of an IDM database. We
believe that the various models for version control ([310] provides a good overview)
could also be expressed as specific instances of an IDM database. In [121] we discuss
the issue of a uniform treatment of the valid and transaction times in bitemporal data
models.

8.4 Summary and Conclusions

The modeling capability of today’s DBMS’s will need to be expanded if they are to
serve the needs of tomorrow computing problems. Numerous research proposals have
appeared to extend this functionality for a wider array of application areas. Among
these proposals have been a plethora of suggestions for historical databases, rollback
databases, and bitermnporal databases.

We have described the Indexical Database Model (IDM) as a generalization of
the work done in these and related areas. In this chapter we have provided an overview
of the structures of this model and the operators in its algebra, and shown how one of
these models — the historical relational data model (HRDM) - can be seen as a variety
of IDM.

We have illustrated the power of the model by means of a few example queries
expressed in an relational algebra extended to handle indexical relations. The algebra
was chosen because its gives a better “flavor” of how you can cut and paste tables
together. In fact, we can also define a multi-sorted calculus, similar to the language
Ly discussed in [120], with variables over ordinary domains as well as over each type
of index. Since Ly is shown in [120] to be more powerful than any ungrouped language
for historical databases, it is reasonable to base our indexical calculus on the same
framework. However, as [120] also points out, since there is as yet no known historical
algebra equivalent in power to Lx the issue of the completeness of an indexical algebra
remains an open one as well.



Chapter 9

A TEMPORAL QUERY LANGUAGE FOR A
CONCEPTUAL MODEL

Ramez Elmasri*,Vram Kouramajian'
9.1 Introduction

This chapter is a summary of our work in temporal conceptual models and query
langnages {173, 178, 174, 179]. Most previous work in temporal database models and
query languages has been mainly in the context of the relational model of data [528, 201,
429, 293]; and to a lesser extent, in conceptual data models [508, 178, 632]. However,
these approaches have a fundamental pitfall, in that they fail to consider the semantics
associated with time. In this chapter, we describe a Semantic Temporal model based
on the Extended Entity-Relationship model (STEER), which distinguishes between
conceptual and temporal objects. A conceptual object, once it is created, can always
be referenced at any future time, whereas a temporal object, which we call an entity role,
has a specific existence lifespan. For example, information concerning a STUDENT
conceptual object can be referenced even after the student has completed his studies.
However, the role of that entity as an ENROLLED-STUDENT has specific start and
end times that define its lifespan. (STUDENT is the owner entity of ENROLLED-
STUDENT role.)

The STEER model characterizes the properties of entities (conceptual objects), en-
tity roles (temporal objects), and (temporal and non-temporal) attributes. It also de-
fines temporal constraints among entity roles, differentiates between temporal and con-
ceptual relationships, and provides rules for preserving temporal integrity constraints.

We complement our model by providing temporal query language constructs. The
query language is a temporal extension of GORDAS [177, 176}, which is a formal, high-
level and user-friendly query language for the Extended Entity-Relationship model.
The temporal query language distinguishes between temporal and conceptual ob-
jects/relationships. It allows selection conditions to retrieve attributes and relation-
ships of a role or an entity type, since attributes and relationships of a role type and
its owner entity type are public to each other and can be inherited. It also provides
natural and high level temporal element constructor operators that simplify tempo-
ral query expressions. Finally, it supports temporal version restriction operators and
allows multiple temporal scopes in a temporal projection.

*Computer Science Engineering Department, The University of Texas at Arlington, Arling-
ton, Texas 76019-0015, U.S.A., elmasri@cse.uta.edu

tComputer Science Engineering Department, The University of Texas at Arlington, Arling-
ton, Texas 760190015, U.S.A., kouramaj@cse.uta.edu
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The remainder of this chapter is organized as follows. Section 9.2 describes the
representation of time we use. Section 9.3 discusses the STEER data model. Section 9.4
presents constructs for temporal boolean expressions, temporal selection and temporal
projection. Section 9.5 describes the temporal query language. Finally, section 9.6
contains a conclusion and planned future work.

9.2 Representing Time

Let 7" be a countably infinite set of totally ordered discrete chronoms (time points),
where T is denoted as T = {fo,%1,...,tnow, tnowt1,.-.}. We use NULL to represent
unknown chronons, and tnow to represent the current chronon which is continuously
increasing. We define a time interval, denoted by [#;,t.], to be a set of consecutive
equidistant time instants; that is, the totally ordered set {#, ti41,...,0u~1,tu} C T,
where 1 is the first element or start point of the time interval and ¢, is the last element
or end point.

The distance between two consecutive time instances, ¢; and ¢;41, represents the
granularity of the application; and can be adjusted to be equal to months, days, hours,
minntes, seconds, or any other suitable time unit. A single discrete time point t is
easily represented as an interval [t,¢], which we will denote simply as [¢].

Since interval representation is not closed under set operations, [201] suggested the
concept of temporal element. A temporal element is a finite union of time intervals,
denoted by {Ii,I2,..., n} where I; is an interval in 7". Notice that union, intersection
and difference operations on temporal elements are easily defined. In addition, set
comparison predicates of two temporal elements using =, #, 2, and C can also defined.

In temporal databases, it is customary to include a number of different time di-
mensions. The most common kinds of time are: wvalid time, transaction time and
user-defined time [530]. Valid time is the time that an event happened in the real
world. It gives queries the capabilities to refer to past and future states of the data-
base. The main difference between future time and historical time is that the latter
refers to state changes that have already occurred, and thus are known to have hap-
pened, while future time refers to state changes that are planned to occur but may
or may not happen according to the plan. Transaction time is the registration time;
that is, the time when data is recorded in the database. User defined-time is provided
and supported by the user of the database; its semantics are left to each application.
Because of space limitations, we will consider only valid time in this chapter.

9.3 The Temporal Data Model

We will assume that the reader is familiar with the basic concepts of the ER model
and ER diagrams [108], as well as its semantic extensions [175}, and hence present only
the main features of the STEER model.

9.3.1 Conceptual Objects: Entities

Our goal is to define guidelines for determining the basic aspects of an object life
time. The conceptual existence of an object does not directly correspond to the birth,
death, and change of the object. Objects need to be modeled in a mini-world when they
become of interest. For example, employees exist in the real world as persons. However,
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they become objects of interest to a company only when the company wants to hire
them. At this point, the company may still want to record previous information about
these persons. If an employee leaves the company, the employee remains an object of
interest as long as the company still wishes.

Each conceptual entity e has an existence time, denoted by ET, which is unrelated
to the concept of lifespan. The start time point ST of the existence time refers to
the time the concept of the entity is materialized. There is no end time point of an
existence time. The end time can be considered to be infinity in our model, because a
concept (an entity) once realized never ceases to exist. The only time that characterizes
an entity is the start time of its existence. Hence, ET = [ST, c0). (We also use the
notation T'(e) to refer to the existence time of an entity e.)

There are two important ramifications in associating existence time with entities:

1. We can define and treat future planning concepts using similar mechanisms to
those used for historical concepts.

2. We can enhance the power of query languages and simplify their constructs while
dealing with conceptual objects, by using start time point of existence time as
the earliest possible time the entity can be referenced.

An entity type is a set of entities of the same type; that is, entities that share the
same properties. An entity type is diagrammatically represented by a rectangular box
(see Figure 9.1).

9.3.2 Temporal Objects: Roles

Entities describe one aspect of the real world, the conceptual one. The other aspect is
captured by temporal objects. The classification of objects as temporal and conceptual
gives our model the capability to faithfully represent the way people perceive the real
world. Temporal objects materialize the active role that conceptual objects play in the
temporal dimension.

We call a temporal object an entity role, since it represents the time that the entity
is participating in that role. A role typeis a set of entity roles of the same type; that is,
roles that share the same properties. Each role type is associated with a single entity
type called its owner entity. Hence, owner(entity role) = entity & role(entity) =
entity role. A role type is diagrammatically represented by a dotted rectangular box,
and connected to an owner entity (see Figure 9.1). Each entity role ro of a role type
RO is associated with a temporal element T(ro) C [tg, 00) which gives the lifespan LS
of the role.

The following general set of rules must hold on roles:

1. Start time of the lifespan of an entity role must be greater or equal to the start
time of the existence time of the (conceptual) owner entity. This implies a top-
down approach in creation of role types; that is, before a role is created its
corresponding (owner) entity must exist.

2. A role type is restricted exactly to one owner entity type.
3. A role type can have only temporal attributes.

4. (Temporal) attributes of a role type are public to the owner entity type; that is,
an owner entity refers to these attributes as though they are attributes of the
owner entity.
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5. Similarly, (temporal and non-temporal) attributes of an entity type are public
to all associated role types.

6. A role can access all relationship instances for relationship types in which the
owner entity participates.

7. Similarly, an entity can access all relationship instances for relationship types in
which the associated role participates.

9.3.3 Temporal Constraints among Roles

Our model enforces two temporal constraints among roles:

1. Egistence Constraint: A sup-existence/sub-existence constraint, denoted by
RO;/RO;, holds between two role types RO; and RO; iff the following holds:
{V rojx € RO;j,3 roy € RO; such that rojr = roy}; that is, every entity role
RO); represents the same entity role in RO;. The existence constraint implies a
top-down approach in the creation of roles. A member role of a sub-existence
represents the same real world entity as some member of the sup-existence. An
entity role cannot exist in the database merely by being a member of a sub-
existence; it must be also a member of the sup-existence.

2. Lifespan Constraint: A sup-lifespan/sub-lifespan constraint, denoted by
RO;/RO;, holds between two role types RO; and RO; iff the lifespan of any
entity role ro;z € RO; is a subset of the lifespan of the entity role ro; € RO;
where rojr = r041; that is, T(rojx) C T(rosr). Notice that the lifespan constraint
implies the existence constraint, but not vice versa.

9.3.4 Non-Temporal Attributes

Attributes are properties of objects. Non-temporal attributes can be only properties of
conceptual entity types but not of role types. The value of a non-temporal attribute of
an entity holds over the entire existence time of the entity. We assume that the reader
is familiar with the properties of non-temporal attributes of the £R model [175], and
discuss only the properties of temporal attributes below.

9.3.5 Temporal Attributes

Each entity type E; (role type RO;) may have a set of basic temporal attributes TA;1,
TAiz, ..., TAin, and each temporal attribute TA;; is associated with a domain of
values dom(T'Ai;). For example, a temporal attributes of the PERSON entity type is
Name,, and a non-temporal attribute is SSN (see Figure 9.1).

The following definitions are similar to those given in [178]. For roles, the temporal
value of each attribute T'A; of ro, which we refer to as T'A;(ro), is a partial function
TAi(ro) : T(ro) — dom(TA;). The subset of T(ro) in which T'A;(r0) is defined is
denoted by T(TAi(ro)). It is assumed that T'A; has a NULL (or UNKNOWN)
value during the intervals T(ro) — T(TAi(r0)).

In the case of entities, the temporal value of each attribute T A; of e, which we
refer to as T'A;(e), is a partial function T'A;(e) : ET(¢) — dom(T'A;). The subset of
ET(e) in which T'A;(e) is defined is denoted by T(T'Ai(e)). It is assumed that T'A;
has a NULL (or UNKNOWN) value during the intervals T'(e) — T(T Ai(e)).

«
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The partial function that describes the values of a temporal attribute is also called
a temporal assignment [201, 179]. The subset of chronons during which a temporal
attribute is defined is called the temporal element of the temporal assignment.
Several types of temporal attributes exist:

1. A temporal single-valued attributes has at most a single atomic value for each
entity (role) at each time instant [¢].

2. A temporal multi-valued attribute can have more than one value for an entity (a
role) at a given time instant [t]; hence, its domain is the power set P(V) of some
simple domain V.

3. A temporal composile attributeis a list of several component temporal attributes,
and its value for each entity at time instant [¢] is a concatenation of the values of
its components. The temporal element of a temporal assignment of a composite
attribute is the union of the temporal elements of the temporal assignments of
its components.

In our model, each entity will be associated with a system-defined non-temporal
SURROGATE attribute whose value is unique for every entity in the database. The
value of this attribute is not visible to users, and is never altered.

9.3.6 Classes and Superclass/Subclass Relationships

Our data model supports the concepts of (conceptual) subclasses and superclasses and
their related concepts of specialization and generalization. A class is any set of entities;
hence, an entity type is also a class. Additional groupings of entities that are subclasses
(subsets) of the entities in another class are often needed. A superclass/subclass re-
lationship is implicitly defined for each subclass. Subclasses can be used to represent
generalization and specialization hierarchies and lattices. A more complete discussion
of subclasses in the EER model is given in [175].

A member entity of a subclass represents the same real world entity as some member
of the superclass. An entity cannot exist in the database merely by being a member of
a snbclass; it must also be a2 member of the superclass. An entity that is a member of a
subclass will have the same existence time as the corresponding entity in its superclass
because the entity in the subclass represents the same real world entity as the one in
the superclass. An important concept associated with the subclass is that of attribute
inheritance. An entity that is a member of a subclass inherits all (temporal and non-
temporal) attributes of the corresponding entity in its superclass. Note that since
(temporal) attributes and relationships of a rtole type are public to an owner entity
type, they become public to all subclasses of the owner superclass; and thus any query
over a subclass can access those public (temporal) attributes. An entity also inherits
all relationship instances for relationship types in which the superclass participates.

9.3.7 Conceptual Relationships

A conceptual relationship type R of degree n has n participating entity types Ei, Es,
..., En. Each relationship instance r in R is an n-tuple r =< ej,€e2,...,e, > where
each e; € E;. FEach relationship instance r in R has an existence time ET. The
start time of the existence time of a relationship instance must be greater or equal

to the start time of the existence time of each of the participating entities; that is,
ST(r) > ST(e;) for each e; € E; (i=1,2,...,n).
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9.3.8 Temporal Relationships

Our model supports temporal relationships. A temporal relationship type TR of degree
n has n participating entity types (role types) O1,0,,...,0, where O; is either an
entity type (O; = E}) or a role type (O; = RO;). Each temporal relationship instance
tr in TR is an n-tuple tr =< 01,02,...,0n, > where ¢; is either an entity (o; = e,
e; € E;) or an entity role (o; = roy, ro; € RO;).

Each temporal relationship instance tr in TR is associated with a temporal element
T'(¢r) which gives the lifespan of the temporal relationship instance. If all participating
objects are entity roles, then the lifespan of the temporal relationship instance must be
a subset of the intersection of the lifespans of the roles; and if all participating objects
are entities, then the start time of the lifespan of the temporal relationship instance
must be greater or equal to the start times of all existence times of the entities.

9.3.9 Temporal Constraints among Relationships
Our model enforces two constraints on temporal and conceptual relationships:

1. R-existence Constraint: A sup-R-existence/sub-R-existence constraint, denoted
by R/TR, holds between a conceptual relationship R and a temporal rela-
tionship TR where all participating object types are role types iff V tr; =
(roi,ro02,...,70n) € TR the following two conditions must be satisfied:

{a) 3 =(e1,€2,...,€n) € R, such that owner(ro;) =¢;, for j =1,2,...,n.

(b) The start time of the lifespan of the temporal relationship instance tr; must
be greater or equal to the start time of the existence time of the conceptual
relationship r;.

2. R-lifespan (time order) Constraint: A sup-R-lifespan/sub-R-lifespan constraint,
denoted by T'R/R holds between a temporal relationship TR and a conceptual
relationship R where all participating object types are role types iff V r; =
(e1,€2,...,en) € R the following two conditions must be satisfied:

(a) 3 tri = (ro1,702,...,70n) € TR, such that owner(ro;) = ¢; for all j =
1,2,...,n. ‘

(b) The start time of the existence time of the conceptual relationship instance
r; must be greater or equal to the start time of the lifespan of the temporal
relationship tr;.

The R-existence and R-lifespan constraints are denoted diagrammatically in a sim-
ilar way to existence and lifespan constraints for role types. Notice that the R-lifespan
constraint is, in some sense, the reverse constraint of the lifespan constraint on role
types. It is used to model the cases where a conceptual relationship cannot exist until
after a temporal relationship has started. For example, students cannot get transcript
entry for courses until after they have been enrolled.

9.3.10 An Example

Consider the example database schema in Figure 9.1, which describes a simplified orga-
nization for part of a UNIVERSITY database. The database includes the (conceptual)
entity types PERSON, STUDENT, FACULTY, COURSE, and SECTION. Any entity



9.4. TEMPORAL QUERY LANGUAGE CONSTRUCTS 181

instance that is a member of any of these entity types is associated with an existence
time. The entity types STUDENT and FACULTY are subtypes of the entity type PER-
SON. The role types are diagrammatically represented by a dotted rectangular box,
and connected to their owner entity types. The role types and their owner entities are:

owner(LIVING-PERSON) = PERSON
owner(ENROLLED-STUDENT) = STUDENT
owner(CURRENT-FACULTY) = FACULTY
ouner(VALID-COURSE) = COURSE
ouwner(ACTIVE-SECTION) = SECTION

The conceptual relationship types are:

CS between COURSE and SECTION
TAUGHT between FACULTY and SECTION
TRANSCRIPT between STUDENT and SECTION

The temporal relationship types are:

ACTIVE-CS between VALID-COURSE and ACTIVE-SECTION
IS-TEACHING between CURRENT-FACULTY and ACTIVE-SECTION
ENROLLED between ENROLLED-STUDENT and ACTIVE-SECTION

9.4 Temporal Query Language Constructs

In non-temporal databases, a typical query will select certain entities based on boolean
predicates that involve attribute values of an entity (and of related entities). Following
that, certain attributes or relationships of each of the selected entities are displayed.
Other queries involve aggregate functions on groups of entities or their attributes. In
a temporal database, selection criteria may be based not only on attribute values but
also on temporal conditions. In addition, once an entity is selected, the user may be
interested in displaying the complete history of some of its attributes or relationships, or
to limit the displayed values to a certain time interval. To allow for temporal constructs
in queries, we will use the concepts of temporal boolean expressions, temporal selection
conditions (or temporal predicates), and temporal projection [179].

A (temporal) boolean expression is a conditional expression on the attributes and
relationships of an entity (or an entity role). For example, a boolean expression can
be Classification = ’Senior’. The boolean condition when applied to one entity ¢ (or
one entity role ro), evaluates to a function from T'(e) (or T(ro)) to { TRUE, FALSE,
UNKNOWN }. We call this function a temporal assignment.

The true_time of a boolean expression, ¢, denoted by [c], evaluates to a temporal
element for each entity e (or each entity role ro). The temporal element is the time
for which the condition is TRUE for e (or ro). As an example, the boolean condition
Classification = ’Senior’, when applied to an ENROLLED-STUDENT ro (Figure 9.1),
returns a function from T'(ro) to { TRUE, FALSE, UNKNOWN }. If T(ro) is equal to
[9/1/83, 8/31/87], and the student classification was senior during [9/1/86, 8/31/87],
the temporal assignment result would be:

{[9/1/83, 8/31/86] — FALSE, [9/1/86, 8/31/87) — TRUE }.



182 CHAPTER 9. A TEMPORAL QUERY LANGUAGE

@ @ FACULTY

PERSON

sections

NI,
TRANSCRIPT

Address)  (PhoneNumber
. - a—sections¥
TextBook
e-students

course k students

aqt-faculties

f act-sections

active-sec

section

\

AT

sections %ﬁourse
COURSE——= SECTION
faculties
OF:)

() G Gomird) G) ()

Figure 9.1: A Temporal EER Schema for part of a University Database
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The value for the true_time [ Classification = ’Senior’] would be [9/1/86, 8/31/87].
Next we define a (temporal) selection condition, which compares two temporal

elements using the set comparison operators =, #, D, and C. When applied to an

entity type (or class), it evaluates to those entities that satisfy the temporal selection

condition. For example, consider the following temporal selection condition applied to
the ENROLLED-STUDENT entity role type of Figure 9.1:

[ Classification = ’Semior’ | D [9/1/86, 5/31/87]

This selects all ENROLLED-STUDENT entity roles whose classification was ’Se-
nior’ during the period [9/1/86, 5/31/87]. The condition is evaluated for each
ENROLLED-STUDENT entity role individually, and returns either a YES or NO
answer. All entity roles for which the answer is Y ES are selected.

We also define temporal projection. This is applied to a temporal entity and restricts
all temporal assignments (attributes and relationships) for that entity to a specific time
period specified by a temporal element 7.

Temporal selection conditions are used to select particular entities based on tem-
poral conditions, whereas temporal projections are used to limit the data displayed
for the selected entities to specific time periods. Temporal boolean conditions may
be used as components in the expressions for both temporal selections and temporal
projections.

9.5 The Temporal Query Language

Much of the flexibility and power provided by a query langunage is dependent on the
data model. Our temporal query language derives its simplicity and expressiveness
from the STEER data model; in particular from the distinction between temporal
and conceptual objects, and temporal and conceptual relationships. The query lan-
guage used is a temporal extension of GORDAS [177, 176, 179]. We briefly recall that
GORDAS is a functional query language with two clauses: GET and WHERE. The
WHERE-clause specifies conditions for the selection of entities from a root entity type,
while the GET—clause specifies the information to be retrieved for each selected entity.
For example, consider the following (non-temporal) GORDAS query specified on the
database of Figure 9.1:

Q1: GET < Name, SSN, < CName of sec-course, Semester, Year >
of sections > of STUDENT
WHERE Address of STUDENT = ’Arlington’

Here, the root entity type, specified at the end of the GET—clause, is STUDENT.
The WHERE-clause is evaluated individually for each entity in the root entity type,
and selects each entity that satisfies the WHERE-clause. In this query, each STU-
DENT entity who lives in ’Arlington’is selected. (Note that the Address attribute is
visible to STUDENT by being inherited from LIVING-PERSON via PERSON as we
will describe in section 9.5.1.) The of STUDENT in the WHERE—clause is optional,
and can be left out. For each selected entity, the GET—clause retrieves the student
Name, SSN (both inherited from PERSON) and sections, and for each of the student’s
sections the CName, Semester and Year are retrieved. The connection names such as
sec-course and sections are used to specify related entities of the root entity type in a
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functional way as though they were attributes of root entities. Hence, the path sec-
tions of STUDENT specifies the SECTION entities related to each STUDENT entity
via the TRANSCRIPT relationship. A full discussion of non-temporal GORDAS is
outside the scope of this work, and is given in [177, 176]. »

In temporal GORDAS, we will adopt the philosophy that a non-temporal GORDAS
query is also valid, and will default to the current database state. Hence, if a temporal
GORDAS query is specified with no temporal selections or projections, we will assume
that a snapshot of the database is taken at the time instant ¢,,, when the query is
evaluated, and the query is processed using this database state. This will make it
possible to specify both temporal and non-temporal queries on the database within
the same framework.

In section 9.5.1 we discuss temporal projection and introduce additional temporal
element constructor operators. Section 9.5.2 presents temporal selection. Section 9.5.3
describes temporal version restriction operators. Finally, section 9.5.4 introduces op-
erators that allow multiple temporal scopes in a temporal projection.

9.5.1 Temporal Projection

A temporal query may involve a temporal selection condition or a temporal projection
condition or both. The general philosophy of GORDAS is to maintain a clean separa-
tion between the specification of conditions for selection of entities (in the WHERE-
clause) and the specification of information to be displayed (in the GET-clause). To
maintain this philosophy, we will specify a temporal projection on the data to be dis-
played at the end of the GET—clause, as in [179]. For example, consider the query
to retrieve the history of the Address and PhoneNumber of 'John Smith’ during the
period 1985 to 1990:

Q2: GET < Address, PhoneNumber > of PERSON : [1/1/1985, 12/31/1990]
WHERE Name = 'John Smith’

The term PERSON : [1/1/1985, 12/31/1990] at the end of the GET—clause specifies
that the temporal assignment for ’John Smith’is to be retrieved during the period
[1/1/1985, 12/31/1990]. On the other hand, the next query is non-temporal, and
displays the current (a.t time instant tnow) Address and PhoneNumber of "John Smith”

Q3: GET < Address, PhoneNumber > of PERSON
WHERE Name = "John Smith’

As seen from query @2, the temporal projection of selected entities is specified by
a temporal element at the end of the GET-clause. The temporal element may be
a time period (as in (2) or may itself be derived from the database for each entity
{as in Q4 below). For example, suppose we want the full history of the Address and
PhoneNumber of 'John Smith”

Q4: GET < Address, PhoneNumber > of PERSON : ET
WHERE Name = ’John Smith’

This retrieves the values of address and phone number over the whole existence
time (ET) of the entity. If :ET is left out, only the current Address and PhoneNumber
(at time instant tnow) are retrieved.
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Temporal attributes of a role type are public to the owner entity type; that is,
an owner entity can refer to these attributes (through inheritance) as though they
are attributes of the owner entity. Similarly, (temporal and non-temporal) attributes
of an entity type are public to all associated role types. The definition of attributes
and relationships of a role type and its owner entity type as public to each other
gives queries the flexibility to specify selection conditions and to retrieve information
involving attributes of a role or an entity type by referring to each other’s attributes.
For example, in queries 2, @3 and @4, the entity PERSON is able to refer to the
attributes Address and PhoneNumber of the entity role LIVING-PERSON since the
owner of LIVING-PERSON is the entity PERSON. Notice that we can specify similar
queries to the queries @2, @3 and @4 by referring to LIVING-PERSON explicitly, as
in @5, @6 and Q7, since they only display temporal attributes:

Q5: GET < Address, PhoneNumber > of LIVING-PERSON
: [1/1/1985, 12/31/1990]
WHERE Name = ’John Smith’

Q6: GET < Address, PhoneNumber > of LIVING-PERSON
WHERE Name = 'John Smith’

Q7: GET < Address, PhoneNumber > of LIVING-PERSON : LS
WHERE Name = ’John Smith’

However, @6 and Q7 will only retrieve entities that are LIVING-PERSONs at time
tnow, Whereas @3 and Q4 may retrieve deceased persons (since conceptual entities have
no end time) but then find that their attributes may be NULL at time tpou.

The projection of (temporal) attributes over a lifespan displays information about
a conceptual entity during the fime period it participates as a particular entity role.
For example, in the next query, the history of the Address and PhoneNumber of *John
Smith’ is retrieved, during the time he was an enrolled student:

Q8: GET < Address, PhoneNumber > of ENROLLED-STUDENT : LS
WHERE Name = ’John Smith’

Here, the Address and PhoneNumber history are retrieved only during the lifespan
(LS) that *John Smith’exists in the ENROLLED-STUDENT entity role. If :LSis left
out, the current Address and PhoneNumber are retrieved if end time ET(LS) > tnow; if
ET(LS) < tnow, the entity will not be selected since it is not valid as an ENROLLED-
STUDENT any more.

The next query retrieves all sections that *John Smith’ has completed:

Q9: GET < CName of sec-course, Semester, Year > of SECTION
WHERE Name of students of SECTION 2 {’John Smith’}

In this query, there is no need to project the query result over a time period since
the attributes Semester and Year, and the relationship CS (specified by sec—course)
are non-temporal attributes and relationship of SECTION, and hence always exist. It
is this type of query that becomes cumbersome to specify when no distinction is made
between temporal and conceptual objects, as in [179]. For instance, if the root entity
SECTION of query Q9 is replaced by ACTIVE-SECTION, we get all sections that
’John Smith’is currently enrolled in:
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Q10: GET < CName of sec-course, Semester, Year > of ACTIVE-SECTION
WHERE Name of e-students of ACTIVE-SECTION 2 {°John Smith’}

This query is implicitly temporal since it refers to the temporal entity role
ACTIVE-SECTION. The query displays the current (at time instant tnow) sections
that ’John Smith’is enrolled in. The capability to express such temporal queries by
referring to an entity role without explicit reference to time is one of the advantages
of this model. :

A temporal query may explicitly specify a temporal projection that is derived from
a temporal boolean expression. For example, suppose we want the history of Name,
Office and Salaryof each CURRENT-FACULTY entity role only when the value of its
attribute Rank was either ’Assistant Prof’ or ’Associate Prof*

Q11: GET < Name, Office, Salary > of CURRENT-FACULTY
: [ ( Rank = ‘Assistant Prof’ ) OR ( Rank = ‘Associate Prof’) ]

In this case, a different time projection is applied to each selected entity role based
upon the time that entity was an assistant or associate professor; that is, the time
restriction is correlated to each individual entity role.

When we deal with temporal intervals and elements in STEFR, we need additional
functionalities that are not needed in other temporal query langunages [178]. For in-
stance, [entity : ET] — [role : LS] returns the time period (temporal element) when
an entity does not participate in a specific role. Hence, to retrieve the Name, SSN,
and Salaryof each faculty during the time period she/he is not CURRENT-FACULTY
(e.g. on sabbatical or working for industry), we write:

Q12: GET < Name, SSN, Salary > of FACULTY
: [FACULTY : ET ] — [ CURRENT-FACULTY : LS ]

Here, the Name, SSN, and Salary of a faculty are retrieved only during the period
[ FACULTY : ET] — [ CURRENT-FACULTY : LS ], which is different for each
selected entity. Note the difference between the temporal expression in queries Q11
and Q12. In both queries @11 and @12, temporal element constructor operators are
used to define temporal elements at the end of the GET—clause. However, in -query
@11, the boolean condition ¢ = { ( Rank = ’Assistant Prof’ ) OR { Rank = ’Associate
Prof’ ) ) is based on a boolean predicate that involves attribute values of an entity
role, whereas in query @12, the boolean condition refers only to the existence time
of FACULTY and the lifespan of CURRENT-FACULTY. In query @11, the temporal
element at the end of the GET-clause is the true.time of a boolean condition, whereas
in query @12, the temporal element is the difference between two true_times, namely
the existence time of a FACULTY entity and its lifespan as a CURRENT-FACULTY
entity role. .

The next query retrieves the history of the Name, Address and PhoneNumber of
living persons during the period they were not enrolled students:

Q13: GET < Name, Address, PhoneNumber > of PERSON
: [ LIVING-PERSON : LS ] — [ ENROLLED-STUDENT : LS ]

The usual set theoretic operations of UNION, INTERSECTION, DIFFERENCE
and COMPLEMENT can be combined with temporal element constructor operators.
Both previous queries @12 and @18 use the DIFFERENCE operator. The next query
uses the COMPLEMENT operator to retrieve the history of the Name, Address and
PhoneNumber of persons before they become faculty members:
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Q14: GET < Name, Address, PhoneNumber > of PERSON
: COMPLEMENT [ FACULTY : ET ]

The idea of applying a temporal boolean condition to entity roles and entities can
be extended to temporal attributes. The true_time of a boolean condition reduced to
a temporal attribute name is represented as [ temporal_atiribute : time_period ]. This
corresponds to the true_time of the temporal_attribute during time_period. For example,
the next query retrieves the history of the Name, StudentNo, CName, Semester and
Year of enrolled students during the period they had a valid Classification (that is, a
Classification value that is not NULL):

Q15: GET < Name, StudentNo, < CName of sec-course, Semester, Year >
of sections > of ENROLLED-STUDENT : [ Classification : LS ]

9.5.2 Temporal Selection

Next, consider the specification of temporal conditions to select entities. These will
usually involve the specification of temporal selection predicates in the WHERE—clause.
For example, consider the query to retrieve the Name and PhoneNumberof all persons
who lived in ’Arlington’on 3/30/1992:

Q16: GET < Name, PhoneNumber > of LIVING-PERSON : [3/30/1992]
WHERE [ Address = ’Arlington’ ]| D [3/30/1992]

In query Q16, the WHERE-clause is a temporal selection condition. For each
LIVING-PERSON entity role, it first calculates the temporal boolean expression ¢ =
( Address = ’Arlington’ }; if the true_time [c] D [3/30/1992], the temporal selection
condition evaluates to YES and the LIVING-PERSON entity role is selected by the
WHERE-clause. Note that it is still necessary to specify the temporal projection
[3/30/1992] again in the GET-clause since leaving it out would retrieve the current
Name and PhoneNumber of each selected entity rather than those on 3/30/1992.

The next query retrieves the SectionNumber and ClassRoom of all active sections
that were held in room ’EB119’ during the period 1990-1991:

Q17: GET < SectionNumber, ClassRoom > of ACTIVE-SECTION
WHERE ([ ClassRoom =’EB119’ ] N [1/1/1990, 1/12/1991]) # @

When we deal with time periods, we sometimes need to access the first and last
time points of temporal elements. For example, to retrieve the Name, SSN and Address
of all current students who lived in ’Arlington’ when they first enrolled as a student,
we write:

Q18: GET < Name, SSN, Address > of ENROLLED-STUDENT
WHERE [ Address = ’Arlington’ ] D ST(LS)

Here, the temporal selection condition evaluates to TRUE if [c] D ST(LS), where
¢ = ( Address = ’Arlington’ ). The term ST(LS) means the start time point of a
lifespan. Note that ST(LS) is implicitly applied to ENROLLED-STUDENT since it
is the root entity role. This can also be written as ST([ ENROLLED-STUDENT : LS
D.
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The lifespan of an entity role can be a continuous time period. This may happen
if either an entity role has come into existence in the mini-world and never ceased
to exist, or an entity role has come into existence for a while then has ceased to
exist and has never reexisted in the mini-world. In order to support the concept of
continuous and discontinued lifespans in our query language, we introduce the keywords
CONTINUOUS and DISCONTINUED. For example, suppose we want to display the

courses that have been continuously taught every semester:

Q19: GET < Cname, CNumber, Dept > of VALID-COURSE
WHERE CONTINUOUS LS

This is similar to the temporal ALWAYS SINCE operator in temporal logic [542].

As a final example, note that a name related with any lifespan besides the root
entity must be explicitly specified in a temporal query. For instance, the next query
explicitly specifies the lifespan of attribute Address in the WHERE-clause , and re-
trieves the Name, SSN and Address of all current students whose initial Address value
was ‘Arlington’.

Q20: GET < Name, SSN, Address > of ENROLLED-STUDENT
WHERE [ Address = ’Arlington’ ] 2 ST(] Address : LS ])

9.5.3 Temporal Version Restriction Operators

In the STEER data model, the complete history of an entity (or an entity role) is
kept. The temporal versions of an entity (or an entity role) are ordered and queries
may be restricted to specific versions of an entity (or an entity role). A temporal
version restriction operator may be specified in the GET or WHERE clause of temporal
GORDAS queries. The syntax of our version restriction operator is:

:([NAME] : INTERVAL < INDEX >)

where the term [ NAME ]: is optional and the term INTERV AL < INDEX >
is required. The term | NAME ] is a true.time, where NAME may be either a
boolean condition, or may be reduced to an entity name, an entity role name, or a
temporal attribute. The term INTERVAL < INDEX > indicates a projection
either over a single interval if < INDEX > is an integer or over a range of intervals
if < INDEX > is an integer range. (Note that we assume that the intervals of a
temporal element are disjoint and in the canonical temporal element representation.)
As an example, the version restriction operator :( INTERVAL 1 ), when applied to
a CURRENT-FACULTY entity role ro (Figure 9.1) restricts the temporal element to
the first interval of its lifespan. In this case, the term [ NAME ]: is not used in the
version restriction operator :( INTERVAL 1 ). However, if the term | NAME ]: is
used in the version restriction operator such as :( [ Address] : INTERVAL 1 ), then
when it is applied to a CURRENT-FACULTY entity role ro (Figure 9.1) it restricts
the temporal element to the first interval of the lifespan of attribute Address.

The next query retrieves the Name and the first three Salary values for each faculty:

Q21: GET < Name, Salary : ( INTERVAL 1 to 3 ) > of FACULTY
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The term :( INTERVAL 1 to 8 ) in the GET-clause specifies that the projection
displays the first three Salary values for each FACULTY. Notice that once a temporal
version restriction operator appears in either the GET or WHERE clause of a query, we
immediately deal with the full temporal entity in that clause, rather than the current
entity version only.

Temporal operators may be nested and are evaluated from left to right. For ex-
ample, suppose we want to display the Name, SSN and the current Address for each
person whose first Address was "Houston’ and third Address was ’Arlington”

Q22: GET < Name, SSN, Address > of PERSON
WHERE ( Address : ( INTERVAL 1 ) = *Houston’ ) AND
( Address : ( INTERVAL 3 ) = ’Axlington’ )

The term Address : { INTERVAL 1 ) = ’Houston’in the WHERE~clause means
that we first apply the temporal ordering restriction operator :( INTERVAL 1 ) and
then compare it with = "Houston’. Similarly, the term Address : ( INTERVAL 8 )
= ’Arlington’in the WHERFE—clause means that we first apply the temporal ordering
restriction operator :( INTERVAL 3 ) and then compare it with = ’Arlington’.

As seen from queries Q21 and @22, if the term | NAME ]: is omitted from the
version restriction operators, then the term INTERV AL < INDEX > is applied to
the specific attribute. However, if we would like to display the Name and Phone Number
of a person during the time period she/he first lived in Arlington’, we could write:

Q23: GET < Name, PhoneNumber : ( [ Address = ’Arlington’ ]
: INTERVAL 1) > of PERSON

In this case, the true_time of the boolean expression ¢ = ( Address = ’Arlington’
) is evaluated for each entity and then the temporal element is assigned to the first
interval of each true_time. Note that the projection over Phone Number may result with
multiple values. However, we could even further restrict the previous query, 923, by
displaying only the first value of the PhoneNumber:

Q24: GET < Name, PhoneNumber : ( [ Address = >Arlington’ ]
: INTERVAL 1) : (INTERVAL 1 ) > of PERSON

Temporal version restriction operators are not limited to attributes; they may be
applied to entities and therefore restrict queries to a specific range of lifespans. For
example, the next query displays the Name, SSN, Address, PhoneNumber, CName,
Semester, Year during the second interval of the lifespan of each ENROLLED-
STUDENT who currently lives in ’Arlington”

Q25: GET < Name, SSN, Address, PhoneNumber, < CName of course,
Semester, Year > of a—sections > of ENROLLED-STUDENT
: (INTERVAL 2)
WHERE Address = ’Arlington’

As a final example, note that any restriction condition specified on an entity is
applied before any other restriction operator is applied to its attributes. Hence, if we
would like to display for current full professors, their Name, and the initial Salary as
associate professors, we could write:

Q26: GET < Name, Salary : ( INTERVAL 1) > of CURRENT-FACULTY
: [ Rank = ’Associate Prof’ |
p WHERE Rank = ’Full Prof’
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9.5.4 Temporal Scope Operators

In the GORDAS language, one can reference the attributes of an entity related to the
root entity by using a connection name. In the temporal GORDAS, related entities
must be projected over the temporal elements of connection names. To generalize our
temporal projection capabilities, we introduce the scope operator, denoted by SCOPE,
which overwrites the temporal projection of a root entity (or related entities). For
example, if we would like to retrieve the Name and Rank attribute values of each
current faculty during their LAST — 1 interval but we would like to retrieve their
initial Salary, we could write:

Q27: GET < Name, Rank, Salary : SCOPE( INTERVAL 1) >
of CURRENT-FACULTY : ( INTERVAL LAST - 1)

In this case, the SCOPF operator at the end of Salary attribute overwrites the
temporal projection at the end of the GET—clause.

9.6 Conclusions

This chapter was a summary of our work in temporal conceptual models and query lan-
guages [173, 178, 174, 179]. Our model distinguishes between conceptual and temporal
objects, and characterizes the properties of entities (conceptual objects), entity roles
{temporal objects), and (temporal and non-temporal) attributes. It also defines tem-
poral constraints among entity roles, differentiates between temporal and conceptual
relationships, and provides rules for preserving temporal integrity constraints.

The query language is a temporal extension of GORDAS [177, 176, 178]. The
temporal query language derives its power from the distinction between temporal and
conceptual objects/relationships. It provides natural and high level temporal element
constructor operators that simplify temporal query expressions. These operators utilize
the entity existence times and the role lifespans in query formulations, without having
to refer explicitly to time values. They also use the concepts of boolean conditions,
true_times, and temporal projections [178].

Our query langnage allows temporal element constructor operators to be defined
over entities, entity roles and temporal attributes. It supports temporal version re-
striction operators and allows multiple temporal scopes in a temporal projection. In
addition, the concept of CONTINUQOUS and DISCONTINUED temporal elements can
be used to specify conditions such as ALWAYS and SOMETIME from temporal logic.



Chapter 10

A Data Model for Time-Series Analysis

Arie Segev *, Rakesh Chandral
10.1 Introduction

Researchers in the field of survey statistics often deal with observations of individual
units at a single point in time. This type of data is called cross-sectional data. On the
other hand, in the field of econometrics, researchers use time series data. Time series
data are series of observations of a single unit over several points in time. Often data
analysts come across data that is a combination of cross-sectional and time-series data.
This type of data is known as pooled data [159].

For example, pooled data would refer to any database describing every individual
of a group across a sequence of time periods. In the domain of finance, the description
of a market database is an example of pooled data. This database may contain the
end-of-day closing prices of all securities traded on the stock exchange. Like cross-
sectional data, this database contains observations on several securities and like time
series data, it contains observations over different periods of time. Thus, pooled data
is important to a data analyst because it contains both intertemporal dynamics as well
as individual information.

The broad goals of a data analyst studying pooled data are:

1. Study of an individual data unit over time

2. Study of samples of data units by summarizing data and drawing inferences from
these summary statistics.

Analysis of pooled data presents unique problems. The main problem encountered
when analyzing time series data is the autocorrelation of error terms, while non-
constant variance is a problem when analyzing cross-sectional data. In pooled data
the analyst faces these problems simultaneously. In addition, there is the problem of
finding correlations between cross-sectional disturbances of different individual units.
{328] has also pointed out the following difficulty. The relationship between dependent
and independent variables may be different for different individuals. It has also been
observed that the regression coefficients in time series equations change over time (ei-
ther systematically or randomly). A proposed data model for pooled data must give
analysts the capability of handling these errors.

*Walter A. Haas School of Business, University of California at Berkeley, and Information
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In this chapter, we propose a data model for time-series and pooled data analysis.
This model incorporates features for temporal and statistical data management. In
addition, the model provides an interactive environment for data analysis and a query
language that incorporates frequently used statistical operators. We also discuss data
models for temporal and statistical databases proposed in the literature and explain
why no existing data model completely captures the complexity of time series and
pooled data.

10.2 Main Features of The Data Model

The main features of the data model, developed for the analysis of pooled and time-
series data, are briefly discussed below. Each point is discussed in detail later with
relevant examples. The data model for pooled data feature