
Nabil R. Adam Bharat K. Bhargava (Eds.)

Advanced
Database Systems

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-Stral3e 1
D-76131 Karlsruhe, Germany

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Volume Editors

Nabil R. Adam
Department of MS/CIS, Rutgers University
Newark, NJ 07102, USA

Bharat K. Bhargava
Department of Computer Science, Purdue University
West Lafayette, IN 47906, USA

CR Subject Classification (1991): H.2, H.3, H.5.1

ISBN 3-540-57507-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57507-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

�9 Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

P r e f a c e

Currently, database management is receiving wide interest in both academic and
industrial worlds. New application areas such as CAD/CAM, Geographic Infor-
mation Systems, and Multimedia are emerging. The needs of these application
areas are far more complex than those of conventional business applications.

The purpose of this book is to bring together a set of current research is-
sues that addresses a broad spectrum of topics related to database systems and
applications.

The book is divided into four parts. Part I includes seven chapters that focus
on object-oriented databases, Chapters included in Part II address issues related
to temporal/historical database systems. Part III addresses query processing in
database and is made up of four chapters. The last part of the book includes five
chapters that discuss heterogeneity/interoperability/open system architectures
and multimedia.

We would like to express our gratitude to the reviewers for their valuable
comments.

C o n t e n t s

I O b j e c t - O r i e n t e d D a t a b a s e s 1

1 COMPOSE: A Sys tem for Composite Specification and 3
Detection

by N. Gehani, H.V. Jagadish, O. Shmt~eli
1.1 In t roduc t ion . 3

1.2 Event Expressions . 4

1.2.1 Basic Operators . 5

1.2.2 Addi t iona l Operators . 5
1.2.3 Regular Expressions . 6

1.3 Examples . 7
1.3.1 Simple Examples . 7

1.3.2 Discount Rate Cut . 7
1.3.3 At t r ibu tes and Masks . 8

1.3.4 Paramete rs . 9
1.3.5 Corre la t ion Variables . 10

1.4 Composi te Event Detect ion . 10

1.4.1 Design Decisions . 11
1.4.2 Masks . 11
1.4.3 Generic A u t o m a t o n For Imp lemen t ing Events W i t h Pa-

rameters . 12
1.5 Compose System . 12

1.6 Examples of A u t o m a t a Genera ted by Compose 13

1.7 Conclusion . 14

2 Access Controls in OO Database Systems - Some 17
A p p r o a c h e s and I s s u e s

b y E . Ber t ino , S. Ja jodia , P. Samarati
2.1 In t roduc t ion . 17
2.2 Objec t -or iented Da ta Model . 19
2.3 M a n d a t o r y Access Control . 21
2.4 Discret ionary Access Control . 25

2.4.1 The ORION Author iza t ion Model 25
2.4.2 Con ten t -dependen t Author iza t ions 34
2.4.3 Accessing Objects Through Methods 35

2.5 Research Issues in Manda to ry Access Control 38
2.5.1 Model ing Multi level Ent i t ies as Single-level Objects . . . 38

viii CONTENTS

2.6

2.7

2.5.2 Ob jec t Upda t e s and Secure Ga r ba ge Collect ion Mechanisms 40

2.5.3 P o l y i n s t a n t i a t i o n . 41

2.5.4 C o m p a r i s o n W i t h Relevant Work 42

Research Issues in Disc re t ionary Access Cont ro l 43

Conclus ion . 44

3 The Decomposition Property of Non-Deterministic Databases :
by K. Vadaparty, S. Naqvi

3.1

45

I n t r o d u c t i o n . 45

3.2 Basic Not ions . 49

3.2.1 En ta i lmen t , and D a t a Complex i t y 49

3.2.2 Choices and D a t a Complex i t y 50

3.3 Size and Dens i ty of a Wi tnes s . 52

3.3.1 Size of a Wi tne s s . 53

3.3.2 Dens i ty of Wi tnesses . 56

3.4 Modulewise Eva lua t ion . 56

3.5 Fu tu re Extens ions . 63

4 The A r c h i t e c t u r e s o f an Object Base Environment fo r 65
Simulation

by P .C . -Y . Sheu , L . J . Peterson
4.1 I n t r o d u c t i o n . 65

4.2 Re la t ed Work . 66

4.3 Ob jec t Rep re sen t a t i on i 67

4.3.1 C o m p l e x Objec t s . 67

4.3.2 Act ive Objec t s and Models 68

4.4 M a n a g e m e n t of Ac t ive Objec t s 71

4.4.1 S t a t e Space and Cr i t e r i a 71

4.4.2 A d d i n g and Remov ing A S ta t e 71

4.4.3 A d d i n g and Removing A Rule 72

4.4.4 A d d i n g and Remov ing An A t t r i b u t e 73

4.4.5 A d d i n g and Removing A Method or A Class 73

4.5 S i m u l a t i o n . 73

4.5.1 Rule Process ing . 73

4.5.2 Logic of The S imula to r 78

4.5.3 Para l l e l Process ing . 79

4.5.4 E x a m p l e . 80

4.6 O b j e c t - O r i e n t e d Eva lua t ion of Rule Networks 81

4.6.1 S t ruc tu res of Ex tens iona l Da tabases and Query Networks 81

4.6.2 Ob jec t -Or i en t ed Rule Eva lua t ion 83

4.7 Conclus ion . 85

CONTENTS ix

5 T r a n s i t i o n f r o m a Relation to Object Model Implementation

by B. Bhargava, Y. Jiang, J. Srinivasan, P. Dewan
5.1

5.2

5.3

5.4

5.5

87

Mode l ing C o m p l e x D a t a . 87

Survey of E x t e n d e d Re la t iona l Sys tems 88

O - R a i d Sys t em Design and I m p l e m e n t a t i o n 90

5.3.1 E x p a n d Query Language 90

5.3.2 E x t e n d D a t a Defini t ion Faci l i ty 91

5.3.3 D a t a M a n i p u l a t i o n Language (DML) 97
Pe r fo rmance Studies . 99
Research Issues . 102

6 An Object-Oriented Knowledge Model for KBMS-Supported
Evolutionary Prototyping of Software Systems

by S.Y.W. Su, Y. Shyy

105

6.1 I n t r o d u c t i o n . 105

6.1.1 Mot iva t i on . 105

6.1.2 Re la t ed Works . 106

6.2 Knowledge Model Overview : . 107

6.2.1 Classes . 107

6.2.2 Objec t s and Ins tances . 108

6.3 S t r u c t u r a l A b s t r a c t i o n . 108

6:3.1 S t ruc tu r a l Assoc ia t ion Defini t ions 108
6.3.2 Encapsu l a t i on and Inher i t ance 109

6.3.3 Extens ib le Kernel Model 109

6.3.4 S t r u c t u r a l Assoc ia t ion P a t t e r n s 1 1 0
6.4 Behav io ra l A b s t r a c t i o n . 111

6.4.1 M e t h o d Model and Cont ro l Associa t ions 112

6.4.2 Method_mode l Ob jec t and Evo lu t iona ry P r o t o t y p i n g . . . 115
6.4.3 Rule Defini t ion . 116

6.5 Conclus ions . 117

7 Applying OOAD in the Design and Implementation of an 127
Intelligent GeograPhic Information System

by R. Subramanian, N.R. Adam
7.1 I n t r o d u c t i o n . 127

7.2 Model ing ~c Query Processing . 128
7.3 Spg t i a l D a t a Model ing . 130

7.3.1 T h e Design Me thodo logy 130
7.4 T h e Respons ib i l i t y -Dr iven A p p r o a c h 131

7.5 Developing the D a t a Model . 132

7.5.1 The E x p l o r a t o r y Phase 132
7.5.2 The Ana lys i s Phase . 139

7.6 I m p l e m e n t a t i o n . 144
7.7 Conclus ion . 145

x C O N T E N T S

II Temporal/Historical Database Systems

8 I n d e x i c a l D a t a b a s e s

by J. C l i f fo rd

151

153

8:1 Motivat ion . 153

8.2 The Indexical Database Model 155
8.2.1 The Structures . 155
8.2.2 Discussion of the Structures 156
8.2.3 An Indexical Example: The Watergate Database 158
8.2.4 The Operations . 159
8.2.5 Par t ia l Functions . 168

8.3 Instances of the Indexical Database Model 172
8.3.1 HRDM . 172
8.3.2 Bi temporal Database Models 173

8.4 Summary and Conclusions . 173

9 A Tempora l Query Language for a Conceptual Model 175

by R. Elmasri-, V. Kouramaj ian
9.1 Introduct ion . 175
9.2 Representing Time . 176
9.3 The Temporal Da ta Model . 176

9.3.1 Conceptual Objects: Entities 176
9.3.2 Temporal Objects: Roles 177
9.3.3 Temporal Constraints among Roles 178

9.3.4 Non-Temporal At t r ibutes 178
9.3.5 Temporal At t r ibutes . 178

9.3.6 Classes and Superclass/Subclass Relationships 179

9.3.7 Conceptual Relationships 179
9.3.8 Temporal Relationships 180
9.3.9 Temporal Constraints among Relationships 180
9.3.10 An Example . 180

9.4 Temporal Query Language Constructs 181
9.5 The Temporal Query Language 183

9.5.1 Temporal Projection . 184
9.5.2 Temporal Selection . 187
9.5.3 Temporal Version Restriction Operators 188

9.5.4 Temporal Scope Operators 190
9.6 Conclusions . 190

10 A Data Model for T ime-Se r i e s Ana lys i s 191

by A. Segev, R. Chandra
10.1 In~:roduction . 191
10.2 Main Features of The Data Model 192

10.2.1 Relevant Research . 193
10.3 Vector Based Data Model . 194

CONTENTS xi

10.4 Concepts . 198
10.5 Rules . 203
10.6 Ca lendar . 204
10.7 Tempora l Query Language . 205
10.8 Special Operators for Time-Series Database 206
10.9 Hand l ing of Missing Values . 208
10.10User E n v i r o n m e n t . 208
10.11Conclusion . 209

11 A Relational Model and SQL-like Query Language for 213
Spatial Databases

by S.K. Gadia, V. Chopra
11.1 In t roduc t ion . 213

11.1.1 Related Works . 213
11.1.2 Our Concept of A Spatial Region 214
11.1.3 Weak Da ta Typ ing . 215
11.1.4 Uni formi ty of At t r ibu te Values 215
11.1.5 Experience From Tempora l Databases 215

11.2 Our Model . 216
11.2.1 Spat ia l Regions . 216
11.2.2 A t t r i bu t e Values . 216

11.2.3 Value Naviga t ion . 217
11.2.4 Spat ia l Tuples . 217
11.2.5 Spat ia l Rela t ions . 218
11.2.6 Weak Equal i ty and Res t ruc tur ing 219

11.3 Query ing in The Model . 219
11.3.1 Spat ia l Expressions . 219
11.3.2 Boolean Expressions . 220
11.3.3 Rela t ional Expressions . 220

11.3.4 Examples . 221

11.4 Seamlessness of SpaSQI . 222

11.5 Algebraic Nature of SpaSQL . 224

11.6 Conclus ion . 224

I I I Q u e r y P r o c e s s i n g i n D a t a b a s e S y s t e m s 227

12 Parallel Query Processing
by P.S. YU, M.-S. c h e n , J.L. Wolf, J . T u r e k

12.1
12.2
12.3

12.4

229

In t roduc t ion . 229
Pre l iminar ies . 230
Issues . 231
12.3.1 ln t ra -opera to r Paral le l ism 232
12.3.2 In ter -opera tor Paral le l ism 232
12.3.3 In ter -query Paral le l ism . 233
12.3.4 Remarks . 234
Sys tem Architectures . 234

xii CONTENTS

12.5 D a t a Skew and In t ra -opera to r Paral le l ism 235
12.5.1 Convent iona l A lgor i thm 238

12.5.2 Dynamic Algor i thms . 239

12.5.3 Sophis t ica ted Algor i thms 240

12.6 C o m p l e x Mul t i - jo in Query . 242

12.6.1 Jo in Methods wi thou t Pipel in ing 243

12.6.2 Join Methods with Pipel in ing 248

12.7 Schedul ing Mul t ip le Complex Queries 252

12.7.1 A Hierarchical Approach to In te r -Query Para l le l i sm . . . 253

12.7.2 Scheduling Independent Tasks 255

12.8 S u m m a r y . 258

13 Towards Flexible Distributed Information Retrieval 259

by D.W. Flater, Y. Yesha
13.1 In t roduc t ion . 259

13.2 In fo rma t ion Ret r ieva l Techniques 260

13.2.1 Tag-Based Retr ieval 260

13.2.2 Par t i a l Conten t -Based Retr ieval 261

13.2.3 Full Con ten t -Based Retr ievM 261

13.3 Thesaur i and Dict ionar ies . 261

13.3.1 Thesaur i . 262

13.3.2 Dic t ionar ies . 263

13.4 Fuzzy Ret r ieva l . 263

13.4.1 Pa r t i a l Conten t -Based Methods 264

13.5 Dis t r ibu ted Approaches to In fo rmat ion Retr ieval 265

13.5.1 Curren t Research Issues 266

13.6 Arch i tec tu re . 267

13.6.1 Pre l iminar ies . 267

13.6.2 Query Rou t ing . 268

13.6.3 Coopera t ive Caching . 268

13.6.4 S imula t ion Resul ts . 269

13.6.5 I m p l e m e n t a t i o n . 272

13.7 Conc lud ing Remarks " 276

14 Efficient Parallel Recovery in Replicated Databases 277

by R. Tewari
14.1 In t roduc t ion . 277

14.2 Consis tency Cont ro l A l g o r i t h m 278

14.3 Para l le l Merge Pro toco l " 279

14.4 Extens ion of the Paral le l Merge Pro tocol 285

14.5 Inco rpora t ing Para l le l i sm in the Merge Protocol 285

14.6 Per fo rmance Analysis of the Paral le l Merge A lgo r i t hm '286

14.7 Conclus ion . 287

CONTENTS xiii

15 Document Allocation in Multiprocessor Information
Retrieval Systems

by H.T. Siegelmann, O. Frieder
15.1

15.2

15.3

15.4

15.5

15.6

15.7

289

Introduct ion ' 289

MDAP is NP-Complete . 290

Related Efforts . 292

15.3.1 Previous Approximat ions of the Mapping Problem 293

15.3.2 Related Information Retrieval Systems 293

A Genetic Algor i thm for MDAP 294

Theoret ical Foundations . 298

Exper imental Evaluat ion . 301

Conclusions and Future Directions 309

IV
teetures/Multimedia Database Systems

Heterogeneity/Interoperability/Open System Archi-
311

16 A m a l g a m e : A Tool for Creating Interoperating,
Persistent, Heterogeneous Components

by J . -C. Franch i t t i , R. King

16.1

313

Introduct ion . 313

16.1.1 The Persistent and Heterogeneous Applications 313

16.1.2 Goals and Novelty of the Amalgame System 316

16.2 Related Work . 316

16.2.1 Interoperabi l i ty Support 316

16.2.2 Architectural Representation Languages and Megaprogram-
ming . 317

16.2.3 Extensible Reusable Heterogeneous Frameworks 318

16.3 An Overview of Amalgame . 318

16.3.1 A Motivat ing Example . 318

16.3.2 The Designer's View of the AmMgame Toolkit 319

16.3.3 Pract ical Use of the Amalgame Toolkit 320

16.3.4 The Internal Architecture of the Amalgame Toolkit . . . 325

16.4 An Arcadia Demonstrat ion Scenario 330

16.4.1 High-level Description of the Arcadia Experiment 330

16.4.2 Implementa t ion . 331

16.4.3 Benefits of The Amalgame Approach 332

16.5 Future Directions . 333

16.5.1 A Joint Arcadia and Prototech Demonstrat ion Scenario 333

16.5.2 An Interoperabi l i ty Experiment with Chiton 333

16.5.3 An Internat ional "Library" of Deployed "Wrapped" Per-
sistent Applicat ions . 334

16.6 Conclusion . 334

16.7 Acknowledgments : . 334

x iv CONTENTS

17 Correctness and Enforcement of Multidatabase
Interdependencies

by G. Karabatis, M. Rusinkiewicz, A. Sheth
17.1

17.2

337

I n t r o d u c t i o n . 337

Background . 338

17.2.1 Speci f ica t ion of In t e rdependen t D a t a 338

17.2.2 Concep tua l Sys tem Arch i tec tu re 340

17.3 Correc tness of Dependency Specif icat ions 341

17.3.1 Dependency G r a p h . 341

17.3.2 Correc tness Requ i rements Involving Consis tency Pred ica tes343

17.3.3 Correc tness Requ i remen t s Involving Dependency Predica tes344

17.4 P o l y t r a n s a c t i o n s . 345

17.5 Cons i s tency of In t e rdependen t D a t a 348

17.5.1 S ta tes of In t e rdependen t D a t a Objec t s 348

17.5.2 Measures of Consis tency 349

17.5.3 U p d a t a b i l i t y of Objec t s 351

17.6 Concur ren t Execu t ion of Po ly t r ansac t i ons 353

17.6.1 Correc tness of the Execut ion of a Single Po ly t r ansac t i on . 353

17.6.2 Confl icts in Po ly t r ansac t i ons 354

17.6.3 P o l y t r a n s a c t i o n s wi th T e m p o r a l Cons t ra in t s 356

17.7 Conclus ion . 357

18 FEMUS: A Federated Mu!tilingual Database System 359

by M. Andersson, Y. Dupont, S. Spaccapietra, K. Y6tongnon,
M. Tresch, H. Ye
18.1 I n t r o d u c t i o n . 359

18.2 F E M U S . 360

18.2.1 The E R C + A p p r o a c h . 361

18.2.2 T h e C O C O O N Approach 362

18.3 The M a p p i n g Process . 365

18.3.1 M a p p i n g an E R C + Schema to C O C O O N 366

18.3.2 M a p p i n g a C O C O O N Schema to E R C + 368

18.3.3 O p e r a t o r s M a p p i n g . 369

18.4 The In t eg ra t i on Process . 371

18.4.1 Asse r t ion-dr iven In t eg ra t ion 374

18.4.2 In t eg ra t i on T h r o u g h A u g m e n t a t i o n 375

18.5 Nego t i a t ion . 376

18.5.1 Exchang ing M e t a d a t a . 376

18.5.2 Exchang ing D a t a . 377

18.6 I m p l e m e n t a t i o n Issues . 377

18.7 Cons i s tency Requ i remen t . 378

18.7.1 Detec t ion of Relevant Upda te s 378

18.7.2 Differential Refresh . 379

18.8 Conclus ion and ~ t u r e Research 380

CONTENTS xv

19 Communication and Synchronization Issues in 381

Distributed Multimedia Database Systems
by S. B rowne

19.1 I n t r o d u c t i o n . 381
19.2 Charac te r i s t i c s and Requ i remen t s 383
19.3 C o m m u n i c a t i o n Approaches . "385
19.4 Synchron iza t ion Approaches . 388
19.5 Conclus ions . 395

2 0 ~ M u l t i m e d i a Database Systems 397

by A. Gha foo r , p .B . B e r r a
20.1 I n t r o d u c t i o n . 397
20.2 Charac te r i s t i c s of M u l t i m e d i a D a t a 398

20.2.1 Tex t and F o r m a t t e d D a t a 398

20.2.2 A u d i o and Music D a t a . 398
20.2.3 Images and P ic tu res D a t a 398

20.2.4 Fu l l -Mot ion Video D a t a 399
20.3 Not ion of T i m e for M u l t i m e d i a D a t a 399

20.3.1 The T e m p o r a l Synchron iza t ion P r o b l e m 399
20.3.2 Mode l ing T i m e . 401

20.4 Concep tua l Models for M u l t i m e d i a Objec t s 402
20.4.1 G r a p h i c a l Models . 402
20.4.2 Pe t r i -Ne t Models . 403
20.4.3 O b j e c t - O r i e n t e d Models 404
20.4.4 Language Based Models ~ 405
20.4.5 T e m p o r a l A b s t r a c t i o n Models 405
20.4.6 D a t a b a s e Models for M u l t i m e d i a Synchroniza t ion 406

20.5 Some M u l t i m e d i a D a t a b a s e Sys tems 407
20.5.1 I m a g e D a t a b a s e . 407
20.5.2 Aud io D a t a b a s e . 409

20.6 Chal lenges in M u l t i m e d i a D a t a b a s e 410
20.7 Conclus ion . 411

B i b l i o g r a p h y 413

Chapter 1

COMPOSE: A System For Composite Specification And
Detection

Narain Gehani*, H. V. Jagadish ?, O. Shmuefi ~

1.1 I n t r o d u c t i o n

An "event" is a happening of interest. Events can be simple such as, the stock
price going above a certain price, the beginning of a transaction, the update of
an object, or the temperature going above a specified limit. New events can
also be formed as a combination of other events, for example, three successive
discount rate cuts without an intervening increase, all withdrawals following a

'large deposit, and the temperature going above a specified limit and staying
there for more than some time period. We call such events "composite events".

We have developed a model for specifying composite events [216, 215]. We
were motivated to explore the specification of composite events as part of an
effort to design "trigger" facilities for the Ode object database [7,217]. Triggers
are the key facility that distinguishes active databases [138,524, 40,378,556,395]
from passive databases. A trigger consists of an event-action pair. When an
event is detected, the associated action is executed.

The use of triggers moves code from the application to the database. This
simplifies application writing because the application now does not have to check
for the conditions specified by the triggers. Triggers also eliminate duplicate code
since the same conditions may have to be checked in multiple applications.

A trigger facility in which triggers fire on the occurrence of composite events
is more powerful than one in which triggers fire on the occurrence of simple events
because it allows users to write triggers that could not be easily expressed before.
Composite event specification is useful for many application domains besides
databases:

1. Financial Applications: Trades can be executed in response to an observed
pattern of (trading) events in a stock market.

*AT&T Belt Laboratories
t AT&T Bell Laboratories
*AT&T Bell Laboratories and Technion -Israel Institute of Technology

4 C H A P T E R 1. COMPOSE: A SYS. FOR C O M P O S I T E SPECI FI CATI O N

2. Fraud Detection: Particular sequences of credit card purchases may point
to fraudulent use.

3. Production Management: Particular sequences of defects could indicate
difficulties that must be brought to the attention of a supervisor.

Composite events are specified as event expressions. Our basic notation for
specifying composite events has the same expressive power as regular expressions.
Thus the occurrence of a composite event is detected by a finite automaton that
implements the event expression. Despite the equivalence of expressive power,
our notation is speciMly suited for specifying composite events. For example,
it allows for the easy specification of composite events whose components can
overlap and allows uninteresting events to be screened out.

We extend our basic notation with "masks", correlation variables, and pa-
rameters, thereby stepping beyond the domain of regular expressions. However,
we can still implement event expressions that use these facilities by using au-
tomata augmented with "mask" events and by using "generic" automata. This
allows us to use finite au tomata optimization techniques to generate efficient
implementations for recognizing the occurrence of composite events.

We have built a prototype system, COMPOSE, for specifying and detecting
composite events. A real-time stock trade feed is used to experiment with specifying
and detecting stock market related events.

In this chapter, we describe how composite events axe specified, illustrate composite
event specification, give an overview of COMPOSE, and describe the construction of
the finite automata.

1.2 Event Expressions
Primitive events are events that are known to or supported by the database system.
Examples of some primitive events, in object-oriented databases [215], are object ma-
nipulation actions such as creation, deletion, and update or access by an object method
(member function). Events can be specified to happen just prior to or just after the
above actions. In addition, events can be associated with transactions and specified
to happen immediately after a transaction begins, immediately before a transaction
attempts to commit, immediately after a transaction commits, immediately before a
transaction aborts, and immediately after a transaction aborts. Examples of other
events are time events such as clock ticks, the passage of a day, an hour, a second, or
some other time unit. Finally, stock trades and the raising or lowering of interest rates
are examples of financial events, and company announcements are examples of news
events.

Composite events a~e specified as event expressions. An event expression can be
NULL, any primitive event a, or an expression formed using the basic operators A, !
(not), relative and relative+.

Formally, event expressions are mappings from histories (sequences of primitive
events) to histories:

E : histories --+ histories

The result of applying an expression E to a history h, which is also a history, is denoted
by E[h].

1.2. E V E N T E X P R E S S I O N S 5

Here are the semantics of some simple event expressions:

1. E[null] = null for any event E, where null is the empty history.

2. NULL[h] = null.

3. a[h], where a is a primitive event, is the maximal subset of h composed of all
event occurrences of the symbol a.

1 . 2 . 1 Basic Opera to rs

Let E and F denote event expressions and h, hi, h2 denote event histories. Here are
the semantics of expressions formed using the basic operators:

1. (E n F)[h] = h l n h 2 whereh~ = E[h]andh2 = F[h].

2. (!E)[h] = (h - E[h]).

3. relative(E, F)[h] are the event occurrences in h at which F is satisfied assuming
that the history started immediately following some event occurrence in h at
which E takes place.

Formally, relative(E, F)[h] is defined as follows. Let Ei[h] be the i *h event
occurrences in E[h]; let hi be obtained from h by deleting all event occurrences

II/~[h] F[h~]. before Ei[h]. Then relative(E, F)[h] = ~i=1
OO 4. relative + (E)[h] = ~Ji=l relativei(E)[hI where relativel(E) = E and

relative'(E) = relative(relative i-~(E), E).

1 . 2 . 2 Addi t iona l Opera tors

Besides the basic operators, we provide some additional operators that make composite
events easier to specify. These operators do not add to the expressive power provided by
the basic operators. Consequently, they can be defined in terms of the basic operators.

Let h denote a non-null history, and E, F, and Ei denote event expressions. The
new operators are

1. E v F = ! (! E A ! F) .

2. any denotes the disjunction of all the primitive events.

3. prior(E, F) specifies that an event F that takes place after an event E has taken
p~ace. E and F may overlap. Form~Uy, prior(E, F) = relative(E, any) A F.

4. prior(El, ..., Em) specifies occurrences, in order, of the events El , E2 ,..., Era.
prior(El, ..., Era)= prior((prior(E~, ..., E m - 1), E,~).

5. sequence(El,. . . , Em) specifies immediately successive occurrences of the events
El , E2 ,..., Era:

(a) sequence(S1 Era) = sequence((sequence(E1, ..., E , ~ - 1), Era).

(b) sequence(El, E 2) = relative(El,!(relative(any, any))) A E2.
The first operand of the conjunction specifies the first event following event
E l . The second operand specifies that the event specified by the complete
event expression must satisfy E2.

6. f i r s t identifies the first event in a history.
f i r s t = !relative(any, any).

6 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION

7. (E[F)[h] = FIE[h]]; i.e., F applied to the history produced by E on h. Operator
[is called pipe, with obvious similarity to the UNIX w pipe operator.

8. (< n > E) specifies the n *h occurrence of event E. Formally,
(< n > E) = ((E[seq(anyl, any2,..., anyn))[first) ,
where each any~ is simply any.

9. (every < n > E) specifies the n th, 2n th, ..., occurrences of event E. Formally,
(every < n > E) = (EIrelative + (< n > any)).

10. (F / E)[h] = F[h '] where h ' i s null if Elk] = null and otherwise h ' i s
the history obtained from h by eliminating all the event occurrences before and
including (< 1 > E)[h]. Formally, F / E = relative((!prior(E, any) A E), F),
equivalently, F / E -= relative((EI f i r st), F).

11. Suppose that E takes place m times in h. F / + E [h] = (_JmlF [h' ,].
h~, 1 <-- i < m - 1, is obtained from h by eliminating all event occurrences
before and including event (< i > E)[h] and all event occurrences including
and following (< i + 1 > E)[h]. h~ is obtained from h by eliminating all event
occurrences before and including event (< m > E)[h].
E is used to delimit sub-histories of h, where the "delimiter" are event occur-
rences at which E takes place. F is applied to each such sub-history, and the
results of these applications are combined (unioned) to form a single history.

12. f i r s t A f t e r (E ~ , E2, F)[h] specifies events E2 that take place relative to the last
preceding occurrence of E1 without an intervening occurrence of F relative to
the same El. Formally,

f i r s t A f t e r (E 1 , E2, F) = (E2 A !prior(F, a n y)) / + E1

13. before(E) = prior(E, any).

14. happened(E) = E V prior(E, any).

15. p r e f i x (E) [hi is satisfied by each event occurrence e such that there exists a
history h' identical to h up to event occurrence e, and E is satisfied in h ~ at
some event occurrence following e. In other words, pre f i x (E) is recognized at
each event occurrence as long as a possibility exists that an E event will be
recognized eventually. This operator is normally used in the form !pref ix(E) ,
which occurs as soon as we can be sure that E cannot occur.

16. E * T is a series of zero or more E events followed by a T event.
E * T -= T A !prior(!E, T).

1.2.3 Regular Expressions
Regular expressions are widely used for specifying sequences. The above event expres-
sion language (basic operators with or without the additional operators) has the same
expressive power as regular expressions [216]. It can be shown that the operators A,
!, relative, and relative+ consti tute a minimal operator set; reducing it will make the
expressive power less than that of regular expressions.

COMPOSE event expressions differ from regular expressions in that the focus on
ordered sets rather than strings. We believe that our event expression operators are
more suitable for specifying composite events. However, since our event expressions
are equivalent to regular expressions we can implement them efficiently using finite
automata.

~UNIX is a trademark of USL

1.3. EXAMPLES 7

1 . 3 Examples
We now show how composite events are specified by means of examples.

1.3.1 Simple Examples
1. All occurrences of an event a :

a

2. The 5 th occurrence of event depos i t :
(<5>deposit)

3. A deposit event fo]lowed immediately by a withdraw event:
sequence (deposit, withdraw)

4. A deposit event followed eventually by a withdraw event:

prior(deposit, withdraw)

5. A deposit event followed eventually by withdraw with no intervening interest:
relative(deposit, !before(interest)) &R withdraw

6. Event expression that is satisfied when an E occurs provided there is no "non E"
event before it. We are essentia/ly recognizing a series of E events:
E R~ !prior(!E, E)

1.3.2 Discount Rate Cut

The United State Federal Reserve Board r~ises and lowers a key interest rate, called
the discount rate, to control inflation and economic growth. Three or more successive
discount rate cuts (D) without an intervening discount rate increase (I) is a rare phe-
nomenon and i s of interest to the financial community. Many other events can occur,
for example, the prime rate may be cut and the stock market can crash, but these
events do not interest us here. Our problem is to write an event expression that is
satisfied by such cuts in the discount rate.

Here is an example history with the dots marking the events in the history with the
discount rate cut events labeled by D (decrease) and increases labeled by I (increase):

The composite event of interest occurs at the last two D events (marked with #) .

Let us create an event expression that specifies a composite event satisfied when
three or more successive discount rate cut events D take place without an intervening

rate increase event I. We specify this composite event in steps. First, the event ex-
pression

prior(I, D)
specifies D events that are preceded by an I event. Expression

!prior(I, D)

specifies all events except the occurrences of D that are preceded by I. Expression

!prior(I, D) &~ D

specifies D events that are not preceded by an I event.

8 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION

O I D D D # D # I
I I I J I t I t I I I I I I I

Figure 1.1: Discount rate cut

The expression
r e l a t i v e (D , ! p r i o r (I , D) && D)

specifies a D event followed eventually by another D event with no intervening I
events. This expression gives us a pair of D events with no intervening I events. Note
that in this case, the r e l a t i v e operator is used to look at the history starting after a
D event.

Finally, the event that we are interested in can be specified as

relative (relative (D, !prior(I, D) &~ D), !prior(I, D) ~& D)

The outermost r e l a t i v e finds another D without a preceding I giving us three D
events without an intervening I event.

Using the pipe operator, we can write the composite event for the three successive
discount rate cuts simply as

(I]] D) I sequence(D, D, D)

1.3.3 Attr ibutes and Masks

Primitive events can have attributes. These could be associated with the event itself,
such as the user id, transaction id, parameters to a function invocation (if the event
is the function invocation). Event attributes can also be determined from the state of
the world at the time the event occurred, such as by reading the system clock or by
performing a database query.

Arbitrary predicates can be defined on these attributes and, when false, these
predicates "mask" the occurrence of the corresponding event.

As an example of an event with attributes, consider stock trade events which have
the form

1.3. EXAMPLES 9

stock-symbol(current price, intra-day-low, intra-day-high, volume)

Suppose we are interested in a stock trade in which the price of Apple Computer
(stock symbol AAPL) has risen by 10% or more compared to it 's low of the day. Such
a composite event can be written as

AAPL(current, low, high, volume) & current > low*l.l

where & is the m~sk operator.

As an other example, define the event "large withdrawal" as the basic event "ex-
ecution of the method withdrawal" qualified with the mask "withdrawal amount >
1000".

withdraw(Item, int q) & q > I000

It is commonly the case in a database that an integrity constraint is to be checked
immediately after an update (or creation) of an object. This constraint can be written
as a Boolean expression, and used as a mask:

(a f t e r update I a f t e r c r e a t e) &

Boolean-expression-specifying-integrity-constraint

1.3.4 Parameters

Some or all of the attribute can be designated as parameters. Our terminology is
that attributes are immediate, referring only to the current primitive event, while
parameters are attributes that have been saved over one or more event occurrences.
While logically there may be little difference between the two, as we shall see in the
next section, there is a world of a difference in terms of implementation effort. We have
chosen to make this difference evident to the user in the interface that we provide. The
implementation difference arises from the fact that non parameter attribute values
need only be accessible with the occurrence of the current event while parameter and
attribute values, in the worst case, must be available from the "beginning of history".

Once parameters are available, one common requirement is equality between pa-
rameter values in two different events in an event expression. Rather than move the
automaton and check for equality as a distinct predicate, it is more efficient to perform
the equality check immediately and the (second) move as a function of the equality
test result.

In the following example, the attribute I is declared as a parameter. The first
deposit of an item after a large withdrawal ca~ be written as:

first (deposit(Item I, int amt)) /+ withdraw(Item I, int q) & q > I000

The use of the common parameter I indicates that the item withdrawn and de-
posited must be the same.

10 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION

1.3.5 Correlation Variables

Correlation variables are used to refer to the same event in the history in different
parts of an event expression. Consider the following event expression E that contains
the correlat ion variable x:

E = 3 x p r i o r (b = x , e) ^ !tel.rive(x, prior(a, e)) ^ rel~tive(~, prior(d, c))

Consider the following histories (hi is a prefix of h2 which is a prefix of hs):

hl = e b a c

h 2 = e b a e d b c

h 3 = e b a c d b c d b c

We want to de termine ff E can be satisfied (will trigger) at the last event, a c event,
in the above histories. When determining the points at which E can be satisfied in the
above histories, the correlation variable x will be associated with a specific b event in
each history. In case of h i , x must be associated with the only b present; E will not
tr igger at c because]relative(x, prior(a, e)) is not satisfied. In case of h2, there are
two b events. The first has the same problem as in hi . If we associate x with the second
b in h2, then relative(x, prior(d, c)) is not satisfied. In case of h3, there are three
choices of b with which to associate x. If we choose the first, !relative(x,prior(a, c)) is
not satisfied. If we choose the third, relative(x, prior(d, c)) is not satisfied. However,
if we choose to associate x with the second b, then E will trigger at the last c.

To appreciate the role played by x, consider the event expression E ' , given below,
which is the same as E except tha t the last occurrence of x has been replaced by b.

E' ---- 3 x prior(b---X, c) A !relative(x, prior(a, e)) A relative(b, prior(d, c))

E ~ triggers on h3 in the same way as E. However, it also triggers on h2, where z is
associated with the second b. relative(b, prior(d, c)) is satisfied now on account of the
first b, which does not have to be associated with x.

Finally, the event expression E ' , wi thout correlation variables, given below, does
not tr igger on hi , h2, h3, or any other history of which hi is a prefix. The reason is that
h~ has in it the sequence b a c guaranteeing tha t the clause !relative(b, prior(a, c))
can never be satisfied~

E" = prlor(b, c) ^ !relative(b, prior(a, e)) ^ relative(b, prior(d, e))

1 . 4 C o m p o s i t e E v e n t D e t e c t i o n

We detect composi te events by implement ing the event expressions as finite automata .
These a u t o m a t a are fed as input the primitive events tha t make up the event expression.
The composi te event associated with an au tomaton is said to occur When the au tomaton
reaches an accepting state.

A u t o m a t a construct ion is by inductive composit ion of au tomata for sub-expressions.
Pr imit ive events are expressed in terms of a simple 3 state automaton, one of which
is the s tar t s ta te and another the accepting state. From all states, the transi t ion on

1.4. COMPOSITE EVENT DETECTION 11

event a, the event to be recognized, the transition is to the accepting state. On all
other events, the transition is to the non-accepting (non-start) state.

Composition rules are specified for each of the basic event expression operators.
These rules are used to compose the automaton for an expression from its sub-expressions.
By and large, the additional operators described are rewritten, by compiler transforma-
tion, into basic operators. However, specific direct composition rules were developed
for a few key additional operators, such as prefix.

1.4.1
1.

3.

4.

5.

Design Decis ions
Automata are kept deterministic at all stages of the construction. Non deter-
ministic automata require that we keep track of the various states computation
threads are in, and so are inefficient at run time. Moreover, negation is a problem
for non deterministic automata.

Rea~hability analysis is used to eliminate unreachable states in the automaton.

The number of states in the automaton is minimized by merging equivalent
states. Reachability analysis and state minimization is performed after each stage
of the construction so that we always have a minimal deterministic automaton
for the sub-expression at hand.

Most event symbols are ignored in most states: the number of transitions to
be stored explicitly is minimized by explicitly recording only those that cause a
transition out of a state, and letting a "self-loop transition" be the default.

We may have a large number of events in our system. Individual automata may
be interested in small subsets of these events. Letting each automaton "work"
on the whole event set is wasteful. So, we have the concept of loealevents specific
to an automaton. With each automaton we associate an array lnames with as
many entries as there are global system wide events. Entry lnames[i] contains
the local name of the global event i. If the automaton is not "interested" in global
event i then lname[i] contains otherwise, where otherwise is a local alphabet
symbol denoting "all other events".

1.4.2 Masks

A mask predicate is treated like any other operator in terms of automaton construction.
Any mask M associated with an event expression E is implemented by modifying the
automaton A that implements event expression E. For each accepting state, F, of the
automaton A:

1. Two new states MTrueF and MFalse• are created.

2. Any transitions from F to other states are copied to MTrueF and MFalset;.
These transitions are deleted from F.

3. F is changed from an accepting state to a non-accepting state and MTrueF is
made an accepting state.

4. Transitions from F to MTrueF on event ETrueM and from F to MFalseF on
event EFalseM are added.

Conceptually, after each event symbol is input, every mask predicate is evaluated,
and a pseudo-event ETruei or EFalsel is generated for each mask predicate. Except
in a state where this mask is to be. ewluated to determine further transition, these

12 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION

events are ignored. Moreover, the order in which these mask predicates are evaluated
is immaterial.

Practically speaking, of course, every mask predicate cannot be evaluated after
every event. Instead, we mark states that have outgoing transitions on such pseudo-
events. When the automaton reaches such a state, it evaluates the corresponding
predicate and makes the necessary transition. The effect obtained is the same as in
the conceptual scheme of the previous paragraph.

1.4.3 Generic Automaton For Implementing Events With
Parameters

Event expressions with parameters can be thought as representing the union under
all possible assignments of values to parameters of the expressions with those values
substituted. This definition is used to implement such expressions as follows

1. Given an expression E, convert it to a finite set of expressions El, ...,Ek whose
union is equivalent to E, such that all variables occurring (as parameters) in any
Ei can be assumed to represent distinct values different than any constant men-
tioned in the expression (i.e. if X and Y are variables and C a constant in some
Ei, then X and Y are never suppose to represent the same value or the value C).
This is done by rewriting. Thus an expression of the form relative(F(X), F(4))
becomes the union of relative(F(4), F(4)) and relative(F(X'), F(4)), X'! = 4.

2. Each Ei is now handled separately by associating a deterministic minimal size
automaton with E~, viewing all symbols (such as F(50), F(X), or b) as ordinary
alphabet symbols.

3. To handle Ei we keep track separately of each combination of values for pa-
rameters in El and the state the automaton denoted by this combination is in.
We index these automata by the state they are in. We can efficiently perform
state transitions in "groups" for all automata in the same state seeing the same
symbol.

4. In general, there may be infinitely many sets of values associated with the pa-
rameters of an expression E. At any point in time however, we are exposed to
finitely many such sets of values as the sequence of events up to this point is
finite. So, we handle copies for values combinations we have seen thus far and
retain a state for combinations we have not yet seen in a generic way. Specifi-
cally, suppose there are two parameters X and Y. If we have only seen X = 4
but no Y values yet, we keep the state assodated with 4, * where * denotes "any
domain values not yet seen". We also maintain ,, �9 in that case where *! = 4 is
assumed. When new domain values are encountered some generic automata are
"instantiated" to those values and continue as "independent copies~'; the generic
copy continues as well under the assumption that the values denoted by a * in
a generic automaton is different than all domain values seen for that parameter
so far.

1.5 C o m p o s e S y s t e m

A prototype COMPOSE system has been written in Concurrent C / C + + [213], which
is a parallel version of C [316] and C + + [563]. The event stream fed to the system
consists of real-time stock trades.

1.6. EXAMPLES OF AUTOMATA GENERATED B Y COMPOSE 13

The prototype COMPOSE system is structured as follows:

F igure 1.2: The C O M P O S E Sys t em

The circles represent processes. The event manager process accepts composite
event specifications from the user, and the events that occur are fed to i t by the event
stream processes (one for each event stream). The trigger firing process and the event
manager processes share a common data structure which contains the triggers. The
event manager constructs and stores the finite automata implementing the triggers and
the global event mappings in the shared da ta structure. The trigger firing process takes
the events it receives from the event stream processes and looks for active triggers in
the shared da ta structure and then "feeds" them the events after translating events
into numbers using the global mapping. To be precise, the global event numbers are
mapped to local event numbers using the local mapping table associated with each
automaton.

Since the event manager and trigger firing processes can be simultaneously accessing
the shared data, accesses to the shared da ta are serialized by implemented the shared
da ta structure as a "capsule" [214].

The trigger firing process reports triggers that fire to the user process which is the
COMPOSE system's interface to the user.

1.6 Examples of A u t o m a t a Generated by Com-
pose

The composite event expression for the discount rate cut example shown earher was
(I I[D) [sequence(D, D, D)

We now show the finite automaton for the above event expression. First, here is
the automaton for the event expression I [I D, which is the first operand of the pipe
operator I (Figure 3):

The automaton for the second operand of the pipe operator, i.e., sequence(D, D,
D), is (Figure 4)

14 CHAPTER 1. COMPOSE: A SYS. FOR COMPOSITE SPECIFICATION

D

Figure 1.3: Automaton for (I I I D)

The above two automata are combined to form the automaton for the complete
expression (I 11 D) I sequence(D, D, D). The resulting automaton is (Figure 5)

1.7 Conc lus ion
Our base event language has the same expressive power as regular expressions, or
propositional temporal logic with quantifiers (QPLTL or SOLLO) (see [180]). However,
our event specification language is more suitable to specifying trigger events because of
its algebraic nature which enables free composition of events into more complex ones.

We implement our event expressions by using finite automata. These automata
take as input, on a continuous basis, simple events. Their current state represents a
partial (complete) detection of the associated composite event.

Masks and parameters extend our base language to a fragment of temporal logic
whose expressive power is beyond that of regular expressions. We implement a mask by
adding two additional states to the corresponding automaton without a mask. Tran-
sitions to these states take place based on whether the mask predicate is true or false.
Evaluation of the mask takes us beyond finite automata. We implement parameters
using generic automata. These automata are used to instantiate ordinary automata for
each combination of new parameter values. We are currently investigating techniques
for optimizing such finite automata [421].

In a distributed database, there may not be a well-defined unique system history. In
[287] we discuss how to coordinate the different ~'views" of the history seen at different
sites.

As mentioned earlier, the motivation behind our work was the design of "trigger"
facilities for the Ode object database [7, 217].

We plan to integrate the COMPOSE event specification facilities into the Ode
trigger facility.

1.7. CONCLUSION 15

Figure 1.4: Automaton for sequence(D, D, D)

Figure 1.5: Automaton for (I i l D)] sequence(D, D, D)

Chapter 2

A c c e s s C o n t r o l s in O b j e c t - O r i e n t e d D a t a b a s e S y s t e m s -
S o m e A p p r o a c h e s and I s sues

Elisa Bertino*, Sushfl Jajodia ~, Pierangela Samarati $

2.1 I n t r o d u c t i o n

Object-oriented database management systems (OODBMSs) today represent one of
the most active areas in both academic and industrial worlds. OODBMSs combine
object-oriented programming technology with database technology, thus combining
the strengths of both. The need for these systems has been driven by several advanced
applications, such as CAD/CAM, cartography, multimedia, for which relational sys-
tems have been proved inadequate. A serious problem with these systems is that they
do not provide adequate access control mechanisms to prevent unauthorized disclosure
of information. They do not provide for the mandatory security [146] and, in most
cases, do not even provide adequate discretionary authorization facilities (a notable
exception is presented by the ORION/ITASCA system [460]). We can expect, how-
ever, that the broadening of application scope of these systems will require them to
enforce both mandatory and discretionary security.

Mandatory security policies govern access to information by individuals on the basis
of the classifications of subjects and objects in the system. Objects are passive entities
storing information, such as da ta files, records, field in records, etc. Subjects are active
entities that access the objects. Generally, a subject is considered to be an active
process operating on behalf of a user. Access classes are associated with every subject
and object in the system, and the access of a subject to an object is granted iff some
relationship, depending on the access mode, is satisfied between the classifications of
the subject and the object.

An access class consists of two components: a security level and a set of categories.
The security level is an element of a hierarchically ordered set. The hierarchical set
generally considered consists of Top Secret (TS), Secret (S), Confidential (C) and
Unclassified (U), where TS > S > C > U. The set of categories is an unordered set
(e.g., NATO, Nuclear, Army, etc.). All access classes are partially ordered as follows:

*Dipartimento di Informatica e Scienze dell'Infoiznazione, Universits di Genova, Via L.B.
Alberti 4, 16132 Genova, Italy.

tCenter for Secure Information Systems and Department of Information and Software Sys-
tems Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444,
U.S.A.

SDipartimento dl Scienze dell'Informazlone, Universits degli Studl di Milano, Via Comelico
39/41, 20135 Milano, Italy.

18 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

An access class cl dominates (~) an access class c2 iff the security level of ct is greater
than or equal to tha t of c2 and the categories of cl include those of c2. Two classes cl
and c2 are said to be incomparable if neither cl _ c2 nor c2 _ cl holds.

An access class is assigned to every object and every subject in the system. The
security level of the access class associated with an object reflects the sensitivity of the
informat ion contained in the object, i.e, the potential damage which could result from
unauthor ized disclosure of the information. The security level of the access class associ-
ated with a user, also called clearance, reflects the user 's t rustworthiness not to disclose
Sensitive informat ion to users, not cleared to see it. Categories are used to provide finer
grained security classifications of subjects and objects than classifications provided by
security levels alone, and are the basis for enforcing need-to-know restrictions.

Access control in manda tory protect ion system is based on two principles that were
formulated by Bell and LaPadula [43] and tha t are followed by all models enforcing a
manda to ry security policy. They are:

Simple Security Property: A subject is allowed a read access to an object only if the
clearance of the subject dominates the access class of the object .

*-Property: A subject is allowed a write access to an object only if clearance of the
subject is dominated by the access of the object.

These principles, also known as "no-read-up" and '~no-write-down," prevent in-
format ion to flow directly from high level subjects to subjects at lower levels. High
assurance systems must additionally protect against illegal indirect information flows
through covert or signaling channels [146].

Discret ionary protect ion policies govern the access of users to the information on

the basis of the users 's identi ty and the rules that specify, for any user and any object
in the system, the types of accesses (e.g., read, write, or execute) the user is allowed
on the object . The request of a user to access an object is therefore checked against
the specified authorizat ions; if there exists an authorizat ion stat ing tha t the user can
access the object in the specific mode, the access is granted, otherwise it is denied. This
type of access control is sometimes called a closed policy in that a user is not allowed an
access unless he or she has been explicitly so authorized. Alternatively, an open policy
could be applied where all accesses to be denied have to be fully specified, and users
are allowed all those accesses for which they have not been explicitly denied. More
recent models combine the two policies, allowing to explicitly specify both the accesses
to be authorized as well as the accesses to be denied by the users. The resulting access
control takes into considerat ion both authorizations and negations in order to decide
whether a request of a user to access an object should be granted.

Discret ionary protect ion models generally allow users to grant other users autho-
rizations to access the objects. There are many policies that can be applied for the
adminis t ra t ion of authorizat ions in systems enforcing discretionary protection. Some
examples are: centralized administration where only some privileged user is allowed to
grant and revoke authorizations, ownership where the creator of an object is allowed to
grant and revoke other users accesses on the object created, and decentralized admin-
istration where other users can be allowed, at the discretion of the owner of an object,
to grant and revoke authorizat ions on the object.

Some discretionary models also admit the possibility of defining groups of users
and specifying access authorizat ions for the groups. Authorizat ions specified for a
group can be used by any user belonging to the group. Sometimes predicates can
also be associated with authorizations, specifying conditions to be satisfied for an

2.2. O B J E C T - O R I E N T E D D A T A M O D E L 19

authorizations to be considered valid. These conditions can be defined, for example,
in terms of the time an access can be executed or in terms of the content of the object
to be accessed.

Mandatory as well as discretionary security models have been formalized for the
protection of information in operating systems and database systems. However, the
characteristics of object-oriented da ta models introduce new protection requirements
that make the existing security models not sufficiently adequate for ensuring security
of the information.

In particular, applying the Bell-LaPadula paradigm to object-oriented data models
is not straightforward for two reasons. First, while this paradigm has proven to be quite
effective for modeling security in operating systems, as well as relational databases, it
appears somewhat forced when applied to object- oriented systems [288]. The problem
is that the notion of an object in the object-oriented data model does not correspond to
the Bell-LaPadula notion of an object. The former combines the properties of a passive
information repository, represented by attributes and their values, with the properties
of a~ active entity, represented by methods and their invocations. Thus, the object of
the object-oriented da ta model can be thought of as the object and the subject of the
Bell-LaPadula paradigm fused into one. The second reason is the increased complexity
of the object-oriented da ta models. An object-oriented data model includes notions
such as complex objects and inheritance hierarchies, that must be accounted for when
designing a secure object-oriented database model. As for the discretionary policy, the
policy has to be extended to take into consideration the characteristics of the object
oriented systems such as subtyping, aggregation, and versioning.

In spite of this complexity, the use of an object-oriented approach offers several
advantages from the security perspective [397]. The notion of encapsulation, which
was originally introduced in object-oriented systems to faci~tate modular design, can
be used to express security requirements in a way that is comprehensible to the users.
Moreover, the notion of information flow in security has a direct and natural representa-
tion in terms of message exchanges; messages and their replies are the only instruments
of information flow in OODBMSs. The conceptual clarity and simplicity of the model
translates into simplicity of design of security mechanisms.

In this chapter we will review the current state of the art in both mandatory and
discretionary access controls in OODBMSs. We will also point out some open problems
in the field and outline current research directions. The chapter is organized as follows.
Section 2.2 summarizes the main concepts of object-oriented da ta models. Section 2.3
discusses mandatory access control by presenting in detail the message filter model
proposed recently by Jajodia and Kogan [288], followed by a review of other mandatory
access control models. Section 2.4 presents some models for enforcing discretionary
access control. Sections 2.5 and 2.6 list some research issues related to mandatory and
discretionary protection in OODBMSs. Finally, Section 2.7 draws some conclusions.

2.2 Objec t -or i en ted Data Mode l
An object-oriented model can be characterized by a number of concepts [55]:

�9 Each real-world entity is modeled by an object. Each object is associated with a
unique identifier (called OID) that makes the object distinguishable from other
objects.

�9 Each object has a set of attributes (properties) and methods (operations). The
value of an at t r ibute can be an object or a set of objects. The set of at tr ibutes

20 CHA P T E R 2. ACCESS CONTROLS IN O 0 DATABASE SYSTEMS

together with the set of methods represent the object structure and behavior,
respectively.

�9 The attribute values represent the object's status. This status is accessed or
modified by sending messages to the object to invoke the corresponding methods.
The set of messages that can be sent to an object is the object interface.

�9 Objects sharing the same structure and behavior are grouped into classes. A class
represents a template for a set of similar objects. Each object is an instance of
some class.

�9 A class can be defined as a specialization of one or more classes. A class defined
as specialization is called a subclass and inherits attributes and methods from
its superclass(es).

There are many variations with respect to the basic concepts, especially when
comparing OODBMSs and object-oriented programming languages (OOPLs). The
concepts that we have chosen to include are used mainly as a basis for our discussion;
we do not claim them to be a definition of the object-oriented paradigm. However,
despite all differences, it has been widely recognized that this paradigm offers several
advantages. First of all, the separation between an object's status and interfaces allows
clients to use the services provided by an object without knowing how the services are
implemented (information hiding). Therefore, an objecffs implementation may change
without impacting other objects or applications using the services provided by the
object. The inheritance mechanism favors re-usability of both object interfaces and
implementations. Moreover, in most models, a subclass may override the definition of
inherited methods and attributes. Therefore, inheritance lets a class specialize another
class by additions and substitutions.

In the database field, the object-oriented paradigm brings other important advan-
tages. First, it allows complex objects to be directly represented by the model, without
having to flatten them into tuples, as in the case of relational systems. Second, a tra-
ditional DBMS only centralizes data; high-level semantic operations on data are still
dispersed among application programs. By contrast, a portion of the high-level seman-
tic operations in an object-oriented database is also centralized. As a consequence, the
application programming in object-oriented systems is simplified, since it often consists
of invoking and assembling predefined operations - the methods.

The information hiding capability offers, in addition to the previously mentioned
advantages, a great potential for data security. Surrounding an object by methods
makes it possible to interpose an additional layer between the object and its users.
Therefore, arbitrary complex content-based access rules can also be supported. w Many
aspects and issues in exploiting the object-oriented approach for security will be dis-
cussed in the following sections.

In addition to the basic concepts listed above, OODBMSs often provide additional
semantic concepts, such as composite objects and versions, that we will briefly discuss
in the following. The reason for including those additional concepts is to illustrate
their impact on the definition of a discretionary authorization model.

C o m p o s i t e o b j e c t s

w common distinction found in authorization models is between content-independent ac-
cess rules, whose enforcement depends only on the object names~ and content-dependent access
rules, whose enforcements depends on the object infol~nation content.

2.3. M A N D A T O R Y ACCESS CONTROL 21

For composite objects we will use the same model as the one given in [320], since
this model is quite general. The model distinguishes between two types of references
among objects: general, and composite. The latter is used to model the fact that a
referenced object is actually a part of (or a component of) a given object. An object
and all its components constitute a composite object. Composite references axe further
refined into shared/exclusive and dependent/independent. A shared composite refer-
ence allows the referenced object to be shared among several composite objects, while
an exclusive composite reference constrains an object to be component of at most one
composite object at a time. A dependent (independent) composite reference models
the fact that a component object is dependent (independent) on the existence of the
composite object(s) of which it is a part. Since these two dimensions can be combined,
four different types of composite references are possible.

Ve r s loned o b j e c t s
Several versioning models have been proposed in the literature [310]. Here, we

present some basic aspects of versioning mechanisms that should be sufficient for dis-
cussing the authorization model. In general, a versioned object can be seen as a hier-
archy of objects, called version hierarchy. Each object in a version hierarchy (except
for the root object) is derived from another object in the hierarchy by changing the
values of one or more attributes of the latter object. Objects in a version hierarchy
are first-class objects. Therefore, they have their own object-identifier (OIDs). Infor-
mation about the version hierarchy is often stored as part of the root object, called
generic object. Two types of object references are supported in most version models
to denote objects within a version hierarchy. The first, called dynamic reference, is a
reference to the generic version of a version hierarchy. It is used by users who do not
require any specific version. The system selects a version (default version) to return to
users. The default version is in most cases the most recent stable version. Commands
are usually available that allow users to change the default version. The second type
of reference, called static, is a reference to a specific version within the version hier-
archy. Another important aspect cor, cerns stability of versions in version hierarchies.
In most cases, versioned objects are shared among several users. Mechanisms should
be provided so that users receive consistent and stable versions. Most version models
distinguish between transient and stable versions. A transient version can be modified
or deleted. However, no versions can be derived from a transient version. A transient
version must first be promoted to a stable version before new versions can be derived
from it. By contrast, a stable version cannot be modified. However, it can be used to
generate new versions.

2.3 Mandatory Access Control

In this section we present an approach to mandatory access control based on the
message filter model proposed recently by Jajodia and Kogan [288]. The message filter
model is an information flow model whose main elements are objects and messages.
The chief advantages of this model are its compatibility with the object-oriented data
model and the simplicity with which security policies can be stated and enforced.

In the message filter model [288,289,487], each object is viewed as a unit of security
and, therefore, it is assigned a unique classification. Objects can communicate (and
exchange information) only by means of sending messages among themselves. Even a
basic object activity such as access to internal attributes, object creation, or invocation

22 C H A P T E R 2. ACCESS C O N T R O L S IN O 0 D A T A B A S E S Y S T E M S

of local methods are to be implemented by having an object send messages to itself;
these messages are considered to be primitive messages. �82 This makes the information
flow explicit in the form of message exchange among objects and, therefore, easy to
control.

Therefore, in the message filter model security is achieved through checking message
exchanges among objects. The basic idea of the approach is that information flow
control can be achieved by mediating the flow of messages among objects. Indeed, in
object-or iented systems all information flows are through message exchanges. This
approach is very simple, in tha t it requires the security mechanism to deal only with
two elements: objects and messages. It is based on two basic principles governing
message exchanges among objects in the system

1. if the sender of the message is at a strictly higher level than the receiver's level,
the me thod is executed by the receiver in restr icted mode (that is, no updates
can be performed)

2. if the sender of the message is at a strictly lower level than the receiver's level,
the me thod is executed by the receiver in normal mode, but the re turned value
is nil.

The first principle ensures tha t no write downs occur, whereas the second one ensures
tha t no read ups occur.

The message filter uses the filtering algori thm given in Figure 1 to mediate mes-
sages [487]. We assume tha t ol and o2 are sender and receiver objects, respectively.
Also, let t l be the me thod invocation in Ol tha t sent the message gl, and t2 the method
invocation in o2 on receipt of gl . The two major cases of the algorithm correspond to
whether or not 91 is a primit ive message.

Cases (1) through (4) in Figure 1 deal with non-primit ive messages sent between
two objects, say ol and 02. In case (1), the sender and the receiver are at the same
level. The message and the reply are allowed to pass. The rlevel of t2 will be the same
as tha t of t l . Note tha t rlevel is a property of a method invocation, rather than a
proper ty of an object . We will explain the significance of rlevel shortly. In case (2), the
levels of Ol and o2 are incomparable, and thus the message is blocked and a nil reply
re turned to me thod t l . In case (3), the receiver is at a higher level than the sender.
The message is passed through; but a nil reply is re turned to t l , while the actual reply
from t2 is discarded, thus effectively cut t ing off the backward flow. For case (4), the
receiver is at a lower level than the sender. The message and the reply are allowed
to pass. However, the rlevel of t2 (in the receiver object) is set in such a manner as
to prevent illegal flows. In other words Mthough a message is allowed to pass from
a high-level sender to a low-level receiver, it cannot cause a "write-down '~ violation
because the me thod invocation in the receiver is restricted from modifying the s ta te
of the object or creating a new object (i.e., the method invocation is "memoryless") .
Moreover, this restriction is propagated along with further messages sent out by this
me thod invocat ion to other objects, as far as is needed for security purposes.

The intuit ive significance of rlevel is that it keeps track of the least upper bound
of all objects encountered in a chain of method invocations, going back to the user
object at the root of the chain. We can show this by induction on the length of the
me thod invocation chain. To do so, it is also useful to show the related proper ty that

�82 is important to note that the message filter model is a conceptual model telling us
what needs to be done, rather than how it is to be implemented. Reference [487] contains an
implementation in which primitive messages do not require any messages.

2.3. MANDATORY ACCESS CONTROL 23

let gl = (h l , (P l Pk),r) be the message sen t f rom el to 02

if oi r 02 V hi ~ {READ, WRITE, CREATE} t h e n ease
% i.e., gl is a non-primitive message

(1) L(oi) = L(o2) : % let gl pass, let reply pass
invoke t2 w i t h rlevel(t2) ~ rlevel(t i);
r ~-- reply from t2; r e t u r n r t o tl;

(2) L(oi) < > L(o2) : % block gi, inject NIL reply
r *-- NIL; r e t u r n r to t i ;

(3) L(Ol) < L(o2) : % let gl pass, inject NIL reply, ignore actual reply
r ~-- NIL; r e t u r n r to t l ;
invoke t2 w i t h rlevel(t2) ~ lub[L(o2),rlevel(ti)];
% where lub denotes least upper bound
d i s ca rd reply from t2;

(4) L(oi) > L(o2) : % let gi pass, let reply pass
invoke t2 w i t h rlevel(tz) ~ rlevel(t i);
r 4-- reply from t2; r e t u r n r to tl;

e n d case;

if oi = o2 ^ hi E {READ, WRITE, CREATE} t h e n case
% i.e., gl" is a primitive message

(5) #l = (R E A D , (a j) , r) : % allow unconditionally
r *-- value o f a j ; r e t u r n r t o t i ;

(6) gi = (W R I T E , (a j , v j) , r) : % allow if status of t l is unrestricted
if r le~et(t l) = L(o l)

t h e n [aj *-- vj; r 4- SUCCESS]
else r *-- FAILURE;

r e t u r n r to t l ;

(7) gl = (CREATE,(v l v h , $ j) , r) : % allow if status of t l is unrestricted relative to Sj
if rlevel(t l) < Sj

t h e n [CREATE i w i t h values v l , . . . , v~ and L(i) ~-- Sj; r *-- i]
else r *-- FAILURE;

r e t u r n r to t l ;
e n d case;

Figure 2.1: Message filtering algorithm

24 C H A P T E R 2. ACCESS CONTROLS IN O 0 D A T A B A S E S Y S T E M S

rlevel(t~) > L(o ,) . For the basis case we assume that the spontaneous method
invocation in the root user object has its rlevel set to the level of the user object.
The induction step follows by inspection of cases (1), (3) and (4) of Figure 1. The
use of least upper bound is explicit in case (3). In cases (1) and (4), because of the
induction hypothesis, and the relative levels of ol and o2, the assignment of rlevel can
be equivalently written as in case (3).

We say that a method invocation t~ has restricted status if rlevel(t~) > L(oi) .
In such cases ti is not allowed to write to o~ (case (6) of Figure 1), or to create an
object with security level below rlevel(t~) (case (7) of Figure 1). A key element of the
message filter algorithm is that the rest.ricted status is propagated along with further
messages sent out by a method invocation to other objects (exactly so far as is needed
for security purposes). This is critical in preventing indirect information flows.

To understand how the message filter algorithm propagates the restricted status
on method invocations, it is useful to visualize the generation of a tree of method invo-
cations. The root to is a "spontaneous" method invocation by a user. The restricted
method invocations are shown within shaded regions. Suppose tk is a method for ob-
ject ok, and tn a method for object o~ which resulted due to a message sent from tk
to o,~. The method t~ has a restricted status because L(on) < L(ok). The children
and descendants of tn will continue to have a restricted status until t~ is reached. The
method ts is no longer restricted because L(o~) > L(Ok), and a write by t~ to the
state of o, no longer constitutes a write-down. This is accounted for in the assignment
to rlevel(t2) in case (3) of Figure 1.

The variable rlevel clearly plays a critical role in determining whether or not the
child of a restricted method should itself be restricted. A method invocation potentially
obtains information from security levels at or below its own rlevel. It follows that a
method invocation should only be allowed to record information labeled at levels which
dominate its own rlevel. For example, consider a message sent from a Secret object to
a Confidential one (where Secret > Confidential). The rlevel derived for the method
invocation at the receiver object will be Secret.

We now discuss the security mediation of primitive messages. Read operations
(case (5)) never fail due to security reasons because read-up operations cannot occur.
This is because read operations are confined to an object's methods, and their results
can only be exported by messages or replies which are filtered by the message filter.
Write operations (case (6)) will succeed only if the status of the method invoking the
operations is unrestricted. Finally, create operations (case (7)) will succeed only if the
rlevel of the method invoking the operation is dominated by the level of the created
object. If a write or create operation fails, a failure message is sent to the sender. This
failure message does not violate security since information flows upwards in level.

There has been relatively little additional work on mandatory security related is-
sues in the object-oriented databases, although some work does exist. Meadows and
Landwehr [397] are the first to model mandatory access controls using object-oriented
approach, however, their effort is limited to considering the Military Message System.
Spooner in [539] takes a preliminary look at the mandatory access control and raises
several important concerns. In [313, 312, 582, 583], objects can be multilevel. This
means, for example, that an object~s attributes can belong to different security levels,
which in turn means that the security system must monitor all methods within an
object. We consider this to be contrary to the spirit of the object-oriented paradigm.
Finally, Millen and Lunt in [397] mention some problems associated with having mul-
tilevel objects. In their model, only single-level objects are permitted; however, the
notion of subjects is still retained, and subjects are assigned security levels.

2.4. D I S C R E T I O N A R Y A C C E S S C O N T R O L 25

2.4 Discretionary Access Control
In this section we present an authorization model for discretionary access control that
has been proposed by Rabitti et al. in the ORION/ITASCA framework [460], followed
by the extensions to this model that have then been proposed by Bertino and Weigand
in [57]. We also illustrate how the authorization models proposed in [53] and [8] ex-
ploit the object-oriented approach in the development of a discretionary access control
mechanism.

2.4.1 The ORION Authorization Model

This model enforces a discretionary protection policy which takes into consideration
the relationships existing among the database objects, the access modes through which
objects can be accessed, and the subjects which can access the objects. In particu-
lar these relationships are used to derive new authorizations from the authorizations
specified by the users. Moreover, the model takes into consideration characteristics of
object-oriented systems such as inheritance, composite objects, and versioned objects.

S u b j e c t s
The model considers, as subjects, groups of users (roles) into which users are or-

ganized on the basis of the activities they execute in the olganization. A user may
belong to more than one role. Roles are related by meaaas of an implication relation-
ship. A role R1 is in implication relationship with another role R2 if and only if the
authorizations associated with role R1 subsume the authorizations associated with role
R2. In particular, this corresponds to saying that all users belonging to role R1 also
belong to role R2. For example, an implication rink between the role "accountant"
and the role "employee" indicates that accountants are also employees and therefore
all authorization specified for the role "employee" are considered valid also for the
rote "accountant." According to the implication relationship, the set of roles forms a
lattice, called a role lattice. An example of a role lattice is shown in Figure 2.2.

An arc directed from role R1 to role R2 indicates that role Ra is in implication
relationship with role R2. T h e root of the lattice (topmost role) corresponds to a role
which has the authorizations of any other role in the system. The bottom most role
corresponds to a role which has a set of base authorizations executable by any role. On
the basis of the implication relationship, and therefore of the role lattice, a partially
ordered relationship (>) is defined on all subjects as follows:

Given two subjects s~ and s j , s~ > sj if an impfication rink exists directed from si
to sj in the role lattice; si > sj if s~ = sj or si :> s 3 or there exist subjects sl, s~ , . . , sn
such that si > sl > 82 > . . . > sn > sj .

For the role lattice shown in Figure 2.2, we have Super_user > Chief_accountant >
Accountant > Employee.

O b j e c t s
The ORION authorization model considers the following objects as objects to be

protected: databases, classes in the database, instances of classes and their components
(attributes, values, and methods). The model also considers sets of objects of the same
type that have a common root (e.g., the set of instances of a class or the set of values of
an attribute) as objects to be protected. In this way authorizations can be specified on
the set of objects contained in a given object using the same access modes specified for
the object itself, without the need of introducing further access modes. For example,

26 C H A P T E R 2. A C C E S S C O N T R O L S I N O 0 D A T A B A S E S Y S T E M S

Superalser

Chief.accountant Manager

Accountant Consultant Permanent

Employee

F i g u r e 2.2: A n e x a m p l e o f a role l a t t i ce

it is not necessary to use two different access modes to refer to the read privilege on
a class definition and the renal privilege on the instances of the class. The meaning of
the access mode, and therefore of the authorization, will depend on the type of object
to which the authorizat ion is referred.

Like the subjects, objects are also related by means of an implication relationship.
An implication link from object ol to object 02 indicates that the authorizations spec-
ified on ol can also be used on o2. On the basis of the implication relationship two
structures are defined: an authorization object schema (AOS), defining the implication
links between object types, and an authorization object lattice (A OL), defining the re-
lat ionships between the instances of the authorizat ion objects. An AOL is therefore an
instance of an AOS for a given system. Every authorizat ion object in the AOL is an
instance of only one object type indicated in the AOS. Examples of an authorizat ion
object schema II and an authorizat ion object lat t ice are shown in Figures 2.3 and 2.4,
respectively.

On the basis of the AOL, a partially ordered relationship (>) exists among all
objects:

Given two objects oi and oj, oi > oj if an impfication link exists directed from oi
to oj in the authorizat ion object lattich; oi > oi if oi = oi or oi > oj or there exist
objects o l , o 2 , . . . o n such tha t oi > ol > o2 > . . . > on > oj.

A c c e s s m o d e s
The model considers the following access modes:

�9 Write (W) to write to an object.

�9 Wri te_Any (W A) it is analogous to the Write access mode. It allows writes to an

II The nodes shown in italics correspond to authorization objects representing a set of objects
of the next lower level.

2.4. D I S C R E T I O N A R Y ACCESS CONTROL 27

System

l
Database

Class

1
Set@instances

Instance

Seto]-Attribute- Values

1
Attribute-Value

F i g u r e 2,3: A n e x a m p l e of an a u t h o r i z a t i o n o b j e c t s c h e m a

object. It is considered for completeness purposes in the implication rules based
on access modes.

�9 Read (R) to read an object. When referred to a method indicates tha t the
me thod can be executed.

�9 Generate (G) to create instances of an object.

�9 Read_Definition (RD) to read the definition of an object.

The model does not consider administrat ive privileges. Any subject tha t has spe-
cific privileges can grant or revoke these privileges of other subjects. Therefore, the
authorizat ion for an access implies the authorizat ion to administer (grant and revoke)
the access.

Not all access modes are meaningful for every object. In particular, the access
modes executable on an object depend on the object type. Given the access modes
in t roduced earlier, an access authorization matrix (AAM) states, for every object type
and access mode, whether the access mode is executable on objects of tha t type. An
example of an A A M is given in Figure 2.5.

Access modes are related by means of an implication relationship. An impfication
rink f rom access mode al to access mode a2 indicates that the access mode al on a given
object implies the access mode a2 on the same object. For example, the impfication
rink between the access mode "write" and "read" indicates tha t the authorizat ion to
wri te an object impfies the authorizat ion to read the same object. On the basis of the

28 C H A P T E R 2. A C C E S S C O N T R O L S I N O 0 D A T A B A S E S Y S T E M S

J
J

class[Contract]

System

~ese~ch] ~t~s~[~D]

class[~ .eport] class~roject]

se tof - ins ta~

instance[l] instance[2] instance[3]

1
attribute-value[authors] attribute-value[object]

Figure 2.4: An example of an au thor iza t ion object lat t ice

implication relationship, access modes form a lattice named author iza t ion type lattice
(A T L) . This lattice is shown in Figure 2.6.

A link directed from node ai to node aj indicates that access mode ai implies access
mode aj . A partially ordered relationship (~) is therefore defined on the access modes:
Given two access modes a~ and a j: a~ > aj if an implication link exists directed from
ai to aj in the access mode lattice; ai ~ aj if ai = aj or ai > aj or there exist access
modes al , a 2 , . . , an such that ai > al > a2 > . . . > an > aj .

Access modes are grouped into three classes: A.up, containing all access modes
which axe propagated from low objects to higher objects in the AOL; A.down, contain-
ing all access modes which are propagated from high objects to lower objects in the
AOL; and A.ni l , containing all access modes which are not propagated. These groups
are as follows:

A . u p --- { WA, RD} . For example, the authorization for the RD mode on the instances
of a class, which permits reading of their definition, implies the authorization
for the RD mode on the class itself. Analogously, the authorization for the RD
mode on a class implies the authorization for the RD mode on the database to
which the class belongs.

2.4. D I S C R E T I O N A R Y A C C E S S C O N T R O L 29

W W A R G R D
S y s t e m t t t t t

Database t t t t t
S y s t e m t t t t t

Class t t t f t
Se to f - Ins tances t t t t t
Instance t' t t f t
Seto]-At t r - Values t t t f t
Attribute-Value t t t f t

F igu re 2.5: A n e x a m p l e of an au tho r i za t ion assoc ia t ion m a t r i x

w

RD

F igure 2.6: An example of an au tho r i za t ion type la t t i ce

A . d o w n = { W, R}. For example, the authorization for the R mode on a class, which
allows reading of the class information, implies the authorization for the R mode,
meaning reading, on the instances of the class.

A . n i l = { G}. The authorization to create objects cannot be propagated among objects
related in the AOL.

I m p l i c i t a n d E x p l i c i t A u t h o r i z a t i o n s

The ORION authorization model allows the derivation of new authorizations from those
specified by the users. The derivation of new authorizations is based on the implication
relationships existing among subjects (e.g., a manager can access the information his
employees can access), among objects (e.g., the authorization to read a class implies
the authorization to read all instances of the class), and aznong access modes (e.g.,
the authorization to write an object implies the authorization to read the object), as
expressed in the respective lattices.

30 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

Authorizations specified by users are called explicit, whereas authorizations derived
by the system are called implicit. Beside this classification, two other orthogonM classi-
fications are introduced. These concern the distinction between positive authorizations,
stating access privileges, and negative authorizations, stating denim of privileges, and
between strong authorizations which cannot be overwritten by other authorizations
and weak authorizations which can be overwritten by other authorizations.

Authorizations are grouped into two sets: an authorization base (AB) grouping
all strong authorizations, both positive and negative, and a weak authorization base
(WAB) grouping all weak authorizations, both positive and negative. In the following,
strong authorizations will be indicated by listing them between round brackets () ,
whereas weak authorizations will be indicated by listing them between square brackets
[].

A positive strong authorization is described as a triple (s,o,a) indicating that
subject s can access object o in access mode a. A negative authorization is described
as a triple (s, o, -~a) indicating that subject s cannot access object o in access mode a.

The system ensures that the set AB, consisting of strong authorizations, is free
of (1) inconsistency, i.e., there do not exist two authorizations such that both are
derivable from the authorizations in AB and one is the negation of the other, and (2)
redundancy, i.e., an authorization should not be in AB if it can be derived from other
authorizations already present in the AB.

The set WAB, consisting of all weak authorizations, groups all authorizations,
positive and negative, which are classified as weak, i.e., which can be overwritten
by strong authorizations. A weak positive authorization is characterized by a triple
Is, o, a] stating that subject s can execute access mode a on object 0. A weak negative
authorization is characterized by a triple [s, o, -~a] stating that subject s cannot execute
access mode a on object o.

To avoid having an access request for which neither a positive authorization nor a
negative authorization is derivable from the system, the system ensures the complete-
ness of the authorization bases, i.e., for any possible access that users can request, the
corresponding negative or positive authorization can be derived from the authorization
bases. Moreover the system ensures that the set of weak authorizations is free of any
inconsistency, i.e., an authorization and its negation cannot be both derivable at the
same time from the set of weak authorizations.

Unlike AB, redundancy is allowed in WAB, i.e., an authorization can exists in
WAB even if it is impfied by existing authorizations. Therefore, an authorization
already implied by some authorizations in WAB can be inserted in WAB.

A further property, required on the union of WAB and AB, is that a weak autho-
rization must not be present, either as impficit or explicit, as a strong authorization
as well. Since weak authorizations are used to complement strong authorizations, the
system avoids insertion of those weak authorizations that are Mready present, either
explicitly or implicitly, in the strong authorization base.

R u l e s f o r t h e D e r i v a t i o n o f I m p l i c i t A u t h o r i z a t i o n s a n d A c c e s s C o n -
t r o l

Implication rules determine how new authorizations, called implicit, are derived from
the authorizations explicitly defined by the users. These rules are based on the rela-
tionships existing among subjects, objects, and authorization types.

Implication rules, summarized in Figure 2.7, are defined for strong authorizations.
Implication rules for weak authorizations are derived from the implication rules defined

2.4. D I S C R E T I O N A R Y A C C E S S C O N T R O L 31

for strong authorizations. Authorizations derived from strong (weak) authorizations
are also considered as strong (weak). The implication relationship among strong autho-
rizations is denoted by --~. The implication relationship between weak authorizations
is denoted by ~--~.

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Vsz,sk E S, oi,oj E O,a~
Sk > 8l~Oi > o j , a n >_ am

Vsl, sk 6 S, ol, oj E O, an
sk ~ sl,oi ~ oj~an > am

Vsl,sk E S~Oi,Oj 60, an
Sk >_ Sl,Oi : oj,an >_ am

Vsl, sk 6 S, o{, oj E O, a~
Sk ~ SllOi > o j , a n ~_ am

Vsl,sk 6 S,o{,oj 60, an
Sk > Sl,Oi >> oj~an >~ am

Vsl,sk E S, oi,o i 60, an
sk >_ st, oi = oj,an >_ am

E A.down, a m E A :
(s . o;, a~) -~ (s~, o~, a~)

E A, a m E A.up :
(s~, o~, a~) -~ (s~, o~, a~0

E A.nil, a,~ E A :
(~,, oj, no) -~ (~ , o,, a~)

E A.down, am G A :

EA, a m E A . u p :
(sk, o., ~a~) ~ (s~. oj, -~a~)

E A.nil, a,~ E A :
(sk, o . ~am) -~ (s . o3, ~a~)

Figure 2.7: Impl ica t ion rules for strong author iza t ions

The implication rules for the derivation of strong positive authorizations can be
summarized as follows:

i Authorizations with access mode belonging to A.down are propagated]or subjects
at higher levels, and]or objects and access modes at lower levels as described
in the corresponding lattices (Rule 1). Since every subject, object, and access
mode is > and <_ itself, this rule allows the derivation of, from an authorization,
authorizations involving the same or different subject, object, and access mode.

�9 Authorizations with access mode belonging to A.up are propagated for subjects
and objects at lower levels, and for access modes at higher levels as described in
the corresponding lattices (Rule 2). Again, since any subject, object, and access
mode is > and < itself, this rule allows us to derive, from an authorization,
authorizations involving the same or different subject, object, and access mode.

�9 Authorizations with access mode belonging to A.ail, therefore not propagatable
in the authorization object lattice, are propagated]or subjects at higher level
and]or access modes at lower level as described in the corresponding lattices
(Rule 3). Therefore, starting from an authorization, new authorizations on the
same object, with the same or different user and access mode can be derived.

From these implication rules, according to the property that given two predicates
p and q: p ~ q r -~q --* -~p, analogous implication rules for negative authorizations
are defined.

32 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

The implication rules for weak authorizations are the same as those for strong au-
thorizations. The only difference is that, since weak authorizations can be overwritten,
the derivation of authorizations from an explicit weak authorization stops where an-
other more specific explicit authorization starts.

A c c e s s c o n t r o l
Derivation of authorization is used in the access control as follows. Given a re-

quest of a subject to exercise an access mode on an object the strong authorizations
are examined. If there exist a strong authorization, either explicit or implicit, which
authorizes, or denies, the access, then the access is authorized, or denied, respectively.
If there does not exist any strong authorization for the access, the weak authorizations
are examined, and the access is either granted or denied based of the outcome.

To illustrate how the implication of authorizations work, consider the role lattice
shown in Figure 2.2, the AOS shown in Figure 2.3, and the ATL shown in Figure 2.6,
and suppose that the strong authorization base contains the authorization (Permanent,
database[Research], W). Suppose now that the authorization (Manager, instance[I]
of class[Report], R) needs to be checked. Along the subject domain, we have that
Manager > Permanent. Along the objects domain we have that database[Research]
> class[Report] > instance[I]. Finally, along the authorization type domain we have
W > R, with W E A.down. Therefore, by applying Rule 1 we have that (Permanent,
database[Research], W) --+ (Manager, instance[l] of class[Report], R). Therefore, the
authorization is satisfied.

I n h e r i t a n c e H i e r a r c h i e s , C o m p o s i t e O b j e c t s , a n d V e r s i o n s

In this section, we illustrate how the ORION authorization model takes into consid-
eration characteristics of the object oriented systems such as inheritance hierarchy,
composite objects, and version.

Inheritance hierarchies
When a class is defined as subclass of another class, there are two approaches which

can be taken concerning authorization on instances of the subclass.
The first approach is that the creator of a class should have no implicit authorization

on the instance of the subclasses derived from his class by some other user. For example,
in reference to the AOL shown in Figure 2.4, if class Technical_Report is defined as
a specialization of class Report, the creator of class Report should not be able to
read or update the instances of class Technical_Report, unless explicitly authorized
for that from the creator of class Technical_Report (or other authorized user). This
approach allows users to reuse existing classes without compromising the protection of
the subclasses generated.

A second approach is that the creator of a class should have implicit authoriza-
tions on instances of a subclass. For instance, in the above example, the creator of
class Report will be implicitly authorized to update and read instances of class Tech-
nical_Report.

With respect to query processing, the first approach implies that an access whose
scope is a class and its subclasses will be evaluated only against those classes for which
the user issuing the query has the read authorization, whereas in the second approach,
it would be evaluated against the class and all its subclasses.

The ORION authorization model adopts the first approach as default, and supports
the second as a user option. This choice is motivated by the reason that under the

2.4. DISCRETIONARY ACCESS CONTROL 33

second approach, a user wishing to derive a class from another class would not have
any privacy on the instances of the subclass (which are readable by the creator of the
superclass). Therefore, users could be discouraged from reusing existing classes not
taking advantage of the characteristic of inheritance.

When multiple inheritance is allowed, implicit authorizations along the class hier-
archy may give rise to conflicts. Conflicts are handled by rejecting insertion of new
authorizations when it conflicts with some other authorization already present in the
system.

To allow authorizations for generating subclasses, the access mode subclass-generate
(SG) is added to the set of access modes. If a user is authorized for the SG access mode
on some class, the user can define subclasses on it. Access mode SG belongs to the set
A.nil, i.e., it is not propagated in the AOL. Moreover, the following relationships hold:
W > SG > RD. Given these relationships, authorization along the specialization hier-
archy can be derived according to the rules given in the previous section. For example,
if a user has the write authorization on a class, the user is implicitly authorized to
generate subclasses from the class; if a user has the SG authorization on a class, then
the user has implicitly the RD authorization on the class. Indeed, a user, in order to
create a subclass from a class C, must be able to read the definition of C. Therefore,
the authorization to generate a class from a given class C implies the authorization to
read the definition of C.

C o m p o s i t e o b j e c t s
Composite objects are taken into account in the model by considering a composite

as an authorization unit. This "allow a single authorization granted on the root of a
composite object to be propagated to all components without any additionM explicit
authorization. This can simply be enforced by representing the composite relationship
among objects in the authorization object lattice. The defined implication rules can
therefore be used to derive authorizations across composite objects. For example, if
a user can read a composite object, then the user is automatically authorized to read
the objects which compose it. It should be noticed that the implicit authorization only
holds for the objects which belong to the composite object. For example, suppose a
class C is defined on class C1 and C2. Access authorization to C's instances implies
the authorizations on the instances of C1 and C2 which compose some object of C. No
authorizations for instances of C1 and C2 which do not compose any object of C are
derived.

In this context, negative authorization may give rise to conflicts in the autho-
rization of implicit authorizations. Therefore, care must be taken that authorization
conflicts will not arise. For example, the positive authorization to read a composite
and the negative authorization to read one of its component cannot be present at the
same time, unless the authorization on the component is a weak authorization and can
therefore be overwritten. As in the case of inheritance hierarchy conflicts are avoided
by accepting insertion of a new authorization only in case it does not conflict with
authorizations already specified.

V e r s i o n s
Authorizations can also be specified on a versioned object and on individual versions

of the object. To represent version hierarchy and enforce derivation of authorization
along the hierarchy~ the model extends the authorization objects to include generic
instances and versions. An implication llnk is therefore defined between the generic
instance of an object and the set of versions of the objects. The implication rules can

34 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

then be used to derive new authorizations. For example, a read authorization an a
generic instance of an object implies the same authorization on all the versions of the
object; a write authorization on the set of versions of an object imphes the same au-
thorization on the versions described by the generic instance. The write authorization
on the set of versions of an object is also the authorization to create a new version
from a working version of the instance. The write authorization on a generic instance
allows the user to modify the generic instance (e.g., by changing the default version)
and imphes the write authorization on the version objects described by the generic
instance.

2.4.2 Content-dependent A u t h o r i z a t i o n s

The ORION authorization model has been extended in [53]. In [53] different access
modes have been introduced in reference to different object types, and some implication
rules for the derivation of implicit authorizations have been revised.

An important extension introduced in [53] is the consideration of content-dependent
authorizations, i.e., authorization depending on some properties of the objects to be
accessed. Indeed, in [460] a user is either authorized or denied for an access on an object.
Instead, in [53] it is possible to specify that a user is allowed (denied) for an access on
an object if some conditions on the object are satisfied. Therefore, authorizations are
extended to the consideration of conditions which must be verified for the authorization
to hold. Conditions can be put on any of the objects' attributes. In particular, they
may involve class-attributes, e.g., attributes that characterize the classes themselves
and are not inherited by instances, or instance attributes.

For example, consider the AOL shown in Figure 2.4 and suppose that attribute
status is added to the attributes of instances of class Report. An authorization could
be specified by stating that Employee can read only instances of class Report which
have status "released".

The implication rules defined in [460] are applied also to content-dependent autho-
rizations, Authorizations derived from content-dependent authorizations inherit also
the conditions upon which the access has to be controlled. For example, it is possi-
ble to specify content-dependent authorizations on a class to be evaluated against the
instances of the class and to specify content dependent authorizations on a versioned
object to be evaluated against all versions of the object.

In the case of composite objects, the situation is a little different. Indeed, composite
objects can have components of different classes and their types may be different.
Therefore, conditions may not be evaluable on all the components. In this case the
conditions are considered only in reference to the component against which they can
be applied.

A main issue when dealing with content-dependent authorizations is how to effi-
ciently evaluate conditions associated with authorizations. Since conditions have to
be evaluated over object's attributes, which can change over time, conditions have
necessarily to be evaluated at run-time, therefore necessarily increasing the response
time of the system. In particular, enforcing satisfaction of the conditions expressed
in the authorizations by filtering the data prior to the user access, would require a
double access to the objects (one to evaluate the conditions and the other to satisfy
the user query). The solution considered in relational database system is to simply
add conditions expressed in the authorization to the user query. This approach, known
as query modification mechanism has the advantage of ensuring the satisfaction of the
protection requirements and not overloading the access control.

2.4. DISCRETIONARY ACCESS CONTROL 35

In object-oriented databases, where objects are accessed through methods, which
can be nested, implementation of content-dependent condition is not straightforward.
A possible solution would be incorporating conditions in the method. This approach
has the drawback of having method specification to be dependent on authorizations,
therefore a change in the authorizations would require to change specification of meth-
ods.

A further aspect that must be taken into consideration when considering content-
dependent authorization is that since satisfaction of the conditions in the authorizations
depends on the values of the objects' attributes and can therefore change over the time
is more difficult to ensure the consistency and completeness of the authorizations. For
example, consider the class Documents having as attributes date and status. Suppose
then that subject Employee has to be authorized at the same time for both the positive
authorization to read all documents with date later than "March 3, 1992" and the
negative authorization to read all objects with status "protected". If no object exist
with status protected and date later than "March 3,1992", the authorization state
is consistent. However, since attribute values can change and new objects can be
added authorizations may become inconsistent. Consistency and completeness criteria
and mechanism to satisfy them have therefore to be extended to the consideration of
content-dependent authorizations.

2.4.3 Accessing Objects Through Methods
The model presented in [460] and extended in [56] takes into consideration many of the
characteristics of object-oriented data models such as inheritance hierarchy, versions
and composite objects. However, it does not exploit the potential of encapsulation
typical of the object-oriented approach. In fact, all accesses made during a method
execution are further checked against the user who invoked (directly or indirectly)
the methods. For example, if during the execution of a method invoked by a user,
an attempt is made to modify the attribute of an instance, the authorization for the
user to update the attribute must be checked. In some cases, where encapsulation is
meant to provide protection, it is desirable not to give the users the authorization to
execute some accesses directly but allow at the same time the accesses to the users
through the execution of some method. For example, users may not be authorized to
write an attribute of an object but can be authorized to run a method which, during
its execution, modifies the attribute. Therefore, since users should not be directly
authorized for the access, no authorization for the users to execute the access executed
by the method should be provided. An authorization model which takes into account
this principle has been presented in [57].

According to many object-oriented languages, the model distinguishes between
public and private methods. Private methods of an object can be invoked only by other
methods of the same object, whereas public methods can also be invoked directly by the
users of the object (i.e., end- users, application programs, other objects). That previous
notion of public/private methods has been further refined by allowing methods to be
defined public with respect to some other methods, of the same or different objects. The
method is then considered private for all methods for which it has not been explicitly
defined as public. In this way, it is possible to specify that some methods cannot be
invoked directly by the users of the object but can be invoked during the execution of
some other methods. The declaration of the methods for which a specific method is
public is provided as part of the class definition to which the method belongs. The set
of methods for which a specific method is public is called the invocation scope of the

36 C H A P T E R 2. A C C E S S C O N T R O L S IN O 0 D A T A B A S E S Y S T E M S

method .
T h e mode l is based on au thor i za t ions for users to execute m e t h o d s on objects .

A u t h o r i z a t i o n s specify, for each user, t he set of m e t h o d s the user can invoke on which
objec ts . Therefore , au tho r i za t ions have the form < o, u, m >, where o is an object , u

is a user, m is a me t hod . Such a tuple specifies t h a t user u is au thor ized to execute
m e t h o d m on ob jec t o. A u t ho r i za t i ons can be specified only on public me thods , i.e.,
on m e t h o d s di rect ly invokable by end-users . In order for a user to execute a me thod ,
the m e t h o d mus t be public for the end-users and the user mus t have the au thor i za t ion
to execute t he m e t h o d . If b o t h these condi t ions are satisfied, the user can execute the
m e t h o d . However, t he fact t h a t the user is au thor ized to r un a m e t h o d does not imply
t h a t t he user will be able to always execute all act ions t h a t are pa r t of the me thod .
Indeed, o t h e r m e t h o d s can be invoked dur ing execut ion of the m e t h o d called by t he
user, and, therefore , several access controls m a y be pe r fo rmed dur ing the execution.
In par t icu la r , if dur ing the execut ion of a m e t h o d m ano the r m e t h o d m j is invoked,
the invoca t ion is allowed if e i ther m ~ is public for end-users and the user has the
au tho r i za t i on for it or m ~ is p r iva te for end-users and m belongs to the invocat ion

scope of m ~.
T h e mode l allows users to g ran t o ther users au thor iza t ions to execute methods .

A user can g ran t such au tho r i za t ions on an ob jec t if the user is the c rea to r or one of
t he owners of the objec t . Each ob jec t is wssociated wi th a creator , i.e., t he user Who
c rea ted the objec t , and some owners. T he c rea tor of an ob jec t is always unique bu t
can change dur ing the l ife-t ime of the objec t . In fact, i t is allowed for the c rea to r of an
ob jec t to give the privilege of be ing c rea to r to some o ther user. Since the c rea to r mus t
be unique, so doing the first user looses the c rea to r privilege on the object , which is
passed to t h e o the r user. T h e c rea to r can also add and delete owners for the objec t .

Any owner of an ob jec t can g ran t and revoke au thor iza t ions to execute me thods on
the ob jec t to o the r users. A user can revoke only au thor iza t ions t h a t he gran ted .

T h e model in t roduces also the not ion of protection mode for m e t h o d execut ion

au thor i za t ions . If user u g ran t s user u' t he au thor i za t ion to execute m e t h o d m in
p ro t ec t i on mode, t h e n when u ~ executes m, all invocat ions of m e t h o d s public for end-
users m a d e by m are checked for au tho r i za t ions not against u ' , who called the me thod ,

b u t aga ins t u, i.e., agMnst the user who g ran ted u ~ the au thor i za t ion on the method**.
In th i s way users can g ran t o the r users the privilege of execut ing some m e t h o d s on an
ob jec t no t directly, bu t by using some o the r me thods .

A model apply ing a s imilar approach hws been proposed in the contex t of the Iris
D B M S [8]. There , ob jec t s (and the i r da t a) are encapsu la ted by a set of funct ions ,
i.e., to access an ob jec t , users call t he appropr i a t e funct ions t t Au thor i za t ions specify
for every user, t he set of func t ions the user is allowed to call. Au thor i za t ions can be
referred to single users as well to groups of users. A user can belong to zero or more
groups, and groups can be nested.

T h e model s u p p o r t s the concept of ownership, in par t icular , the user who creates
a func t ion is cons idered the owner of the func t ion and can gran t o ther users the au-
t ho r i za t i on to call t he funct ion. Th i s au thor i za t ion can also be given wi th the g ran t
opt ion. If a user has the g ran t opt ion on the au thor i za t ion to call a funct ion, the user
can g ran t o the r users the au tho r i za t ion to call t he funct ion and the g ran t opt ion on

**The concept of protect ion mode is very similar to the set user-id on execution concept
considered in the Unix operat ing system.

ti'lax the Iris da ta model b o t h a t t r ibutes and methods are represented as functions. In
part icular , a t t r ibu tes are defined as stored functions, while methods are defined as derived
functions.

2.4. DISCRETIONARY ACCESS CONTROL 37

it. The grant privilege is also enforced as a function: the authorization for the grant
privilege on a function f is represented by the authorization to call the grant function

with f as argument.
Functions can be defined on other functions. Authorizations on derived functions

can be defined as static or dynamic. If a user has the dynamic authorization on a
derived function, in order for the user to successfully call the function, the user must
have the call privilege on all the underlying functions. By contrast, in order to call
a derived function on which he has the a static authorization, a user does not need
to have the call authorization to the underlying functions. The concepts of static and
dynamic authorizations correspond to the concepts of protection and non-protection
execution modes for methods discussed earlier [57].

When a user creates a derived function, the user must specify whether the autho-
rizations on the defining functions must be checked statically or dynamically. In either
case, the creator of the derived function must have the call authority on all the under-
lying functions. If the creator specifies that the function must have dynamic authoriza-
tion, the user can grant other users the authorization to call the function. By contrast,
if the function is specified to have static authorizations, the user can grant other users
the authorization to call the derived function only if he has the grant privilege on all the
underlying functions. Derived functions can also be used to support content-dependent
authorizations. In this case, users are not authorized directly for a function, but on a
function derived from it which enforce some constraints. For example, suppose to have
an class Employee storing information about the employees and a function "Salary",
defined on it, returning the salary. Thought some employees can be authorized to read
the salary of everybody, some employees could be restricted to see their own salary.
This condition can easily be enforced by defining a derived function "Self_Salary" which
takes into consideration the caller of the function and calls function "Salary" to return
the user's salary. Since users cannot be authorized to call directly function "Salary",
the authorization to be specified on function "Self_Salary" is a static one. However,
the application of derived function to enforce content-dependent authorizations has
the drawback of embedding authorizations in the function implementation, therefore a
change of authorizations would imply a change in the implementation of some derived
function.

The authorization model takes also into consideration the characteristic of poly-
morphism of object-oriented systems. Polymorphism allows to specify functions, called
generic functions which have associated a set of specific functions that are defined on
different types tt. When a generic function is called, a specific function is selected
for invocation (late binding). Authorizations can be specified on generic or on specific
functions. A user authorized to call a generic function is automatically authorized to
call all specific functions of that generic function. When a user calls a generic function,
the corresponding specific function is selected and the user is allowed for it only if he
has the authorization on the specific function. The specific function can be selected
regardless of the user's authorizations (authorization-independent resolution)or by tak-
ing into account the user's authorizations (authorization-dependent resolution). The
authorization-dependent resolution has the disadvantage that the query semantics is
in this case dependent on the authorization-policies.

Functions can also be specified as having a guard function. If a function has a guard
function associated with it, the function can be executed only if the guard function

$$The concept of type in the Iris data model is equivalent to the concept of class in discussed
in Section 2.

38 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

returns value "true". Guard functions can therefore be used to specify conditions
which have to be satisfied for the users to execute some function. Since guards enforce
conditions by evaluating them prior to the execution of the function they control, they
are really useful for evaluating preconditions, i.e., conditions independent on the values
returned by the controlled function. Indeed, in order to enforce conditions on values
returned by the controlled function, the controlled function itself should be called and
its results evaluated by the guard.

Another concept introduced by the model is that of proxy functions. Proxy func-
tions provide different implementations of specific functions for different users. A func-
tion may have associated several proxy functions. When a user calls a function, the
appropriate proxy is executed in place of the original function. Therefore, the result
of a function may change depending on the user calling it. Proxy functions have the
advantage of allowing to enforce constraints on function execution by users without
any impact on the function implementation.

2.5 R e s e a r c h Issues in M a n d a t o r y A c c e s s Con-
trol

We now discuss ongoing research aiming at extending in various directions the message
filter model presented in Section 2.3.

2.5.1 Model ing Multi level Entities as Single-level Objects
In the message filter model, all objects are single-level in that a unique classification
is associated with the entire object. This constraint is essential in order to make the
security monitor small enough so that it can be easily verified. However, entities in
real world are often multilevel: some entities may have attributes of different levels
of security. Much modeling flexibility would be lost if multilevel entities could not be
represented in the database.

A preliminary approach that maps multilevel entities in terms of single-level ob-
jects is given in [288]. It is based on using inheritance hierarchies. Unfortunately, this
approach suffers from several problems. First, it leads to a replication of information.
Since a multilevel entity is modeled as several single-level objects in a class hierarchy,
some at tr ibutes of high level objects are replicas of attributes of low level objects (be-
cause of inheritance). Second, if not carefully monitored, updates may lead to mutual
inconsistency of replicated data. To illustrate, suppose that an update is performed
on an at t r ibute of a low level object. This update cannot be propagated to the corre-
sponding at t r ibute of the high level object because the low level object does not store
any reference to the high level object. (Note that although writing up is permitted
under the Bell-LaPadula paradigm, an important requirement is that the existence of
high level objects must be hidden from low level objects. Therefore, low levels objects
cannot have references to high level objects.) The third problem with this approach is
that the notion of inheritance hierarchy becomes overloaded since it is used both for
conceptual specialization and for supporting multilevel entities.

To solve the above problems, a different approach based on composite objects and
delegation has been recently proposed by Bertino and Jajodia [54]. The notion of
composite object is a modeling construct that allows to consider an object and a set
of component objects as a single object [320]. Delegation allows an object to perform

2.5. RESEARCH ISSUES IN MANDATORY ACCESS CONTROL 39

some of its functions by simply delegating their executions to other objects. In this
approach, an entity E, with at tr ibutes of n, different levels of security, is modeled by
a number nz of single-level objects. An object Oz~ would contain all at tr ibutes having
security level l~. Moreover an object OL~ would contain a composite at t r ibute whose
value is the object O,i_ 1 . Thus, a multilevel entity would be decomposed in several
single-level objects such that an object at a level Iz has as component objects the objects
whose security levels are lower than l~. Whenever an object needs to retrieve values of
at t r ibutes of lower level objects, this object can delegate the appropriate component
object the execution of the retrieval operations. An attractive aspect of this approach is
that it allows the same object interfaces. An interface of an object is the set of messages
that are defined for the object, to be provided to users as if multilevel objects were
directly provided, while retaining at the same time the simplicity of the message filter
approach and of the single- level objects.

There are several aspects of composite references that have been refined to take
into account security requirements. As previously discussed, different types of com-
posite references have been identified by Kim, Bertino, and Garza [320]. They can be
categorized as follows:

1. exclusive dependent reference
if an object O is component of an object O ~, it cannot be component of another
object; moreover if O I is removed, O is also removed

2. exclusive independent reference
if an object O is component of an object 0 I, it cannot be component of another
object; the deletion of O' does not imply the deletion of O

3. shared dependent reference
an object O can be component of several objects; O is removed when all parents
objects, on which O depends for existence, are removed

4. shared independent reference
an object O can be component of several objects; the deletion of the parent
object does not imply the deletion of O.

Some of these categories may result in violations of security requirements. For
example, the exclusivity constrains can be used by a low user to infer the existence of
a high object. To overcome this problem, two additional forms of exclusive composite
references have been introduced. The first form consists of a composite reference which
is exclusive with respect to a class. That is, no two instances of the same class may
share a component, however, there could be instances of other classes with references
to tha t component. The second form is similar to the first, with the difference that the
exclusivity constraint is with respect to a class hierarchy. That is, no two members of
the same class can share a reference to the same component. (The members of a class
are the instances of the class and the instances of all its subclasses.) The motivation
for introducing those additional form of exclusivity constraints is to support some form
of semantic integrity for composite objects. The approach proposed by Bertino and
Jajodia [54] also covers multilevel entity types that are organized in specialization
hierarchies, including the case of multiple direct supertypes.

Finally, it is important to note that while the use of composite objects combined
with inheritance hierarchies allow to model a large variety of application entities, when
dealing with real applications the number of entity types and specialization hierarchies
among them can be quite large. Therefore, it is crucial that the process of generating

40 C H A P T E R 2. ACCESS CONTROLS IN O 0 D A T A B A S E S Y S T E M S

an object-oriented schema be supported by some automatic tool. A security specifi-
cation language has been proposed by Bertino and Jajodia [54] whose purpose is to
describe the entity types and the specialization hierarchies together with their security
requirements. Those specification can then be translated in terms of an object-oriented
schema through a set of translation rules, based on the approach we have previously
discussed.

2.5.2 Object Updates and Secure Garbage Collection Mech-
anisms

Under the approach described in the previous subsection, updates do not pose any
obstacles to security. If an object o is part of some composite object, any updates to
the at t r ibutes of o are directly visible to the composite object.

By contrast, the delete problem is more difficult to deal with. There are basically
two ways in which the delete operations have been implemented in various OODBMSs:
systems allowing users to perform explicit delete operations (like ORION [319], and Iris
[189]), and systems using a garbage collection mechanism to remove objects that are
no longer reachable from other objects (like GemStone [79] and 02 [150]). In systems
belonging to the second category, an explicit delete operation is not av~dlable to the
u s e r s .

Systems with explicit delete operations allow an object to be deleted even if there
are references to it. If a message is sent to a deleted object, the system returns a
notification to the invoker object. Therefore, the invoker object must be ready to deal
with the exception arising from a dangling reference. This approach is used by the
ORION system, and it is also suggested by Zdonik [642]. Note that in those systems,
OIDs of deleted objects are not re-used. This approach works well with the composite
object approach. For example, consider objects ol and 02, such that o2 is a component
of ol. If object o~ (a component of object ol) is removed, the next time a message is
send from object ol to object 02, object ol will be notified that the referenced object
does not exist.

The above approach has been refined in two directions. The first, called upward
cascading delete, is similar to the approach proposed by Jajodia and Sandhu [292]
for the delete operations in the multilevel relational secure model. In that approach,
each time a tuple t of a given security level l is removed, all polyinstatiated tuples
corresponding to t and having a security level greater than 1 are also removed. In our
framework, this approach means that the deletion of a component should cause the
deletion of its parent object. For example, if object o2 (a component of object ol) is
removed, then also object ol should be removed. Note, however, that object o2 does
not know the OID of object ol (because o2 is an object whose security level is lower
than the one of ol). Therefore this approach cannot be implemented by simply having
object o2 sending a delete message to object ol.

The second approach, called here conservative delete, is the opposite of the previ-
ous one, in that it aims at preserving information for high level objects. Under this
approach, the low level object would still be deleted; however, a new corresponding
high level object would be created. For example, if object o2 (a component of object
ol) is removed, then a new object 02, is created having the same at tr ibute values as
o2 but having the same security level as ol. Note that ol will still be notified that o2
has been removed. However, all information contained in o2 will be still available to
object ol.

2.5. RESEARCH ISSUES IN MANDATORY ACCESS CONTROL 41

The approach for support ing both the previous delete modalit ies is based on using
the message filter as an active component; it will need to notify objects at high levels
tha t events have occurred concerning related objects at low levels.

In systems based on garbage collection an object is automatical ly removed by the
system when it is no longer referenced by any other object. This approach, if not
properly modified, would cause some problems in a secure environment. Indeed, a
low object would not be removed if a reference exists from a high object to this low
object . Therefore, a low user may infer the existence of a high object referencing the
low object . Note tha t even though the low user will not be able to infer the OID of
the high object , a signaling channel could be established. Another serious drawback
is tha t the garbage collector would have to access objects at various levels of security.
This would require the garbage collector to be a t rusted component .

We are invest igat ing a different approach which does not require the garbage col-
lector to be trusted. The approach requires a garbage collector for each security level.
The garbage collector associated with a level I removes an object at level I only if all
references from other objects at level l have been removed. Since the garbage collector
at level l does not see references from objects at levels higher than 1 (because it does
not see those objects at all), it will remove an object o at level 1 as soon as all references
f rom objects at the same level as o have been removed. Note tha t removing a reference
f rom a high object to a lower object cannot cause the low object to be removed. Indeed,
suppose tha t removing a reference from a high object o to a low object o ~ causes o j to
be removed. This means tha t the reference from 0 to o' is the last existing reference
to o'. However, this s i tuation cannot arise because the garbage collector at the level
of o' would remove o ~ as soon as the last reference to o ~ from an object at the same
level has been removed. Therefore, if a reference from a high object to a low object is
removed, we have two cases: (i) the low object has already been removed; (ii) the low
object has another reference from its same level and then it is not removed. In both
cases, the removal of the reference from the high object does not cause any change in
the s ta tus of the low object . It is impor tan t to point out tha t information needed by
the garbage collectors are also par t i t ioned on the basis of security. This means tha t the
informat ion tha t a high object has a reference to a low object is kept at high level. This
is automat ical ly achieved because put t ing a reference from an object o to an object o',
where the level of o is greater than the level of o ~ can only be executed by a subject
with the same level at o. Therefore, all information generated as side-effects of this
upda te (such as the information for garbage collection) are classified at the same level
of o.

Note tha t this approach causes the problem of dangling references. Indeed, a low
object can be removed even if it has some references from high level objects. One
possibility is to allow dangling references and to return a notification, whenever an
object sends a message to a low removed component which has been removed, as in
the case of explicit delete. Another possibility is to use the approaches of upward
cascading delete and conservative delete. Both those approaches, however, require
tha t all deletions issued by the garbage collector pass through the message filter. This
is automat ical ly achieved if the garbage collector internally uses messages.

2.5.3 Poly instant iat ion

The problem of polyins tant ia t ion has been studied in the framework of multi level
relat ional da t a model [292]. A multilevel relation is a relation containing tuples tha t
have different security levels. Polyinstant iat ion arises when there are two or more

42 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

tuples in a multilevel relation having the same value for the primary key. Enforcing
the uniqueness of key value in multilevel relations would lead to a covert channel. A
possible solution consists of requiring that the key be unique not with respect to the
entire relation, but with respect to the set of tuples having the same security levels.

As discussed by Jajodia and Sandhu [292] tuples at different levels in a multilevel
relation are related. Indeed, each instance at an access class c represents the version
of reality appropriate for the access class c. It is important to note that a user with
clearance for a given level may see all tuples of levels equal or lower. One problem is
therefore that the user mus t understand which low level information are correct and
which one have been inserted to provide a cover story, and thus may be discarded.
A consequence of this fact is that discrimination of correct information against cover
information is left to the application programming.

We are currently investigating approaches to this problem in the framework of
object-oriented da ta models. In particular, we are investigating the use of methods as
a way to embed and centralize the appropriate knowledge for distinguishing between
correct information and cover stories. As an example consider an entity type 'Employee'
with at tr ibutes Name, Skill, Salary, and Age. Furthermore suppose that Name and Age
are unclassified, while Salary is classified. Moreover, suppose that Skill is a multivalued
attr ibutes. Remember that in object-oriented data models multivalued attr ibutes can
be directly represented, without any need for normalization, that can assume both
classified and unclassified values (for example, the fact that an employee has certain
skills is secret, while employee's other skills are not). A possible design for the entity
type 'Employee' in terms of single-level object would be by defining two objects. A
first object o, whose level is unclassified, would contain the attr ibutes Name, Age, and
Skill. The Skill value for the unclassified object will contain only those skills that do not
need to be kept secret. A second object o', whose level is classified, would contain as
at tr ibutes Salary and Skill, and in addition a composite at tr ibute containing a reference
to object o (according to the composite object model defined in the first subsection).
Note that the Skill a t t r ibute in the classified object (i.e. o') would only contain the
skills that must be kept secret. Now suppose that the unclassified skills are not a cover
story. In this case, whenever the values of the at tr ibute Skills must be retrieved from
the classified object (i.e. o~), the method retrieving the skills must retrieve the values
of the a t t r ibute Skills from the unclassified object and unioning them with the values of
the at t r ibute Skills from the classified object. By contrast, if the classified skills are a
cover story, the method retrieving the skills from the classified object will only need to
retrieve the values of the a t t r ibute Skills from the classified object. This example shows
that the encapsulation feature of object-oriented da ta model actually allows to shield
the applications from having to deal with discriminating correct information against
cover information. This discrimination is embedded into the methods encapsulating
the object. Note that this solution can be improved by also considering methods
expressed in a declarative language. This makes it easier to formulate, understand,
and manipulate the discrimination criteria for cover information.

2.5.4 Comparison W i t h Relevant Work
The problem of security in object-oriented databases has been previously addressed by
Millen and Lunt [397] and by Thuraisingham [583]. The approach of Millen and Lunt
[397] is based on single-level objects. The strategy proposed by Millen and Lunt for
handling multi-level entities is based on using references to relate objects corresponding
to the same entity. Our approach is based on composite objects, and therefore is simi-

2.6. RESEARCH ISSUES IN DISCRETIONARY ACCESS CONTROL 43

lar, since composite objects are obtained by imposing the part-of semantics on normal
references [320]. However, our approach differs in several aspects. First, we make full
use of the features of object-oriented data models by showing how, through the use of
methods, it is possible to define objects which, even though they are single-levels, are
able to provide the same interfaces, as if multi-level objects were directly supported.
Moreover, we have introduced some extensions to the composite object model to bet ter
modeling the notion of exclusive references, so that no security breaks are introduced.
Then, we have provided an extensive analysis of the use of composite objects when
multi-level entities axe organized in type hierarchies, taking into account also the case
of multiple direct supertypes. Moreover, we have investigated the object delete prob-
lem. The approach proposed by Thuraisingham [583] mainly discusses rules stating
the security policy that must hold among the various objects in an object-oriented
database, such as for example that the security level of a subclass must dominate the
security levels of its superclasses. However, no discussion is presented on the additional
complexity of the security monitor due to the enforcement of the security policy rules.
Moreover, [583] does not discuss the problem of handling multi-level entities.

2.6 Research Issues in Discretionary Access Con
trol

An important research issue is whether the content-dependent authorization mecha-
nism, illustrated in Subsection 4.2, is redundant when user-defined methods imple-
ment authorization rules as part of their execution. A main difference is that content-
dependent authorization rules defined by a constraint language, like one mentioned in
Subsection 4.2, are declarative, while authorization rules defined as part of methods
are expressed in an imperative language. The usage of the constraint language sim-
plifies the definition of authorization rules by users, and saves the users from writing
several methods. However, the expressive power of the constraint language is limited
with respect to the expressive power of a general programming language. Therefore,
both declarative content-dependent and procedural content-dependent authorizations
seem to be useful. However, more investigations are needed on this question. In
particular, there is the need of a comprehensive formal model of discretionary au-
thorization for object-oriented databases encompassing both content-independent and
content-dependent authorizations. The model should also address administration and
ownership issues that are not addressed in the model defined for the ORION system
[460]. Related to this there is the definition of methodological guidances supporting
the authorization administrators and database designers in the task of designing the
proper authorization rules for a given database.

Another relevant problem with the discretionary authorization models previously
discussed, as well as other discretionary authorization models defined for relational
systems, is that their implementations do not provide assurance against Trojan horses.
As discussed in [308], Trojan horses require relatively simple mechanisms to subvert the
discretionary protection mechanisms. For example, a malicious user wishing to illicitly
access some data offers an attractive program to a user who is authorized to access
these data. The program contains some code that performs the advertised service for
the second user, while simultaneously performing the illegal action wished by the first
user. The program could for example copy the da ta into a file to which the first user
is authorized to read.

44 CHAPTER 2. ACCESS CONTROLS IN O0 DATABASE SYSTEMS

We are currently looking at ways of providing protection from Trojan horse attacks
in mechanisms meant for discretionary access controls. The approach we are inves-
tigating is based on keeping for each object an access list and on using the message
filter as a trusted agent able to verify that information flows among the objects in the
system are legal. Since in object-oriented systems all exchanges of information among
objects is based on messages, it should be possible to determine whether illicit trans-
mission of information is about to take place. It is also important to note that in an
object-oriented database system some of the high-level semantic operations are stored
into the database as methods, instead of being dispersed into the application programs.
By making formal verifications of some of these methods~ it should be possible to rely
on some trusted methods, that is, on methods that actually perform the advertised
services. Note that the verification of some of the methods represents a compromise
between the verification of the entire collection of application programs as well as of all
the methods and no verification at all. While verifying all application programs and
all methods is not feasible because the code to verify would be too large, the option of
no verification at all may lead to severe restrictions in the possible computations that
can occur in the system. The possibility of relying on trusted methods will allow us
to relax some of the restrictions that must be placed in a system in which all methods
are assumed to potentially contain Trojan Horses.

2.7 Conclus ion

Access control is a crucial functionality for any data management system. It is not
sufficient that a system makes information available to users. The system has also to
ensure that the information is protected from unauthorized accesses and modifications.
Many security models have been proposed for conventional da ta models. By contrast,
security in object-oriented database systems still presents several open issues. Features
of object-oriented da ta models and languages, such as inheritance, subtyping, and en-
capsulation, bring new protection requirements which make the existing security rood=
els not adequate. Protection of information must be provided without compromising
the advantages provided by the object-oriented approach over conventional systems.
A model is yet to emerge that satisfactorily covers all protection aspects related to
object-oriented database systems, and many problems still remain to be solved. How-
ever some interesting, but not complete, approaches have been investigated addressing
the development of security models specifically targeted to object-oriented database
systems.

In this chapter we have illustrated the protection problems in object-oriented
database systems and reviewed some security models recently proposed. We have
discussed both mandatory as well as discretionary security issues. In the presentation
of the models, we have stressed how some features of the object-oriented paradigm,
which automatically provide some form of protection, can be exploited for security
purposes. Finally, we have outlined some open problems in the field and illustrated
current researches aimed at their resolution.

Chapter 3

The Decomposition Property of Non-Deterministic
Databases

Kumar Vadaparty*,Shamim Naqvi l

3.1 I n t r o d u c t i o n

Motivated by the need for increased modeling power for advanced appfications involv-
ing design, scheduling, planning, etc., a number of at tempts have been made to extend
database technology [188, 339,351, 33, 7, 3,600,264]. Indeed a major selling point for
the newly emerging area of object-oriented databases is the increased modefing power
provided by such systems. Although well motivated, such increased modeling power
comes with a price: query evaluation is more expensive in the database programming
languages (DBPLs) associated with these extended models. Traditionally, database
technology has striven to develop declarative query languages in which the user speci-
fies the query ~nd the system evaluates the query in the best possible way. However,
implicit in this evaluation is a guaranteed upper bound on time (performance guar-
antees). Obviously, such a goal can not be reached if the DBPLs are extended from
restricted languages (relational algebra, Datalog, etc.) to full-fledged programming
languages (such as C + +). Thus, we are faced with two competing goals: increase
the modeling power of declarative query languages, and performance guarantees for
DBPLs.

One approach to deal with these competing goals is to extend the modeling power
incrementally (accounting for the most important needs first), and see if query lan-
guages maintaining performance guarantees can be built for these extensions. One
such extension to modeling power was described in [274, 597, 408] wherein it is shown
that dealing with choices enables us to model more expressive domains. For exam-
ple, in design situations we can state that the implementation medium of a certain
part can be chosen from the set [Cobalt, Nickel]. Such a set of choices is called an
OR-object . A database with OR-objects corresponds to several possible worlds; for
instance, the previous database fact corresponds to two possible worlds: " P a r t # l can
be implemented using Cobalt" and " P a r t # l can be implemented using Nickel". In
[274] OR-objects model da ta involving choices, e.g., the above choices can be stored
as Implement(Part#l,o) where Dora(o) = {nickel, cobalt} gives the domain of the
OR-object o. The two possible worlds corresponding to the choices can be obtained by
replacing the OR-object with a member of its domain: Implement(Part#l , Cobalt)

*Department of Computer Engineering and Science, Case Western Reserve University,OH
44106

IMRE-2E-342,445, South Street, Belleore, Morristown, NJ07960

46 CHAPTER 3. THE DECOMPOSITION PROPERTY

and Implement(Part~l, Nickel). Such a refinement is the database analog of making
a choice. Note that OR-objects encapsulate a specific kind of disjunction, namely, dis-
junction in one or more at tr ibutes of the predicate. Thus, a disjunction such as P(a) V
Q(b) can not be captured by OR-objects. However, it was observed in [274, 275, 597]
that even this restricted disjunction can improve modeling power considerably. How-
ever, utility aside, such an extension of the relational model with OR-objects, increases
the da ta complexity of conjunctive queries to coNP-complete[276, 277]. This exacer-
bates the second of our two competing goals, namely the problem of performance
guarantees.

Combinatorial optimization applications (such as scheduling) also consider choices
in data, and consequently address the issue of attacking intractable queries. One useful
method of at tack is to use domain specific heuristics to prune the search space. The
question at hand, thus, is how can the idea of heuristics be exploited in the context of
databases with OR-objects? In other words, if we assume that our users are domain
specialists and have considerable knowledge about the domain of application, can we
provide formal tools to operationalize their domain heuristics? An important property
of any such tool is that the tool itself should be domain independent. This chapter
addresses precisely this issue and provides some solutions.

A notable step in this direction is the work of [273] who consider the following
question. Given a query ~, can we determine values for certain design parameters
such that, as long as databases conform to these values of the parameters, ~Ii can be
evaluated in PTIME (i.e., what values of the design parameters force �9 to be tractable)?
The queries are limited to positive existential conjunctive queries with no predicate
occurring more than once in the query. Two design parameters were identified for this
purpose:

1. the typing function, and

2. the degree of co-referencing.

For the class of databases that satisfy certain conditions imposed on these two design
parameters, �9 is guaranteed to have polynomial data complexity. However, if these
conditions are violated, then �9 is guaranteed to become intractable (coNP-complete).
In other words, the conditions on the design parameters are maximal (assuming P
NP) for maintaining tractabil i ty of 4. Informally, the typing function specifies which
at tr ibutes are allowed to have OR-objects. The degree of co-referencing is a measure
of the inter-relationships of the elements of the OR-object. The values of both design
parameters can be set by a user who is familiar with the underlying semantics of
the. application domain. For example consider the query �9 --- 3x[Inexpensive(x)A
Researchy(x)] where the two predicates specify properties of universities. Note that
one can have choices of universities in either of the predicates. In [273] it is shown that

has PTIME complexity if at most one of the two predicates contains choices, and has
coNP-complete complexity otherwise. Thus, database designers may disallow choices in
one of the two predicates by an appropriate change in the typing function. In this way,
heuristics of the application domain can be operationalized in the database system. The
particular predicate in which OR-objects are disallowed is determined by the designer,
using the domain knowledge (thus operatlionalizing the domain knowledge).

However, the approach of [273] has some limitations: it applies only to proper
queries, i.e., queries in which a predicate does not appear more than once, and, more
importantly, it does not address the issue of what to do if we are confronted by a
coNP-complete query and a fixed typing function. For instance, suppose both the
predicates in the above example are required to have choices in the data because of

3.1. I N T R O D U C T I O N 47

lack of complete information. Then, for this class l) of databases that allow choices
in both predicates, [273] simply declares that the query is coNP-complete. Can we do
anything more?

Note that even though the data complexity of + for :D is coNP-complete, there
may exist subclasses of :D for which + can be evaluated in PTIME. The questions we
address in this chapter are: can we guarantee PTIME behavior for the coNP-complete
query + for certain subclasses of /)? What kind of approaches can we expect to use in
order to obtain such subclasses? Are those approaches domain-independent? In other
words, can the same approaches be used on any other query + ' and class of databases
l) (where + ' is coNP-complete for l))?

It is important to understand the domain independent nature of the heuristic sup-
port that we desire. A central assumption in databases is that the data in a database
is uninterpreted. It has no inherent semantics. It is only through interactions with
a query that data acquires a meaning. Thus, when we seek tractable subclasses of 7)
we would like to respect this central assumption. Our techniques that identify such
tractable subclasses are independent of the' query so that they will work for any query
and class of databases.

We believe that this chapter makes some initial progress towards obtaining answers
to the above questions. Our methodology works as follows. We identify a property
called "decomposition property" and show that the classes of databases satisfying this
property enable polynomial time query evaluation. This property can be defined as
follows. A class of databases 7) has decomposition property for a query +, if for any
D E /) , it is the case that D ~ �9 can be determined by first determining if Di ~ + for
every 1 < i < m, where D - D1 U . . . U Din. We refer to Di's as modules or "clumps".
These modules depend on the query + and also on the database D. Thus, the problem
of evaluating the query in the entire database can then be reduced to evaluating it for
each of the modules. Interestingly, it seems that there is a strong relation between
the decomposition property and locality of choices. Because choices occur naturally in
many situations, our approach seems to have practical impact as well.

E x a m p l e 3.1.1 (A n E x a m p l e)
Suppose that a database has facts such as fl = Inexpens ive (u l) V Inexpensive(u2) ,
f2 = Researchy(u3) V Rescarchy(u2) V Researchy(u4), i.e., there is choice data in both
the predicates. Suppose that a domain specialist knows that the choices are localized:
that is we may have [acts such as f3 = Inezpens ive (ru tgers)VInexpens ive (Princcton)
where both rutgers and Princeton are in N J, but we do not have facts such as
Inexpeus ive(ru tgers) V Inezpens ive(S taudford) where the universities involved are
far apart (across several state boundaries). Thus, the domain expert predicts that facts
over choices are localized at the state level, with a few facts containing choices stradling
state boundaries. Such localized information gives rise to "clumps" or "modules".

We can depict the clumpiness of data by constructing a database-graph, as fo]Jows:
facts such as f l , f2 can be represented by nodes of a graph with an edge between two
nodes i f the corresponding facts have a possible world that entails the query. In our
example above, the nodes corresponding to fz and f2 will have an edge because the
set {Inexpensive(u2) , Researchy(u2)} is a possible world of the facts, and entails
the query 3x[Inexpens ive(x) A Researchy(u2)]. Figure 3.1 shows such a graph for an
example database. There are seven facts f l , .. . , f7 that constitute "clump1", and nine
facts f6, fs , . . . , f15 constituting "clump2".

In this chapter we formally define the notion of a clump, show the allowed inter-
actions between clumps, and show how to determine D ~ ~ by composing the results

48 CHAPTER 3. THE DECOMPOSITION PROPERTY

CIL

Figure 3.1: An example of "clumpiness".

of entailments of the query on each of the clumps of D. Clearly, in such an analysis
the time spent is bound by the number of clumps and the processing time per clump.
Assuming that a domain specialist can make a prediction a priori about the size k of
the largest clump (size is the number of disjunctive facts within a clump), our anal-
ysis enables one to identify a class Da of databases for which (I) is tractable (O(nk)).
Note that a domain specialist often can determine such k's. In the above example, a
specialist who knows about universities can predict that no more than 10 such facts
(nodes) may lie in a given "clump". Thus, our analysis enables one to evaluate the
query 3x[Inexpensive(x)AResearchy(x)] in polynomial time using this heuristic (even
though it is coNP-complete in general).

Note that such clumps occur very commonly in many domains where locality is a
common factor: in testing of circuits, one can localize the mistake to a particular zone.
Thus a disjunctive fact such as Wrongoutput(nodel) V Wrongoutput(node2) will have
both of the nodes nodel and node2 from the same zone or PCB. In scheduling problems,
one can localize the machines to be assigned to a task t by their capabilities: thus,
Assignedto(t, cpul) V Assignedto(t, cpu2) would involve cpul and cpu2 that belong to
the same class of machines (comparable FLOPs, frequency, etc.)

We would like to emphasize that our approach depends crucially on the presence
of locality in choice data. Thus, it can be used in those places where this locality plays
an important role. We would like to caution the reader that there exist queries in
which locality does not work. For example, consider the database to represent cities
in India, a country with dense cities; suppose that the query involved population:
3xy[City(x) A City(y)A Population(x, y, 10)] asking if there are two cities with total
population more than 10 million. In this case, almost any two (distant) cities could
participate in the graph and clearly, we can not hope to obtain clumps (or, in other
words, the clumps will be very large).

3.2. BASIC NOTIONS 49

An interesting approach is that this locality principle can be used retroactively in
designing the circuit or plan so that it may be possible to diagnose or understand the
design in an incremental fashion. Indeed it may be argued that in order to facilitate
understanding of the application, we must design the database in sucha way that most
of the complexity is localized rather than spread throughout the database. Consider
a database representing a complex piece of software or circuit design and that we are
interested in understanding or diagnosing the design, i.e., we know the sorts of queries
that users will be asking. If the complex behaviors of the design are a function of the
entire design then a query may not be evaluable in any semantic subset of the database.
However, i f complex behaviors were localized, we may be able to isolate semantic
modules of the database that could be responsible for that complex behavior. In such
a case, the modules can be evaluated incrementally, yielding a PTIME evaluation of an
otherwise intractable query. One factor that causes complexity in design and planning
situations is the set of available choices for a task at hand. The locality principle then
suggests that facts about choices be localized.

This chapter is organized as follows. Section 3.2 motivates the need for data com-
plexity, and provides the required background results. Section 3.3 defines the notions
of size, density and witness of a query, and shows the use of these notions. Section 3.4
develops the modulewise evaluation strategy by proving the decomposability results
for a number of classes of databases. Section 3.5 gives the possible future extensions.

3.2 Bas ic N o t i o n s

In this section we motivate the need for considering data complexity, OR-databases, and
show how the data complexity jumps from PTIME to coNP-comptete in the context of
OR-databases. This discussion is intended to provide the desired background for the
discussions in succeeding sections.

3.2.1 Entai lment , and Data Complexity

By a query we mean a closed conjunctive formula in First Order Logic, with existential
quantifiers only. Such formulae capture simple boolean queries. For example, consider
the boolean query ~' Q = Is John the manager of some department manufacturing
Toys?". Let

D ==. {Manager(John, depl), Manufaeturer(depl,' toys'), Manager(Jacob, dep2)}

Then clearly, the answer to the query is ~:yes." Consider the formula

�9 =_ 3d [Manager('John', d) A Manufacturer(d,' toys')]

We say that the formula �9 is true in D (D entails ~) iff there is a mapping /z for
the variables in ~P such that when # is applied to ~, we get a subset of the database.
This notion of entailment is denoted by D ~ ~ (standard notion of entailment). The
above database D entails the formula �9 through the mapping (d/'depl'~. It is easy to
see that D ~ ~ if[the query Q is true in D. We say that ~ captures Q and refer to

as a query. Thus, in the rest of the discussion, "formulae" and "queries" are used
interchangeably.

We will be interested in Data Complexity [598, 95] of queries. Given a query ~ and
a denumerable set :D of databases, the data complexity of r with respect to I) is the

50 C H A P T E R 3. T H E D E C O M P O S I T I O N P R O P E R T Y

complexity of

{ D I D E I) and D ~ ~}

The motivation for da ta complexity is as follows: suppose we are given a database D
and a query evaluation algorithm for evaluating a query in D. It is natural to expect
that the query evaluation algorithm works correctly even if the database is updated.
In fact, we expect that the algorithm is invariant under all or some updates. This
notion can be made precise as follows: suppose [D] + denotes the closure of D under a
set of pre-specified update operations. Then, we expect the algorithm evaluating ff to
evaluate it correctly for any da tabase in [D] +. The complexity of any such algorithm
is bounded from below by the complexity of the set

{ D [D E [D] + a n d D ~ f f }

which is the da ta complexity of ff with respect to [D] +. Thus, data complexity provides
a lower bound on any algorithm that we can hope to design for evaluating queries in an
update transparent manner. The data complexity of positive conjunctive existential
queries for relational databases (closed under the update operations of D E L E T E a
tuple and I N S E R T a tuple) is in PTIME (actually in LOGSPACE) [598, 95]. The
following observation reconstructs this result.

Observation 3.2.1 ([598, 95])
Let �9 be a positive conjunctive existential query. Then the complexity of

{ D D conforms to the arities of relations in �9 and D ~ �9 }

is in PTIME.

P r o o f : The idea is as follows: let k be the number of variables in ff and let M be the
set of all domain constants in any database D. Then, D ~ r iff there exists a mapping
from the variables in {I} to the constants M such that #({I}) is a subset of D. Clearly,
the number of possible mappings is a fixed polynomial i n the size of M and hence even
the straightforward approach of testing these mappings one by one gives polynomial
t ime complexity. �9

However, unfortunately, when we allow disjunctive information in databases, this
nice tractable property no longer holds. In fact, it was shown in [276, 272] that the
da ta complexity of simple conjunctive queries is in coNP-complete even if we allow
restricted disjunctive information denoted by "OR-objects".

3.2.2 Choices and Data Complex i ty

It was observed in [274] that choices in the form of "OR-objects" plays an important
role in scheduling, planning, and design applications. We illustrate this here and show
how the issues of entailment and da ta complexity can be discussed in the context of
databases with OR-objects (called OR-databases). In the following the table TRAVEL
shows a travel schedule for various employees of a company. The objects oa and oz
denote OR-objects, and their domains are shown next to the table. The first entry,
specifies that "John has a choice of going to CA or NJ." The second entry has a similar
meazting. The third entry involves a complete specification: "James goes to CA."

3.2. B A S I C N OT IONS 51

T r a v e l
Employee Place

John ol
Jack o2

James CA

A possible World of T rave l
D o m a i n s Employee Place

Dom(ol) = {N J, CA} John N J
Dom(oj) = {MA, CA} Jack MA

James CA

The table TRAVEL has several possible worlds, each obtained by substituting the
OR-objects by a value from their respective domains, i.e., by making a choice from an
OR-object. One such possible world is shown in the adjoining figure. In general, then,
a database containing choice da ta represents a set of possible final instances or worlds.
These possible worlds are also referred to as models.

We say that a query is true in an OR-database if it is true in every possible world of
that database. To illustrate the notion of entailment in disjunctive tuples, consider the
database D _= {P(o), Q(a), Q(b)} with domain(o) = {a, b} and the query 3x [P (x)A
Q(x)]. The database corresponds to two possible worlds, each corresponding to a
particular choice of the OR-object, o. It can be observed that in each of the possible
worlds, the query is true; hence we say that the query is entailed by the database.

The following observation proves that indeed there exist queries whose da ta com-
plexity is coNP-complete in the context of disjunctive information.

Observation 3.2.2 ([276, 272])
There exist queries that have coNP-complete data complexity in the context of databases
with disjunctive in]ormation.

P r o o f :
Conside~ any graph G(V, E) with V as vertices and E as edges. Let {R, G, B} indicate
three colors. We say that the graph G is colorable if there is a mapping from the
vertices to the colors such that no two endpoints of an edge are colored by the same
color.

The following set is known to be coNP-Complete [212]:

{ G I G is not colorable }

In other words, the problem of determining if for any coloring scheme, it is the case
that at least two vertices connected by an edge are colored by the same color is coNP-
complete. We use this problem to show that the data complexity of a particular query is
coNP-complete. Suppose that from the graph G we construct a database D(G) consist-
ing of two relations Vertex and Edge such that Vertex -~ { v I v is a vertex of G} and
Edge = { (i, j)] (i, j) is an edge of G}. Also we construct a relation with OR-objects
as follows:

Color
vertex possible colors T h e d o m a i n s

vl ol Dom(ol) = {R, G, B}

Dom(o~) = {R, G, B}
Vn On

52 C H A P T E R 3. THE D E C O M P O S I T I O N P R O P E R T Y

Clearly, the query

=_ 3~yz [Vertex(x) A Vertex(y) A Edge(x, y) A Color(z, z) A Color(y, z)]

is true in every possible world of the database D(G) iff G is not colorable. This shows
that the data complexity of �9 is coNP-complete. �9

Thus, in genera], the complexity of evaluating queries in OR-databases is coNP-
complete. In [273] data complexity of a particular class of positive existential conjunc-
tive queries was analyzed: this class is called proper queries. In a proper query, no two
titerals have the same predicate. The results of [273] can be summarized as follows:
first identify two design parameters called (i) typing function and (ii) degree of corefer-
ence; typing function specifies whether a particular column can take OR-objects, while
the degree of coreferencing restricts the extent to which OR-objects can appear repeat-
edly. Now, given any proper query ~, the analysis of [273] enables us to determine
the values of the design parameters such that for the class of databases conforming to
these parameters, the data complexity of the given proper query is in PTIME. Thus,
for example, consider the query ~ ~- 3xP(x) A Q(x). Then the analysis of[273] states
that the data complexity of r is in PTIME if either P or Q is restricted not to take any
OR-objects, and OR-objects can repeat in the column that they are allowed to occur.
The interesting aspect of [273] is that if the restrictions stipulated are not con]ormed
to, there is a guarantee that the data complexity of that query will be coNP-complete.
Thus, we obtain what is called complete syntactic characterization. This approach was
called complexity tailored design in [273].

However, the above approach has some limitations: if a query ~ is found to have
coNP-complete data complexity for a class T) of databases, then, [273] does not provide
a way to deal with it any further. This chapter addresses the issue of identifying subsets
of 1) such that for those the data complexity of �9 is in PTIME.

3.3 S ize and D e n s i t y o f a W i t n e s s

As stated earlier, our aim is to identify tractable subclasses of I) for the query ~, where
it is known that �9 has coNP-complete data complexity for 1). We identify such classes
for any conjunctive query �9 and any class of databases 9 that has distinct OR-objects.
Thus, the queries we consider need not be proper, unlike [273]. However, we assume
that the OR-objects are distinct ~, and each predicate has at most one OR-argument.
The latter is not a serious restriction because, a large class of queries with more than
one OR-argument in their predicates can be split (using a join attribute) into predicates
with at most one OR-argument[273].

Our methodology works as follows. We identify classes of databases that satisfy
a property called "decomposition property", defined as follows. A class of databases

has the decomposition property for a query ~, if every D E 9 can be written as
a union of D~ for 1 < i < m such that the following holds: whether or not D ~
can be determined by composing the results of Di ~ ff for every 1 < i < m, where
D ----- D1 U. . . U Din. We refer to Di's as modules. These modules depend on the query

~Two OR-objects are distinct if there is no constraint that relates the choice over their
elements. For example, let ol and 02 be two OR-objects that contain choices of courses for
John and Mary. Consider the constraint that John and Mary choose the same course. Such a
constraint relates the choices over ol and 02 and are natural in many applications. We disallow
such constraints in this chapter.

3.3. S IZE A N D D E N S I T Y OF A W I T N E S S 53

(I) and also on the database D. The decomposition property immediately guarantees
that the da ta complexity of q) for D is determined by the size of the modules of D. If
k is the largest cycle (as we define later) in a module, then the da ta complexity of
is given by O(2 k x D querySize x modulesize (q~r~ze+k) x number of modules) time
to determine if the module entails the query (here k is a fixed-constant, specifying the
size of maximal cycle in the module, as described later). Thus, the data complexity of
(I) with respect to the class of databases T) is a polynomial in the size of the database
(D). We identify different such classes /) 0 , . . . , Ok , . . . for different parametric values
of k. Note that this situation of assigning a maximal size of the module arises very
often in practice as described in Section 3.1.

Thus, there are two issues: modules and their inter-connections. Having agreed
to pay a fixed time (parametric in k) 0(2 k x modulesizeq~e~"~z~), to determine if a
module entails the query, we expect the modules to be as "big" and as "dense" as
possible (trying to get the maximum out of what we are willing to pay).

In this section, we first define a notion of "size of a witness of a query" and show
that in the case of OR-databases, this size is not bounded, whereas in the case of re-
lational databases, this is bounded. We show that bounded size of the witness yields
(a straight forward) proof of the polynomial time evaluation of queries in relational
databases, whereas the unboundedness of the witness makes that. straightforward al-
gorithm exponential. We show that although size is an important aspect, it alone is
not sufficient for our purposes. We next introduce a notion of density of a witness. It
is this notion that is used in the next section to develop the module-wise evaluation.

3.3.1 S i z e o f a W i t n e s s

We first define the notion of a witness which is often used in the logic programming
and database terminology, although not always explicitly.

Definition 3.3.1 (Witness)
Let q~ be a closed conjunctive query, D a database, and it a mapping yrom the variables
o] the query to the constants of the databaseD. We call a set S C D to be a witness
of (p in D if every ground atom corresponding to applying it to the literals of q) is a
member orS. Clearly, S ~ d2. S is minimal if for no subse ts I o] S is a witness of ~
in D.

Suppose that the size of the minimal witness is bounded by the size of the query
(denoted by]~]). Then, clearly, evaluating if the query �9 is true in D is in polynomial
t ime in the size of the database: basically, consider all subsets of D of size](I)] and see
if any subset of atoms enta]ls the query +. Fortunately, the following ensures that if
D is indeed a set of atoms, then it is the case that any minimal witness is bounded by
the size of the query.

O b s e r v a t i o n 3.3.1 I] D is a set of positive atoms and q~ a positive conjunctive closed
query, then the size o] the minimal witness of q~ is bounded by the number of literals
in ~.

The proof of the above observation follows easily from the definition of a witness.
Note that the largest size of any mapping is bound by the number of]iterals in the
query.

However, the above observation does not hold if we allow OR-objects in the database.
First we would like to make the notion of minimal witness precise in the context of

54 C H A P T E R 3. T H E D E C O M P O S I T I O N P R O P E R T Y

OR-objects. We assume throughout the chapter that OR-objects are distinct. Thus,
given a database D with OR-objects , it can be re-written as a First Order Theory by
expanding the disjunctions implied by the OR-objects. From our definition of OR-
objects, it is clear that this theory is in a special conjunctive normal form: each of the
disjuncts are formed from the same predicate symbol. Clearly, D can be viewed as a
set of clauses.

Now, a witness S to a query �9 in a database D with OR-objects can be defined as
follows: S C D is a witness of r in D iff every possible world (see Section 3.2.2) of S
entails {IL We call S minimal, if for no subset S' of S the above holds. The following
lemma shows that the size of a minimal witness is not bounded by the number of
literals in a query in the context of OR-databases. In fact, it shows a stronger result.

L e m m a 3.3.2 There exists a query q? such that for any natural number i E A f there
exists a database Di such that the minimal witness o] ~) in Di is larger than i.

Ske tch of Proof :
Consider the query �9 _-- 3x [P(x) A Q(x)].

For the case of 1, the desired database is D1 --- {P(a), Q(a)}
For the case of i, consider the database D2 --- {P(al)V. . .VP(a{) , Q(a l) , . . . , Q(a{)}.

Note that Di constitutes minimal witnesses. �9
Thus, a straightforward approach of testing a fixed number of tuples of the database

to see if they entail the query does not work in the case of databases with OR-objects.
Since the size of the minimum witness can be as large as the database itself, it follows
that a straightforward approach leads to an exponential algorithm. The following
lemma, however, shows that an unbounded witness does not necessarily mean coNP-
completeness.

L e m m a 3.3,3 (U n b o u n d e d w i t n e s s does no t i m p l y c o N P - C o m p l e t e n e s s)
There exists a query q? and a class 7) of databases such that the size of witnesses for

in 7) is unbounded but still the data complexity of �9 for D is in PTIME

Sketch of Proof :
Consider the query �9 -- 3x[P(x)A Q(x)] as before, and D the desired class of databases
to be the class of databases in which OR-objects do not occur in the relation Q. From
the previous lemma it follows that r does not have a bounded witness for this class.

We show that the data complexity of ~b for 1) is still in PTIME. Consider a clause
c of P. Clearly, c is of the form P(al) V . . . P(ak). We see if the relation Q has tuples
of the form Q(a~) , . . . , Q(ak): Note that Q has no disjunctions. If there are no such
tuples in Q, then we conclude that the clause c does not contribute to the minimal
witness, and take the next clause of P. If there is at least one clause of P that satisfies
this requirement, then we conclude that D ~ r else we conclude that D ~ ~. Clearly,
the above algorithm is in PTIME (O(n2)). �9

Thus, the query r -- 3x[P(x) A Q(x)] does not have bounded witness even for the
class of databases in which only P is allowed to have OR-objects. But still, (b could be
evaluated in PTIME for that class. Thus, bounded witness is only a sufficient condition
for tractability.

We now develop a notion of density of a witness. In the previous example, the
following holds:

{ P (~) v . . . v P(a~), q(a~)} I= P(a~) v . . . v e(a~_~) v �9

3.3. S I Z E A N D D E N S I T Y O F A W I T N E S S 55

Thus, in order to construct a countermodel (i.e., a possible world that does not entail
the query), we need to consider only the first k - 1 disjunctions of P (a l) V . . . V P (a k) . In
other words, for the purpose of constructing a counter-model, we might as well remove
the disjunct P(ak) from P(al) V . . . V P(ak) to form P(al) V . . . V P(ak-1).

Thus, using the above stepwise refinement, the new clause has only k - 1 disjuncts.
Arguing similarly with the other definite tuples of Q, one at a time, we conclude that
there is no counter-model for �9 (we eventually conclude that any such counter-model
will have zero disjuncts of P - a contradiction).

We call the above database a "low density" database because one can use a ,s tep-
wise" or incremental reasoning to determine if the query is entailed by the database.
The following example shows that this limited or incremental reasoning can be appfied
to databases which axe not necessarily as restricted as above.

E x a m p l e 3.3.1 (s t e p w i s e p r o c e d u r e a p p l i e s to m o r e c o m p l e x d a t a b a s e s)
Consider the same query q~ ~ 3x[P(x) A Q(x)] and the database shown in Figure 3.2.
The database D ---- {Q(a), Q(e), P([a, b]), P([d, el), Q([b, d])}. (The square brackets de-
note choice data, e.g., P([a, b]) denotes P(o) where o is an OR-object whose domain is
{a, b}. This notation is used only as a shorthand.) This database is constructed in the
form of a tree. Note that the vertices are essentiafly the clauses of the database, and
two vertices are connected by an edge if they together have a possible world in which
the query is entailed.

Q([b,d])

)

Q(a) Q(e)

Figu re 3.2: A "t~ree like" d a t a b a s e enabl ing stepwise reasoning.

Note that one can perform a bottom-up stepwise refinement in the above database
instance as follows: starting with the left most child, one can conclude from Q(a) and
P([a, b]) that the only counter-model, i f there is any, for the query should be the one
in which a is removed from P([a, hi). Similar stepwise reasoning yields that e can be
removed from P([d, e]). Continuing this further, we conclude that at the root we do
not have any choices left for Q([b, d]) from whence it can be concluded that there is no
counter-model for the above database.

56 C H A P T E R 3. T H E D E C O M P O S I T I O N P R O P E R T Y

Note that the above database D constitutes a minimal witness of ~. Thus, the above
tree-structure and the associated stepwise refinement indicate that even though the size
of a witness is unbounded, what is more important is the ability to apply the stepwise
refinement. We call a database dense if stepwise refinement can not be performed
directly on it to determine if it entails a query. By stepwise refinement we mean, a
procedure that uses only bounded set of tuples to conclude if a particulax choice can
be removed, for the purpose of computing a counter-model (the bound is the number
of liter~ls in the query). This stepwise refinement is analogous to, but different from
the extended Chase-mechanism discussed in [271].

The next subsection identifies "dense" instances which can not be evaluated in a
stepwise manner.

3.3.2 Density of Witnesses

We say that a database D has density property for a query ~, if stepwise reasoning
is not applicable to determine if D ~ ~. We illustrated in the previous subsection
that "tree like" databases do not have the density property (see Figure 3.2). In the
following we show that database with "cycles" satisfy the property of being "dense".
To understand the notion of cycle, consider the following example:

E x a m p l e 3.3.2 (W h y cyc l e s?)
Consider the query r - 3xy[H(x, y) A H(y, x)] where the second argument of H is an
OR-object. Consider the database

D = {H(a, [e, e]), H(e, [a, f]), H(c, [a, f]), g (f , [e, a]), H(f , [c, el), g(a , [b, f])}

See Figure 3.3 in which this database is represented as a graph using the same approach
as in the previous example: i f two nodes have a possible world that entails the query,
then put an edge between them.

It is easy to see that the above database does not support stepwise refinement.
In fact, we need to look at a// possible worlds of the entire database before we make
any decision. More precisely, D ~ H(a, b) V q~, and for the purpose of constructing
counter-models, we can delete the choice f from the choices of the tuple H(a, [b, f]).
Thus, in order to perform the refinement (i.e., reducing the size of an OR-object), we
need to consider the entire database, not a bounded set of tuples.

Thus, modules with cycles seem to capture the interesting property that the mod-
ule as a whole needs to be considered for refinement. In other words, a cycle can not be
further broken into smaller components for the purposes of refinement. Consequently,
any straightforward aigorithm needs to reason with the entire module (of size k) re-
quiring O(2 k) time. Thus, we choose components with maximal cycle size as k as the
desired "clumps" or "modules" for constructing l)k. We would like to remark that we
do not claim that cycles imply an exponential lower bound. We use modules consisting
of cycles as units because they are amenable to stepwise evaluation.

3.4 M o d u l e w i s e Eva lua t ion

Recall that our methodology is to define "decomposition property" and use it to identify
subclasses P ~ , . . . , :/)1r that enable polynomial time evaluation for a given query ~;

3.4. M O D U L E W I S E E V A L U A T I O N 57

c,[a,f])

H(e,[a,f])

H(f,[e,a]) ..~H(f,[c,a])

Figure 3.3: A "cycle" like database that does not enable stepwise reasoning.

here the subclasses are subsets of 79~ for which ff is known to have coNP-complete
data complexity.

A class of databases 79 has decomposition property for a query ~, if for any D E 1),
it is the case that D ~ �9 can be determined by determining D, ~ �9 for every
1 < i < m, where D ___ D1 O . . . U D m . We refer to Di's as modules. There are
two issues: the kind of modules, and the kind of "connection" or interface between
modules in a given database D of a given class 79k.

In the previous section we showed that the modules are collections of nodes that
have a maximal cycle of size k where k is a pre-fixed parameter as discussed in Sec-
tion 3.1. The next question is how do we expect to break the database into components.
In other words, how do we decompose a database into modules? We define what is
called "acyclic" collection of components. In other words, D E 79k iff D can be broken
into an "~cyclic collection" of components or modules of size k. Then we prove that
indeed D ~ �9 can be determined by reasoning with only the components.

This section formalizes the notions of database graphs, nodes, edges, cycles, mod-
ules, and finally, estabfishes the desired d~composition property.

D e f i n i t i o n 3.4.1 Given a database D and a query q~, we construct a hyper-graph
G(D, q?), called instance-graph as follows. The nodes of G are the atomic formulae of
D. { f l , fk} is an arc of G if] it has a poss ib le wor ld that entails the query ~.

I f the graph happens to be a multi-graph, we expect the nodes to be numbered (in
some lexicographic order) so that distinct edges are maintained.

D e f i n i t i o n 3.4.2 Degree of a node in a hyper-graph is the number of arcs incident
at that node. A path (simple) is a sequence (vl, A 1 , . . . , vp, Ap) such that all vi are

58 C H A P T E R 3. T H E D E C O M P O S I T I O N P R O P E R T Y

the vertices of the hyper-graph, and all Ai are the arcs of the hypergraph; furthermore,
2 <_ j <_ p, vj E A j - 1 .

Henceforth, we assume that the instance graph is connected. Otherwise, we can
apply our analysis to each unconnected component of the graph.

D e f i n i t i o n 3.4.3 A path is a cycle if vl = Vp. A hyper-graph is acyclic if it has no
cycles. Every acyclic hyper-graph corresponds to a "tree" in a natural sense. The
degree of an arc is the number of other arcs that share its nodes. A leaf are is one
whose nodes are shared by exactly one other arc. The arc that is connected to a leaf
arc is called its parent arc. The node(s) shared by a leaf arc and its parent are called
%ridge" nodes.

See Figure 3.5 for an illustration of these notions.

O b s e r v a t i o n 3.4.1 No two arcs in an acyclic hyper-graph share more than one node.
Otherwise it becomes a cycle. See Figure 3.4.

P r o o f i

Arc A1 Arc A 2
\ / A1 = {vl, v'2, v3, v4, vb}

Vl ~ ~ . . ~ = {V4, V5, v6, V7, V8, V9}

V5
v 2 v7

v8

v3

v9

Figure 3.4: I f two or more nodes are shared by two arcs, then there is a cycle.

Note that the desired cycle is (vb, A1, v4, As, vb). �9

D e f i n i t i o n 3.4.4 A query is singly-matching if for any set of tuples, there is at most
one possible world that entails the query.

For example, the query 3x[P(x) A Q(x)] is not a singly matching query because
P([a, b]), Q([a, b]) entails the query in two possible worlds. However, it can be proved
that the query 3xy[P(x , y)/x Q(y, x)] restricted so that the second argument of P and
the first argument of Q are allowed to take OR-objects, is a singly matching query,
and yet has eoNP-complete da ta complexity.

Now, we prove that for any singly-matching query r and the class of acyclic
databases 7~o = { D I G (D , ~) acycllc}, it is the case that the data complexity of

is in PTIME. In order to prove this fact we first show that this class of databases
satisfies the decomposition property on its modules.

3,4. M O D U L E W I S E E V A L U A T I O N 59

D e f i n i t i o n 3.4.5 (d e c o m p o s i t i o n p r o p e r t y)
For a given query (P, a class of databases I) + has decomposition property, if there is a
k such that the following holds for every D E 7)+ : D can be decomposed into databases

m D ---- U~=~ Di and]D~ I < k and the problem o l d ~ d2 can be determined by composing
the results of Di ~ q~.

Note that the decomposition property immediately establishes the PTIME property
of @ for O +.

T h e o r e m 3.4.2 For any given query q~, the class 1)+o has decomposition property.

Proof."
Let G(D, 02) be the instance graph. We show that D has the decomposition property
where the desired modules of D are the arcs of the instance graph. The desired constant
of the decomposition property is the size of any arc of G(D, ~), which in turn is bound
by the size of (h.

We use induction on the number of/arcs in G to show this result. Base case: G has
at most one arc. TriviM.

Assume that the induction hypothesis holds for every database with the number of
arcs of at most ra. Consider a database with m + 1 arcs. We show how to decompose
this database. Let 1 be a leaf arc of D. Let p be the bridge of I. Let l = {Vl,.. . ,vk}.
There are the following cases:

�9 all nodes of ll are definite. Then D trivially entails (I).

�9 At least one vertex of 1 (other than the bridge) is an OR-formula. Call it v.

�9 All but the bridge of 1 is an OR-formula.

See Figure 3.5.
Case: A t least one ve r t ex o the r t h a n t he b r i d g e of l is a n O R - f o r m u l a :

Let v E l be an OR-formula H([a l , . . . , aj], b). Let ml be the model of l such that
ml ~ (I). Let a~ of H correspond to the model ml. Choose another a~ # a~ and

a~ E {al, aj} and construct ral = ral - {H(ai, b)} U {H(a~, g)}. Note that ml ~: (I).
This is because ~ is singly matching.

Consider the graph G' obtained from G by deleting all the vertices but the bridge
of l and deleting the leaf-arc. Let D' be the database corresponding to G'. We show
below that D ~ �9 iff D' ~ ~. Thus, whether D ~ ~) can be determined by de-
composing D into D' and the are l. Since G(D', (1)) has fewer arcs than G(D, ~), the
induction hypothesis guarantees that it can be decomposed into modules satisfying the
decomposition property. Hence the theorem will follow if we prove that D ~ ~ if[
D ' ~ q).

Suppose D' ~ (I) for every possible world. Since D' C D, the desired result follows.
Suppose that D' V= (I). Then, let m' be the counter model of D' i.e., m' ~: (I). Now
consider the database m = m'Um'l. Clearly, m' is a model of D. Furthermore, m ~ (~.
For, suppose m models @. Then, since neither m' nor m~ model r it must be that
some tuples of m~ and some other tuples of m~ together model (I). In other words,
the arc I is not connected to just one arc, bu~ two. Thus, there is a cycle in G, a
contradiction.

Case 2: T h e b r i d g e p is an O R - f o r m u l a , a n d every o t he r n o d e of 1 is
de f in i t e :

60 CHAPTER 3. THE DECOMPOSITION PROPERTY

Rest of the graph

P

/
Leaf-arc

V \
Leaf-arc

Figure 3.5: A graph corresponding to a database.

3.4. M O D U L E W I S E E V A L U A T I O N 61

Let p be denoted by H([al , . . . , ap], b). Let rnl be the model of I containing It(hi, b~).
Then m~ = ml - {H(ai, b')}. Clearly, m~ is a set of all definite formulae that exist
in every model of D. This is because all the formulae of l except p are definite. Let
p' = H([al , . . . , a~_~, a~+~,.. . , ap], b). In other words, p' is obtained from p by deleting
a, from the OR-object of p. Let G' be the graph obtained by deleting the leaf arc 1
from G and deleting all the nodes associated with 1 from G, and adding the new node
p'. Let D' be the database corresponding to G'. We show that D ~ �9 iff D' ~ ~.
This will in turn prove, as in the previous case, the theorem.

Suppose that D' ~ r Then we need to show that D ~ r Note that D' ~ D. In
fact, all formulae of D' are in D except for p'. Instead ofp' , D has the formula p. Thus,
to show that D ~ ~, we should consider also those models of D in which p is entailed
by Hi(hi, b). Since p' does not have ai in its OR-object, Hi(hi, b) is not in any model

of D'. However, in any model of D that contains Hi(hi,b), m~ 0 {Hi(hi, b')} entails
the query ~, because it constitutes the model of l. Thus every model of D entails ~.

Suppose D' ~ ~. Then, there is a model m' of D' such that m' ~: ~. Then, the
database m2 = m' U m~ is such that m2 is a model of D and m2 ~= r Thus, D ~ r
as desired. �9

In other words, the above theorem proves that if D is acyclic, and r is singly
matching, we can determine if D ~ r by considering the ~rcs of G(D, ~) one at a
time, in a modular manner. The PTIME characterization of ~0 ~ follows immediately,
as the theorem below records the result.

T h e o r e m 3.4.3 The data complexity o] any query �9]or :19"o is in PTIME.

We extend the above result in two ways, (i) the case when there are cycles in
G(D, ~), and (ii) when the query is not singly matching.

In the case of multiply-matching queries, each arc can have more than one model
that entails the query. Hence, we can not extend the above proof directly to multiply-
matching queries.

If the graph has cycles, we can divide it into components such that each component
has at most a k-size cycle. Thus when we collapse each component containing a max-
imal cycle of size k into a single arc (called "super arc"), the original graph becomes
acyclic in these super-arcs. If a database is such that its instance graph is acyclic in
k-sized cycles, then we say that D is in ~k. Note that since each super-arc can have
multiple models that entail the query, in this case also, we can not extend the above
proof directly.

Thus in both the cases we need to account for multiple models of a (super) arc
entailing the query. The same approach can be used in both the cases, and the following
theorem establishes the first result.

T h e o r e m 3.4.4 Let ~2 be a multiply-matching query, and

9Vo = { D I G(D,r is acyclic}

Then, D~ has the decomposition property for ~.

Proof." As in the previous theorem, there are essentially two cases: (i) the parent of a
leaf arc is an OR-formula, (ii) the parent of a leaf arc is a definite formula but there
is some other node in the leaf-arc that is an OR-formula. Let l be a leaf-arc, and p be
its parent.

62 CHAPTER 3. THE DECOMPOSITION PROPERTY

C a s e (i):
Let l = { A 1 , . . . , A k } where A/ 's are the arcs of the leaf-arc l, and V = LJA,EIAi
denote the set of all nodes in the leaf-arc I. Recall that each arc is a set of nodes.
Let p = Hl(Ol, b) be the parent of the leaf-arc 1 where the domain of ol is given by
Dom(ol = { a l , . . . , am}. Let l ' = l - {p}; thus, l ' is the set of all nodes of the leaf-arc
except the parent . Let

S = { a I a E Dom(o) and ({ H (a , b)) t o m) ~(I) for every m o d e l m o f l ' }

Thus, S C Dora(o) is such that for any model of l involving a E S subst i tut ing o in 1

entails the query ~. Let pt be the new parent node defined as follows: H(o ~, b) where
Dom(o') = Dora(o) - S.

Consider the new graph G'(V', A') obtained from G(v, A) as follows: to obtain V'
from V, delete all the nodes of 1 and add p~; to get A ~ from A, delete the arc l from
A. Thus, A ~ = A - l, and V ~ = V - l U {p~}. Let D j be the database corresponding to
G(V', A'). We show that D ~ ~ iff D ' ~ ti. As in the previous theorem, this would
prove that D satisfies the decomposition property.

Suppose that D ' ~ (I). Every model m I of D ~ entails (I). We need to show that every
model of D also entails r Consider any model m of D. It either contains a model of D '
in which case it entails ~, or it does not contain a model of D j. Therefore, consider the
la t ter case: from construct ion of D ' it follows that m is of the form m ' U {H(a, b*)} tO l~
where m ' is a model of D', H(a, b) is a model ofp the parent of the leaf-arc, and finally,
l~ is a model of I', the leaf-arc except the parent p. Since m is not a superset of m' ,
it follows that H(a, b) is such that a ~ o'. Therefore, from construction of o' from o,
it follows that a E S where S is as defined before. From the definition of S it follows
that {H(a, 5)} to l~ ~ {I}. }Ience, clearly, m models �9 because {H(a, 5)} U 1~ C_ m.

Now suppose that D ~ ~: ~. We show that there is a model of D such that it does
not entail ~}. Since D I ~= ~, there exists a model m p of D / such that m I ~= ~. gFrom the

construct ion of D ' , it follows that the model m ' can be wri t ten as m ' = ml' to {H(a, b)}
for some a E Dom(o'). This is because, D' is obtained from D by removing all the

nodes of I and adding p ' = H(o', b). Thus a E Dom(o') = Dora(o)- S. Now consider a

model l~ of l ' such that l~ t3 {H(a, b)} does not entail ~. From the construction of o' it
follows that such a model of l ' exists. Now, we claim that m" = m~ to l~ to {H(a, b)} is

such that m " is a model of D and m" ~= r Since m~ ~ r and (l~ to {H(a, b')}) ~: ~), it
follows that for m" to entail r it must be the case that some nodes of l~ together with
some nodes of m~ entail (0. Then, this contradicts the assumption that I is a leaf-arc
(and in tu rn contradict ing the assumption that G is acyclic). Hence, it must be the
case tha t m u ~ ti.
C a s e (i i) :
In this case p is a definite formula. The proof of this case is analogous to the corre-
sponding case of the previous theorem. []

Next, we extend the above two theorems for graphs involving cycles. As stated
earlier, graphs with cycles are viewed as acyclic graphs with "super-arcs ' . A super-arc
is, essentially, a maximal component of the graph with a cycle of size k. The set /)k +
is defined as the set of all databases whose instance graphs (with respect to tiP) can be
viewed as acyclic when each maximal component containing k-sized cycle is collapsed
into a single "super arc". The proof of the following theorem is analogous to that of
the previous theorem (with the obvious and minor modifications).

T h e o r e m 3.4 .5 For a query ~ (singly or multiply matching), the class I)~ has de-
composition property.

3.5. FUTURE EXTENSIONS 63

3.5 Future E x t e n s i o n s

We are current ly working in a number of directions.

�9 First note tha t our characterizat ion works only when the OR-objec ts are distinct.
An immedia te extension is to see how to extend this for multiply occurring OR-
objects. This will be useful because we would like to capture natural constraints
over choices such as "John and Mary would like to choose the same course."

�9 Our character izat ion of acyclic graphs prohibits more than one Rode of sharing
between one leaf arc and a parent arc. However, in the context of hyper-graphs,
more than one node sharing should be allowed, at the same t ime disallowing
arbi t rary sharing. We have some ideas on how to restrict this sharing. We
would like to work in this direction so that we can capture bigger classes of
t rac table databases.

�9 We would like to see how to perform this characterizat ion in the context of
queries with choices.

Chapter 4

The Archi tec ture of an Object Base Environment for
Simulat ion

Phillip C-Y. Sheu*,Larry J. Peterson t

4 . 1 I n t r o d u c t i o n

Object-oriented computation in the broad sense is computation described as a sequence
of requests to objects through a single access method such as message passing. I t is
generally accepted that object-based systems such as Smalltalk have provided a simple
and elegant paradigm for general-purpose programming which can be meshed well with
da ta models. In brief, the class/method mechanism handles well the requirements for
type definition and information hiding. The message protocol provides a useful way
of controlling the updates that can be performed on a da ta object. In addition, the
inheritance mechanism makes database schemas easy to modify, and new variants can
be constructed easily as subclasses.

The above features naturally lead to the use of the object-oriented paradigm in
instrumenting and supporting simulation activities. On the other hand, the nature
of object-oriented representations suggests that an object-oriented simulation program
can be executed in parallel. To our knowledge, more than a dozen object-oriented
simulation languages/systems have been developed; some have considered parallel pro-
cessing. A survey of such systems/languages can be found in [572] [200]. Most of such
systems/languages extend an object-oriented programming language with the necessary
constructs for simulation, in particular "...the notion of simulation time and mecha-
nisms for entities in the language to manipulate simulation time." [326]. However, the
issues of object management and object retrieval have not been fully addressed. As
for parallel processing, focus has been placed on developing efficient algorithms which
allow events be processed para]]elly to the maximal extent.

This chapter describes the design of a parallel object-oriented simulation environ-
ment. An object base is defined to be a system which contains a large set of active
as well as passive objects. For active objects, not only the data portion, but also

*Department of Electrical &= Computer Engineering, Rutgers University, Piscataway, NJ
08855

tNaval Command, Control and Ocean Surveillance Center RDT&B Division, Code 421,
San Diego, CA 92152-5000.
This work is supported in part by the Office of Naval Technology, Code 227, Computer Tech-
nology Block Program through the Office of Naval Research ASEE Summer Faculty Research
Program.

66 CHAPTER 4. ARCHITECTURE OF AN OBJECT BASE ENVIRON.

the control and knowledge portions of an object are stored and managed. Parallel
evaluation of simulation programs is accomplished by compiling objects into sets and
production rules so that they can be evaluated with parallel, set-oriented operations
which effectively utilize the capacity of parallel processors with minimal communica-
tion overhead. It is organized into the following sections: Survey of Related Work,
Object Representation, Management of Active Objects, Simulation, and Conclusion.

4.2 R e l a t e d Work

Work related to the simulation environment described in this chapter can be classified
into three categories: parallel simulation systems, object-oriented databases, and active
databases.

P a r a l l e l S i m u l a t i o n S y s t e m s The problem of parallel processing of simulation
systems has attracted much attention recently. A number of parallel computation mod-
els and their associated problems have been investigated [200] [326]. The models can
be classified into two categories: synchronous and asynchronous. In a synchronous,
parallel simulation system, processes and events are scheduled and executed by the
simulator with a globM clock. On the contrary, each process in an asynchronous,
parallel simulation system maintains its own clock; in addition, processes and events
are scheduled and executed in a fully distributed fashion. This means there exists
no scheduler to synchronize the events globally. According to [200], "...few simulator
events occur~t any single point in simulated time; therefore parallelization techniques
based on locl~2step execution using a global simulation clock perform poorly or require
assumptions in the timing model that may compromise the fidelity of the simulation".
Accordingly, "Concurrent execution of events at different points in simulated time is
required, but ..., this introduces interesting synchronization problems...". Most of such
synchronization problems are resulted from data dependencies among different pro-
cesses which run under different speeds. Approaches to the synchronization problems
can be in turn classified into two categories: conservative and optimistic. A conserva-
tion approach prevents any synchronization problem from happening, but it degrades
performance. An optimistic approach allows synchronization problems to occur, and
rollbacks are often necessary once these problems are detected.

O b j e c t - O r i e n t e d D a t a b a s e s In the past, several object-oriented databases have
been proposed. In brief, researchers and developers have approached object-oriented
database implementation along two directions: extending the relational model (e.g.,
POSTGRES [384] [342], GENESIS [164], Iris [134], and PROBE [592]) or applying the
ideas of object-oriented programming to permanent storage (e.g., GemStone [135]).
Most of the systems in the first category have been designed to simulate semantic data
models by including mechanisms such as abstract data types, procedural attributes,
inheritance, union type attributes, and shared subobjects. Most of the systems in
the second category extend an object-oriented programming language with persistent
objects and some degree of declarative object retrieval.

Both approaches have drawbacks in processing a large number of active objects.
The first gpproach suffers from the unstability problem resulting from the separation
of control and data. The second approach, on the other hand, loses the advantages
provided by fact-oriented database operations.

4.3. OBJECT REPRESENTATION 67

A c t i v e D a t a b a s e S y s t e m s The idea of incorporating rules into a database system
has exist as integrity constraints and triggers as early as in CODASYL, in the form
of ON conditions. More recently, the idea of combining rules and da ta has received
much serious consideration. The term "active database" has been used frequently in
referencing such database. For example, rules has been built into POSTGRES [342]:
there is no difference between constraints and triggers; all are implemented as a single
rules mechanism. In addition, POSTGRES allows queries be stored as a da ta field
so that it is evaluated whenever the field is retrieved. In HiPAC [138], the concept
of Event-Condition_Action (ECA) rules was proposed. When an event occurs, the
condition is evaluated; if the condition is satisfied, the action is executed. It can be
shown that ECA rules can be used to realize integrity constraints, alters, and other
facilities. Rules have also been included in the context of object-oriented databases.
In Starburst [285], for example, rules can be used to enforce integrity constraints and
to trigger consequent actions. In Iris [134], a query can be monitored by first defining
it as a function and later creating a monitor for the function.

On the other hand, there has been a growing interest in building large production
systems that run in a database environment. The motivations are derived from two
areas. First, expert systems have made an entry into the commercial world. This has
brought forth the need for knowledge sharing and knowledge persistence. These are
features found in current databases. Secondly, many emerging database applications
have shown the need for some kind of rule-based reasoning. This is one of the principal
features of expert systems. Production systems is a commonly used paradigm for the
implementation of expert systems. The confluence of needs from the areas of AI and
database has made the study of database productions very important.

Traditionally production systems have been used in AI, where data are stored
in main memory. Various needs, as mentioned above, have lead production systems
designers to use databases for data storage. We refer to these as database production
systems (DPS). Commercial DBMS's do not have the necessary mechanisms to provide
full support for such systems. Views can be used in lieu of rules, but only in a limited
way. Recent work has produced more powerful mechanisms to handle a large class of
rules [31] [93]. However, the focus has been on retrieval, especially evaluating recursive
predicates, and proposed approaches do not handle updates as in systems like OPS5
and HEARSAY-II. Recent efforts by [571] [341] [375] [84] have addressed this issue, and
much attention has been placed on parallehzing the evaluation of production systems
(see, e.g., [234] [283]). To our knowledge, little effort has been made for production
systems that work on objects or distributed evaluation of production systems.

4.3 Object Representation
To illustrate the concept of object base for simulation, we have chosen to extend C + +
as the object representation language. It is chosen based on the observation that C + +
has acquired enough attention and acceptance ~ the object-oriented language in the
computer community. These extensions are described in the following subsections.

4.3.1 Complex Objects
A complex object is an object consisting of a set of (possibly complex) objects in the
sense that (1) The domain of an at t r ibute can be any class; and (2) The value of an

68 CHAPTER 4. ARCHITECTURE OF AN OBJECT BASE ENVIRON.

a t t r ibu te can be a set of objects. A complex object is an abstraction of its compo-
nent objects. Consequently, a me thod associated with a complex object implements
a funct ion of its component objects as a whole; so are the a t t r ibutes of the complex
object . Non-complex objects are called simple objects. To realize the concept of com-
plex object , i t is necessary to explicitly incorporate the notion of "set" in the object
language:

?

S e t C l a s s e s Given a class cr, the class of all possible ordered sets which can be
derived f rom instances of a is declared as: "

class set_of_cx {
o . .

methods
. o o

}

The following declaration defines a set a of class c~:

set_of_ce a;

S e t P r o j e c t i o n Given a set or an object a of class ~, the following notat ion desig-
nates the project ion of a on a t t r ibutes A1, . . . , An:

aIA1, ..., AN

. I

4.3 .2 A c t i v e Objects and Models
T h e const ructs provided in C + + are sufficient to describe passive objects, i.e., objects
whose activities are tr iggered when a method associated with the object is called. In
real apphcations, a special class of objects need to be defined in order to describe
objects which are continuously active according to some control mechanism. Such
objects are called active objects [85].

C o n t r o l An active object can be characterized by a set of states and a set of s tate
t ransi t ion rules. In the extended language, a class of active objects is declared as a
subclass of the class active, for which any at t r ibute , once defined, can be declared to
be a s ta te as follows:

state attribute,...,attribute;

The control por t ion of an active object is expressed as a set of product ion rules,
which is designated as the a t t r ibute control (whose domain is set-of-production) of the
object . A product ion is asserted in the following form:

condition =~ statement;

where condition is any logical expression over states and inputs, and can include
any quantifier over sets:
Universal Quantifier
A variable in a logical expression can be universally quantified by the quantifier:

(forall < variable_id> in < set_id>)

4.3. O B J E C T R E P R E S E N T A T I O N 69

Existential Quantifier
A variable in a logical expression can be existentially quantified by the quantifier:

(exist < variable_id> in < set_id>)

Membership
The following function returns 1 if <variable_id> is an element of <set_id>:

< set_id> :member(< variable_id>);

Similar to complex objects, we can define a complex active object to be a set of
(possibly complex) active objects. Wi th this definition, a complex active object can be
regarded as a concurrent production system ~

C o m m u n i c a t i o n For a complex active object , we classify the styles of communica-
tions among its component objects into two categories: synchronous and asynchronous.
Communica t ion between two objects is defined to be synchronous if:

1. The calling object suspends its execution after a message is sent to the other
object ; and

2. The calling object resumes execution immediate ly after a reply is received from
the called object .

Communica t ion between two objects is said to be asynchronous if the calling object
continues its execution after a call is made. Asynchronous communicat ion is achieved
in the extended language via messages. The class message is defined as follows:

class message {
public:

time time-stamp, reference;
object Sender, recipient;
set-of-object arguments;
void send();
boolean receiveO ;
};

An asynchronous call to me thod a associated with object c with arguments is
made by first creating a message object , assigning appropriate values to its at tr ibutes,
followed by sending the message with the send operation:

&send();

where 8 is the message jus t created. On the other hand, any message sent to an object
is picked up by the boolean function receive, which is called in the form of:

m.receive();

~Briefly, a production system consists of a set of rules, or "productions", which is of the
form (condition) --* (action), a database or "context", which maintains the s ta te /data of the
system, and a rule interpreter. The condition portion of each rule (LHS) is composed of some
logical combination of the results obtained from comparing some "state variable(s)" to a fixed
value(s) or to some other state variable(s). They are tested continuously, ff the condition is
true, the consequent action (RHS) of the rule is executed.

70 C H A P T E R 4. A R C H I T E C T U R E O F A N O B J E C T B A S E E N V I R O N .

The function returns true if a message has been received; in this case m is instantiated
to the message received. It returns false otherwise. A message m is regarded as the
reply to a previously sent message 5 if:

re.reference = 5.time-stamp
m.sender = 5.recipient
m.recipient = &sender

According to the above, an ordinary C + + function call c.a(xl,. . . , x,~) implements
a synchronous communication session; it is equivalent to a send operation followed
immediately by a receive operation.

I n p u t s , O u t p u t s , a n d L i n k s In the extended language, some attributes of an
active object can be chosen to be the inputs and outputs of the object as follows:

classifier attribute,...,attribute;

where class i f ier can either be the keyword input or the keyword output. The assign-
ment of inputs and outputs allows different objects be connected directly in order to
form an interconnected complex object. A linkage between two objects can be estab-
fished by the operation link:

link(a, r, c. s)

This operation connects a.r, presumably to be an output of object a, to c.s, presum-
ably to be an input of object b, so that any assignment to a.r is made to b.s as well
instantaneously.

C l o c k a n d M o d e l To support simulations, the attribute clock is associated with
each active object, and a set of methods is available to manipulate the clock. Finally,
any subclass of the class active is called a model.

C l a s s T e m p l a t e In summary, the general form of the class declaration for an active
object class is:

class < class_id> {
< class_id> < variable_id> ,[...< variableJd>];

< class_id> < method_id> (parameter_l:domain_l,...,
parameter_n: domain_n) ;

classifier attribute, ..., attribute;

int clock;
set-of-production control = {
<logical-expression> =~ actions;

}
}

In the above, a classifier can be one of the following keywords: state, input, and
output.

4.4. MANAGEMENT OF ACTIVE OBJECTS 71

A s s o c i a t i v e O b j e c t R e t r i e v a l The availability of sets as described in the above
also allows objects be retr ieved in an associative fashion. It is assumed that the fol-
lowing func t ions / s ta tements axe used to access the elements in a set:

1. < set_id> :insert(< variable_id>) ;

2. < set_id> :delete(< variable_id>);

3. (]oreach < variable_id> in < set_id>) statement;

4.4 Management of Active Objects
Given a set of active objects, the problem of object management is concerned with the
impact created by any change made to the system. It is desirable that adjustments can
be made automat ical ly according to any change so that the system is always consistent.

4.4.1 State Space and Cr i te r ia

Given an active object P with n states sa,...,sn, we define the state space of the object
to be Domain(s1) x Domain(s2) x . . . • Domain(sn). Among the states, we assume
tha t one is chosen as the initial s ta te and a number of them are chosen as the final
states. We define the set of reachable states of P to be the set of all possible states which
can be reached, either directly or indirectly, from the initial state. For the purpose of
discussion, the following criteria are chosen as the constraints when an active object is
updated:

L i v e n e s s An active object should have no s ta te which is a dead-end state, where a
dead-end s ta te is a s ta te from which no further s tate transi t ion can occur and it
is not a final state.

C o n s i s t e n c e An active object should be consistent in the sense that , in any state,
there exist no conflicting actions, where two actions conflict each other if their
effects logically violate each other.

Other criteria, such as teachabili ty and deadlock-freeness, can be considered in a
similar way.

4.4.2 Adding and Removing A State

If an active object is live and consistent, these two operat ions are processed as follows:

A d d i n g A S t a t e Assuming s~+l is added to object P and the object becomes P ' ,
the s ta te space of P is enlarged to Domain(s1) • Domain(s2) • . . . • Domaiu(sn) •
Domain(an+l). Any s ta te v in the original s ta te space now corresponds to Domain(sn+])
s ta tes (v,ua) (v,u~), where r = Domain(sn+~) and the set of ui ' s spans all possible
values of sn+l . Let us assume that v is not a final state. Since v is not a dead-end
s ta te in P , there must exist a rule in P for which v satisfies its left hand side. Clearly,
in P~, each of (v,ul) (v,ur) still satisfies the LHS of the same rule. Consequently, P~
remains to be five. On the other hand, since no new rules (and actions) are added to
P~, no conflicting actions may be taken in each of the new states. In summary, adding
a s ta te variable to a live and consistent object does not damage such properties.

72 C H A P T E R 4. A R C H I T E C T U R E OF A N O B J E C T B A S E ENVIRON.

D e l e t i n g A S t a t e Deleting a state is more complicated than adding a state. As-
suming si is removed from object P and the object becomes P ' , the state space of P is
shrunk to Domain(s1) • . . . • Domain(si-1) • Domain(si+l) • . . . • Domain(s~).
Domain(si) states (v,ul) (v,u,), where R -- Domain(si) and the set of ui's spans
all possible values of si, now converge to a single state v. Since none of the original
states (v,ul) (v,ur), where R --- Domain(si), is a dead-end state, it is clear that v
is not a dead-end state. Consequently, P remains to be live after si is deleted.

Deleting a state is complicated due to the requirement of consistence. The compli-
cation arises from the fact that the left hand side of some rules may include conditions
on si.Simply dropping such conditions from those rules can create the following prob-
lems: (a) An updated rule can violate the intention of the user; (b) Actions which used
to be taken in states (v,ul) (v,ur) are now collectively taken in the state v; and some
of them may be conflicting. Instead of inspecting every state for possibly conflicting ac-
tions, the following procedure can be taken: For each pair of conflicting actions ai and
aj, identify couditions(a~) and conditions(a j). In the above, conditions(ai) designates
the set of LHS's of those rules whose actions include a~; conditions(ai) can be defined
in a similar way. The intersection of conditions(a~) and conditions(a j) identifies the
states in which conflicting actions ai and aj can be taken at the same time. Due to
these factors, the user is consulted when a state is deleted and some rules are affected
by this change. The conflicting actions are reported in the mean time, assuming all
conditions including the deleted state are dropped. Subsequent actions from the user
are handled according to the procedures for adding rules and deleting rules (see below).

4 .4 .3 Adding and Removing A R u l e

If an active object is live and consistent, these two operations are processed as follows:

A d d i n g A R u l e Assume a rule R of the form CR =~ AR is added to object P.
The state space clearly remains to be the same. Let states(R) be the set of states in
which CR can be satisfied. It is possible that executing R from a state in states(R) can
result in a state v from which no rule is applicable: a dead-end state. Such states can
be detected by identifying all the states which may be directly reached from the states
in states(R) and followed by inspecting each of such states and looking for applicable
rules. If a dead-end state can be discovered, the addition of R is not safe.

The addition of R may as well create conflicting actions, since the actions associated
w i t h R may be in conflict with actions of some rules which are applicable in a state of
states(R). The procedure described in the section "Deleting A State" can be applied
to detect such states.

D e l e t i n g A R u l e Assume a rule R of the form CR ~ An is removed from object
P. The state space clearly remains to be the same. Let states(R) be the set of states
in which CR can be satisfied. It is possible that removing R can result in a state which
used to be directly reachable from a state in states(R) no longer satisfies the LHS of
any remaining rules: a dead-end state. Such states can be detected by identifying all
the states which may be directly reached from the states in states(R) and followed by
inspecting each of such states and looking for applicable rules. If a dead-end state can
be discovered, the removal of R is not safe.

On the other hand, the removal of R from P causes no problem as far as consistence
is concerned. This is because each state v of the original state space is consistent, and

4.5. SIMULATION 73

the removal of R does not create any new action in v.

4.4.4 Adding and Removing An At t r ibute
If an active object is live and consistent, these two operations are processed as follows:

A ~ d i n g A n A t t r i b u t e Adding an attribute of a class in an object causes no
problem since the states and the rules of the object remain intact.

D e l e t i n g A n A t t r i b u t e Deleting an attribute from a class of an object has no
impact on the liveness of the object. Since some actions of the rules may include the
attribute to be deleted, the removal of the attribute may make the action part of such
rules incomplete. Simply dropping such updates from such rules may create problem
as the updated rules may violate the intented semantics of the object, although the
object remains consistent (as no new actions are taken). User involvement is required
in this case.

4.4.5 Adding and Removing A Method or A Class
Adding a method is like adding an attribute; and deleting a method is like deleting an
attribute. Adding a class is equivalent to adding a set of states, attributes, methods,
and rules. Deleting a class is equivalent to deleting a set of states, attributes, methods,
and rules.

4.5 S i m u l a t i o n

As discussed in Section 2, most of the existing object-oriented simulation systems pro-
vide an object-oriented user interface so that a simulation program can be described
in an easy and friendly fashion. Execution of an object-oriented simulation program
can be completely sequential or fully distributed as the program specifies. Although
looks attractive, executing a simulation program as a fully distributed, object-o~iented
system could be inefficient due to the shortage of physical resources and the overhead
associated with process management. Bearing this in mind, our approach compiles
an object-oriented simulation program, in which each active object is represented as
a production system, into a (production) rule network. Treating each active object
as a passive object, each node of the network corresponds to a set-oriented operation.
The compiled network (or the set of operations of the network) is evaluated in par-
allel. Changes to objects are generated at the terminals of the network. The overall
architecture of the object-oriented simulator is shown in Figure 4.1.

4.5.1 Rule Process ing

In general, processing of production rules or integrity constraints can become a serious
performance bottleneck when a large number of objects and rules are integrated. Since
multiple instances of the same class share the same copy of production rules, it is viable
to compile a set of rules into one system in which some set-oriented operations can be
employed to process the data (treated as sets) collectively. Furthermore, given a set
of rules, it is viable to merge those expressions that are common to more than one
rule so that duplicated effort can be avoided. We take a network approach for this

74 CHAPTER 4. ARCHITECTURE OF AN OBJECT BASE ENVIRON.

operations events

Rule Network

database

T T t
Figure 4.1: Simulator Architecture

4.5. S I M U L A T I O N 75

purpose, which is similar to the RETE algorithm ([235] [340]) but is more general in
treating logical formu!as and structured objects. Although integrity constraints and
production rules are treated shghtly differently, both are processed based on a network
that is compiled from a set of logical formulas.

P r o c e s s i n g I n t e g r i t y C o n s t r a i n t s Given a set of constraints {f~ ~ rl , f~
rn}, we can first convert each constraint fi --+ ri into the form fi A ,-~ r~(i.e., the

negation of the original rule). Subsequently, all the converted rules qan be compiled
into a network (see below), where each rule corresponds to a a terminal at the bottom
of the network, and there is no violation of the rule if no results can "flow" out from
that terminal.

P r o c e s s i n g P r o d u c t i o n R u l e s Given a set of productions {fl =~ ra, . . . , fn ::~
r=}, we can first compile all the left-hand-side formulas {f~, . . . , fn} into a network (see
below), where each formula corresponds to a a terminal at the bottom of the network.
Subsequently, each ri (created as an action node) is connected to the corresponding
terminal, and all the qualified objects for each production will "flow" into the action
node.

C o m p i l i n g L o g i c a l F o r m u l a s Given a set of logical formulas, a conjunct may
be used in different formulas and those conjuncts having the same head and the same
arguments can share the set of instantiations once they are computed; also, we can
produce the result for a conjunct from the result of another conjunct if the first conjunct
is more "general" than the second one. Here we define a conjunct P to be more general
than another conjunct Q if

1. P and Q have the same head,

2. all the constants in P can be matched with those in Q, and

3. all the variables in P can be consistently unified by the variables or the constants
in Q.

Now we define a rule network as a directed graph, where each node represents
a conjunctive formula. A rule network consists of a set of nodes, each is labeled by
a logical formula and corresponds to a set of objects. If a set of nodes nl,...,nk are
connected to a node n, each with an out-going arc, it means the sets produced at the
n~'s are input to n so that n can produce a set that corresponds to the logical formula
it carries. A node without any input arc is called an input node; typically it is a class.
A node which does not have any output arc is called a terminal node. A rule network
can be constructed with the following procedure:

C o n s t r u c t i n g R u l e Networks
Input: A set of conjunctive formulas Q1,Q2,...,Qn for which each element corre-

sponds to the LHS of a production rule.

Output: A rule network

Step 1
For each Qi, identify the set of predicates which correspond to classes, i.e., those

predicates which are class names. Create a node n, called a join node, for the predicate
set if it has not been created; otherwise identify the node that has been created (by

76 CHAPTER 4. ARCHITECTURE OF AN OBJECT BASE ENVIRON.

some Qj, j < i) and call the node n. Create another node and label the node with
the other predicates, which is collectively called a modifier, and establish an arc from
n to the newly created node. The arc goes from n to the modifier node since the
outputs produced by n should be processed, and selected, by the modifier node; any
output produced by the modifier node naturally corresponds to a tuple (of objects)
that satisfies the LttS of the rule. This step basically eliminates any duplicated effort
of creating a natural join of object classes among the rules.

Step 2

For any pair of join nodes nl and n2, if the set of predicates carried by nl is a
superset of that of n2, establish an arc from n2 to nl . This step guarantees that the
set produced by n2 can be used by nl . Since subsets may overlap, a join node can
choose, among different combinations, the best input sets to combine.

Step 3
At the end of step 1, a number of nodes that perform natural joins should have

been created. In the mean time, each rule corresponds to a modifier that selects from
the corresponding natural join those qualified objects. Consequently each join node is
connected to a number of modifiers. If there exists any predicate p which is common to
more than one modifier, a new node, called a common factor node, is created so that it
contains the MGP among such p's; an arc is created from n to the common factor node.
Finally, the modifier node corresponding to each rule connects itself to those common
factor nodes whose corresponding predicate subsumes one of its predicates. If after this
a modifier m is connected to a set of common factor nodes cl,...,ck, the intersection of
the outputs produced by c~'s is taken before the final selection is performed.

As an example, given the following formulas, the resulting rule network is shown
in Figure 4.2.

class_l(X) 8z& class_2(V) ~:~ pI(X,Y) &L: p2(Y)
class_l(X) && class_2(V) && p2(Y)
class_2(Y) p3(Y)

The procedure described above cannot guarantee that the computational effort
resulted from combining duplicated formulas be the minimum; even for the case of
relational databases it has been proved to be difficult. It does, however, guarantee
that no formula that is duplicated among several rules be evaluated more than once.
Once a network is built, it is evaluated incrementally. Specifically, each operation is
evaluated once based on the initial state of the system. In the mean time, for each
operation, the results are stored. Subsequently, as the state of the system is changed,
only those rules which are affected by a changed object need to be evaluated during
each iteration. When an update of the database is made, operations are performed
from the bottom of the network. Only those nodes containing the corresponding class
predicate as the updated fact and whose arguments can be unified by the arguments of
the updated fact are activated. After the common factors and modifiers are activated,
the operations associated with the qualified rules are performed. For each join, common
factor, or modifier node, the content of the stored result is changed according to the
change(s) in its input set(s).

4.5. SIMULATION 77

pl(X, Y) I

p2(Y) I

,

class_l(X), class_2(Y) I
,)

class_l(X) [] class_2(Y)

Figure 4.2: A l~ule Network

78 C H A P T E R 4. A R C H I T E C T U R E OF A N OBJECT BASE ENVIRON.

4.5.2 Logic of The Simulator

As described, our approach merges a set of active objects into a (much) smaller set of
operation processes. Simulation can be performed synchronously or asynchronously.
In the synchronous mode, a global clock is employed so that each active object is
synchronized with respect to the global clock; the system proceeds according to the
discrete events produced. In the asynchronous mode, each active object proceeds at
its own speed. In this case, joins in the rule network have to be performed on objects
with different clock values. Consider a decision ~ which has to be made based on the
states of two objects a and b, and a runs faster than b (i.e., clock(a) > clock(b)). If

is a decision for b (i.e., if the associated production is evaluated for b), clearly a
previous state of a has to be used in making the decision. On the other hand, if a is
a decision for a, and since in this case the "current state" for b is not available, a may
assume that the state of b will not change during the period (clock(a),clock(b)) and
use the most recent state of b in making the decision so that in the worst case, it can
roll back to this decision point if the relevant states of b are indeed changed once it
catches up. The same reasoning can be extended and applied to decisions which have
to be made based on more than two objects. Each node in the rule network has to
use the correct versions of the objects in the computation. Even if the simulator runs
in the synchronous mode, it is required that the states of each object be recorded and
rollbacks be performed whenever causality errors are detected. It is necessary since
messages may be rots-ordered. Based on the above, the simulator executes a loop with
the following steps:

E v e n t E x e c u t i o n In the case of synchronous simulation, the events with the small-
est scheduled time with respect to the global clock are executed; in the mean time the
global clock is adjusted to the events' scheduled time. In the case of asynchronous
simulation, the events with the smallest scheduled time with respect to each object are
executed; in the mean time the logical clock associated with the object is adjusted to
the events' scheduled time.

O b j e c t S e l e c t i o n The rule network is evaluated. At the terminals of the network,
actions are generated. This step basically selects those objects which have one or more
productions eligible for firing based on their current states. As discussed earlier, in
the case of asynchronous simulation, each join node of the network need to select an
appropriate version of the object states for each object to join due to speed mismatches.
To be specific, assume a join node ~ joins n classes of objects cl, ...,c,~. Also assume
at one instance of time an object r, which is an instance of class ci, changes state
(i.e., an updated r comes into a), with a new clock value T. Since the join should
be incremental, r should be joined with cl (r) , . . . ,ci-l(r), ci+l(r),...,c,~(r), where c~(r),
j # i, consists of every instance of class cj whose logical clock value is the maximal
possible one which is smaller than T in its history. Each tuple (of objects) produced,
say, (sl,...,s,O, should be labeled by the augmented tuple ((sl,T1),..., (s~,T~)), where
Ti is the clock value of object si chosen to be joined, so that it becomes the "cause"
for the tuple produced.

P r o d u c t i o n F i r i n g For each object selected, the actions associated with each
firable production rule are taken. Such an action could be an operation which changes
the value of an object, a communication operation (send and/or receive), or an event

4.5. SIMULATION 79

(which will be executed in the future). If necessary, the value of the clock associated
with the object is updated based on the operation(s).

D e t e c t i o n a n d P e r f o r m i n g R o l l b a c k s In a simulation program, rollbacks are
required when some causality errors - usually due to speed mismatches in al/ asyn-
chronous environment - are detected. The term "rollback" implies that each active
object should maintain the history of itself so that it can go back from its current
s tate to some previous state if necessary. Specifically, an active object need to record
its s tate transitions. For any causality error detected, it need to locate the state in
which a previously received message took effect, go back to that state, and undo any
intermediate actions. More importantly, it should "unsend" any message that was sent
in a state along the rollback state chain; this may cause cascading rollbacks take place
on other objects.

Let us assume that each operation or event a is labeled by (P, T, ((sl , T1),..., (sn,
T~)), s), where P is the production that triggered the action/event, T is the logical
clock value of the target object (of the operation/event) at which it should take place,
each (si,T/) designates the state of object ci and its time base on which the production
was fired, and s is the state of the target object after the operation/event was taken.
Clearly, a need to be undone if each of ci, 1 < i < n, for which Ti < T, is advanced
to a logical clock value that is greater than T, and if Si designates the state of ci
just right before T, all together S1,...,Sn does not satisfy the LHS of P. Cascading
roUbacks (backward in time) with respect to the target object are possible since all the
relevant objects have caught up. This means a fast object may become a-slower ob j ec t
after rollbacks. Since rollbacks for an object never occur until all the relevant "slower"
objects have caught up, rolling back an object should not affect those objects which are
faster than itself for which some operations/events were produced based on its current
state; those obj~ects may need to be rolled back once the currently-being-rolled-back
object catches up later.

Since our object model allows objects be shared among different processes (al-
though they are accessed through messages), it is important that serializability [442]
be maintained all the time. This means the effects created by multiple processes which
are executed concurrently should be the same as those created by a (any) serial sched-
ule among the processes. To assure this, our design employs the two-phase locking
protocol, which requires all objects accessed by a process be locked before accessed,
all locks be acquired before any unlock, and all objects be unlocked before the process
terminates. Clearly, two-phase locking cannot be implemented at the method level, as
two consecutive method calls can violate the two phase requirement. Consequently, we
require each method lock any object it may access but not unlock it. The list of locked
objects should be returned to the calling process so that the process can unlock the
locked objects before it terminates.

4.5.3 Parallel Processing

The following approaches can be taken in order to evaluate a rule network, depending
on how logical objects are packed into physical objects:

80 C H A P T E R 4. A R C H I T E C T U R E OF A N O B J E C T B A S E E N V I R O N .

C l a s s - L e v e l P a r a l l e l i s m In this approach, each node of the network is imple-
mented as a physical object, where each input node is a class object and each internal
node is an operation object. The network is evaluated as an active network, operating
in a pipelined fashion. SpecificaJly, each operation object retrieves inputs from its in-
put object(s) and produces the outputs, which are available to the operation object(s)
at the next higher level. Unlike operation nodes, each class object func~tions as a data
store from which data can be retrieved by operation objects.

S e t - L e v e l P a r a l l e l i s m In this approach, each terminal node is implemented as a
set of objects, where each of them corresponds to a subset of a class. The network
is transformed into an equivalent one in which each terminal node corresponds to a
subclass object. The transformation can be done in a straight-forward fashion based
on the following principles:

2. (R = R1 U R2) =~ selects(R) = selectF(R1) U selectF(R2)

Clearly, this approach can achieve a higher degree of parallelism; however it is more
complicated to implement. In addition, the number of operator objects can grow
exponentially as each class is split into smaller and smaller subsets.

4.5.4 Example
This example consists of a number of divisions divided into two sides: blue and red.
The divisions are initially located on the border of a battlefield which is modeled as a
square of grid tiles. The scenario is set up so that all the red divisions are spread on
the east border of the battlefield and the blue divisions are spread on the west side.
Once initiated, the blhe divisions march to the west and the red divisions march to
the east, during which each division is characterized by its strength, speed, direction
of movement, and its location. When two divisions of opposite sides encounter each
other, the strength of the weaker is reduced to zero; in the mean time the strength of
the stronger is reduced by the that of the weaker. Any division whose strength is 0
is removed from the system. At any instance of time, the number of divisions in each
grid tile cannot exceed two.

The system as described can be expressed as a production system as follows. For
simplicity, locking and unlocking operations for shared resources are not included in
the rules.

division(d) && (d.color = red) && grid(g) &~c neighbor(d,g) && (g.capacity
< 2) :el march_left(d), (d.clock -~ clock + 2), (g.capacity = g.capacity +
1) (Rule 1)

division(d) && (d.color = blue) gz~c grid(g) && neighbor(d,g) && (g.capacity
< 2) ~ march_right(d), (d.clock = clock + 2), (g.capacity = g.eapacity +
1) (Rule e)
division(d) && (d.color = red) && division(e) && (e.color = blue) &&
same_grid(d,e) && (d.strength leq e.strength) =r (d.strength = d.strength
- e.strength), (e.strength = O) (Rule 3)
division(d) ~& (d.color = red) && division(e) && (e.color = blue) &&
same_grid(d,e) && (d.strength < e.strength) =~ (e.strength = e.strength -
d.strength), (d.strength = O) (Rule 4)

4.6. OBJECT-ORIENTED EVALUATION OF RULE N E T W O R K S 81

division(d) && (d.strength = O) && grid(g) && in_grid(d,g) ~ d.delete 0
~:& (g.eapacity = g.capacity- 1) (Rule 5)

The rule network constructed for the above network is shown in Figure 4.3. As shown,
after Rule 1 and Rule 2 are evaluated, all divisions which can move are scheduled to
move into their new locations after two time units. After Rules 3 and 4 are evaluated,
the strength of any moved division is adjusted; and those with 0 strength are removed
after Rule 5 is evaluated. As can be observed, in the rule network, each rule is evaluated
for those objects whose states are just changed by the other rules. In other words, the
focus can always be placed on those objects whose states were just changed. This
is different from the fully object-oriented approach. If the simulation system is fully
distributed and object-oriented, each of the above rules need to be evaluated by each
active object during each cycle, even if the object is not qualified to move.

4.6 Objec t -Or iented Evaluat ion of Rule Net -
works

This section presents an object-oriented approach to rule processing. It is "object-
oriented" since each entity in the system is an active object, which acts with its own
dedicated control sequences according to its functionality (e.g., constant nodes, predi-
cate nodes, variable nodes). Upon receiving a message from another object, it executes
its dedicated control sequence which may return a result or initiate an operation of
other objects for further processing. All operations in objects are proceeded asyn-
chronously. Since no object has global knowledge about the database, cooperation
among objects is necessary in interpreting a production. Compared to the fully object-
oriented approach, each object in this approach is much simpler in the sense that it
does not need to evaluate a production system as required by the fully object-oriented
approach. It does, however, have the minimal intelligence to participate and contribute
to the rule evaluation process.

4.6.1 Structures of Extensional Databases and Query Net-
works

In order to store an object (which is represented as a predicate), three types of nodes
are employed: object constant nodes, object predicate nodes, and object attribute
position (OAP) nodes. Specifically, an object of class p with attributes al,...,a~ is
stored as an object predicate node p, a set of object constant nodes ai,...,a~, and a
set of OAP nodes pl,...,pn. For each class p, the set of objects of p, designated as pc,
is collectively stored as an interconnected network, which consists of the following: an
object constant node for each distinct constant which may appear as an attribute of
an instance of p, n OAP nodes pl ,...,pn, and [pc [object predicate nodes so that for
each object of Pc, assuming its attributes are al,...,an, the object constant node a~, 1
< i < n, is connected to an object predicate node (which stores the predicate symbol
p) and each a~ is connected to the OAP node p~.

It is assumed that each object constant node knows the addresses of those ob-
ject predicate nodes and OAP nodes which are connected to it. Similarly, each OAP
node and each object predicate node know the addresses of its associated attributes.
Inside an object constant node, the set of addresses to its connected object predicate
nodes are grouped based on attribute positions; these groups are called address groups.

82 CHAPTER 4. ARCHITECTURE OF A N OBJECT BASE ENVIRON.

T T I I 0.streo~,~ d.streogth, d.color = red d.color blue e.strength e.strength

T t
I I I

in_grid(d,g), neighbor(d, g) [g.capacity<2 1[e.coior = d.color = red, blue,
same..2r;d/a ,~ gth - n

division(d) I division(e) [grid i)

~ t

Figure 4.3: A Rule Network

4.6. O B J E C T - O R I E N T E D E V A L U A T I O N O F R U L E N E T W O R K S 83

Consequently, an OAP node is used to interface the object network and the external
environment. It acts as a buffer node which gets a message from the outside of the
network and regenerates the same message to the connected nodes in the network. It
also combines the replies from the connected nodes in the network and sends a reply to
the outside of the network. With OAP nodes, we can hide the actual fact network from
the outside of the network. Conceptually, the use of OAP nodes employs an indirect
addressing mode in order to avoid the establishment of connections to object constant
nodes whenever a rule is evaluated. Consequently, when an operation is evaluated,
only the connections from each predicate argument nodes in the operation network
(see below) to the OAP nodes in the object network need to be established. Within
each node, it stores the identity (node type) of the node, its value (if it is an object
constant node), some dedicated control sequences, and the addresses of the nodes it
is connected to. Inside an object constant node~ the addresses of its connected object
predicate nodes are recorded and grouped according to their positions. Note that each
distinct object is uniquely stored.

On top of the objects, a join operation f -~ fl A ... A fn is built as an operation
network, where each f i denotes an operation predicate node which is connected to a set
of operation argument nodes (where each of them could be an operation constant node
or an operation variable node). A logical expression can be associated with each vari-
able argument node which designates any select criteria for the argument. Depending
on its position in the argument list, is connected to an appropriate OAP node, which
should exist in the object network already. We shall assume that a controller exists on
top of all the objects and each object knows the address of the controller. However, the
controller only knows the address of each operation predicate node when an operation
network is constructed.

4~ Object-Oriented Rule Evaluation
Consider an operation and an object of class p with attributes al,...,an. If the object
knows the structure of the operation, we can have the following observations:

1. For each constant a, note that a can be an attribute of more than one object,
assume we know which variables of which operation predicate nodes can be
instantiated by a. The object predicate p(al,...,an) can instantiate the operation
predicate node p(xl , . . . ,xn), where each of xi, 1 < i < n, is a constant or a
variable, and el is the select criteria associated with zi if it is a variable, if for
each i, 1 < i < n, the following conditions are held:

(a) ai -- x~, if x~ is a constant;

(b) ci(ai) is true, i.e., ai can instantiate xi, if xi is a variable.

Furthermore, for any xi and zk, 1 _< j , k < n, j ~ k, ff x j = V and xk = V for
some variable V, we say there is an intra-predicate tupling condition between xj
and x~. Clearly, for any intra-predlcate tupling condition between xj and ~k,
aj should be equal to ak. In this case, we say aj satisfies all the intra-predicate
tupling conditions for p.

The above implies that each object predicate object, which is connected to its
attributes, can determine if it can instantiate a predicate of the operation. This
is because (1) Each of its attributes knows which variable instances of the pred-
icate can be instantiated by itself, and such knowledge can be collected at the
object predicate object; (2) The object knows the structure of the operation,

84 C H A P T E R 4. A R C H I T E C T U R E O F A N O B J E C T B A S E E N V I R O N .

and therefore knows which variable instances are associated with, and in what
order in, each predicate node of the operation.

2. For each constant a, note tha t a can be an a t t r ibute of more than one object,
assume we know which variables of which predicates of an operation can be
ins tan t ia ted by a and group all such (variable ins tant iated - variable) pairs
into a set B V I S a , where B V I S stands for Binding Variable Instances Set. For
an object predicate p(al,...,a,~), it can satisfy the operation f = f l A ... A f,~
through a predicate p(xl , . . . ,x~) if the following conditions are held:

(a) p(al ,an) can ins tant ia te p(xl,... ,x,O;

(b) For any variable V, if xj = V, and there exists another predicate g(yl ,Yr)
where yk = V, we say there is an inter-predicate tupling condition between
xj and yk. Clearly, for any inter-predicate tupllng condition between ~j
and Yk, where z j = V and yk = V, then both (a j ,x j) and (aj,yk) should be
contained in B V I S ~ j . In other words, aj should ins tant ia te both xj and
yk.

The above impfies tha t each object, which is connected to its at tr ibutes, can
determine if each of its a t t r ibutes can satisfy all the inter-predicate tupfing con-
ditions for an operation. (1). Each of i ts a t t r ibutes knows which variable instances
of the operat ion can be ins tant ia ted by itself, and such knowledge can be collected
at the object predicate node; (2) The object predicate node knows the s tructure
of the operation, and therefore knows which variable instances are associated
with, and in what order in, each predicate node of the operation.

3. A partial solution for an operation B can be formed in an object predicate p,
whose a t t r ibutes are assumed to be al ,...,an, through a predicate node p(xl , . . . ,x , 0,
if each ai can satisfy the inter-predicate tupling conditions. Note that if a par-
tial solution can be formed for B, it is not guaranteed that a complete solution
exists, where a complete solution is a partial solution in which all variables are
ins tant ia ted. A part ial solution of B can be expressed as aa,...,c~,~, where a~, 1 <
i < n, is either a subs t i tu t ion (expressed in the form of a / V , meaning a constant
a ins tant ia tes a variable V) or a variable. Two partial solutions a~, . . . ,an and
fla,...,fl~ for B can be merged into another, yet more complete, part ial solution
ra, . . . , rn such that

(a) ri = ai, if ~ is a subst i tu t ion and ~i is a variable;

(b) r~ = fli, if fli is a subst i tu t ion and ai is a variable;

(c) ri = ~ (or fl~), if both a i and fli are subst i tut ions or variables (Note tha t
in this case ai and fli have to be equal).

Two part ial solutions for B are incompatible if they cannot be combined.

4. Based on 2 and 3, each object predicate node can form a partial solution, if
exists, for an operation. Consider an operation B = pl , . . . ,pm where (1) Each pi
has arguments (xil ,x~u(i)); and (2) p~ and Pi+~ share at least one variable. A
complete solution for B can be formed aa follows:

(a) Each object predicate node whose predicate symbol is pl determines a par-
t ial solution, if exists, for B. If the part ial solution is a complete solution,
stop.

4.7. CONCLUSION 85

(b) Each object predicate node whose predicate symbol is pl which has a par-
tial solution for B passes the partial solution to each object predicate node
whose predicate symbol is p2 which is connected to it through the common
constant(s) and asks each connected object predicate object whose predi-
cate symbol is p2 to expand the partial solution. This can be done in each
of the object predicate nodes whose predicate symbol is p2 by combining
the passed partial solution and the partial solution determined by itself. If
they are not compatible, stop; if the combined partial solution is complete,
stop.

(c) Each object predicate node whose predicate symbol is p2 which has a partial
solution for B passes the partial solution to each object predicate node
whose predicate symbol is p3 which is connected to it through the common
constant(s) and asks each connected object predicate node whose predicate
symbol is p3 to expand the partial solution. This can be done in each of
the object predicate nodes whose predicate symbol is p3 by combining the
passed partial solution and the partial solution determined by itself. If
they are not compatible, stop; if the combined partial solution is complete,
stop. This process is repeated until each of the object predicate nodes
whose predicate symbol is p,~ is processed.

4.7 Conc lus ion

In this chapter, we have presented the design of a parallel object-oriented simulation
environment. The environment provides an object-oriented interface that allows the
control and the communication aspects of active objects be easily specified. It also
allows complex objects be composed easily. Representing the control of each active
object as a production system, the environment considers the state space of each object
in determining the impact of any change made to the object.

While the idea of rule-based simulation is not new (see, e.g., [282] [387] [608]), our
approach converts a large number of active objects into a much smaller set of oper-
ations applying to sets of passive objects. As a consequence, common computations
can be shared among different objects. Compared to a fully distributed, asynchronous
approach, it avoids the problem of managing a large number of active objects when
the available physical resources are limited. An alternative object-oriented rule evalu-
ation approach has been also proposed for parallel environments which contain a large
number of relatively simple processing elements.

Chapter 5

Transition From A Relation To Object Model
Implementation*

Bharat Bhargava t, Yin-he Jiang t, 3agannathan Srinivasan ~ , Prasun Dewan �82

5.1 Modeling Complex Data
Emerging "next generation" applications such as multimedia, engineering(CAD/CAE),
and geographic information systems require managing databases that are more com-
plex than those in applications such as banks and airhne reservation systems. Cur-
rent RDBMS (Relational Database Management Systems) are limited in their support
for these applications. The limitations typically include lack of support for complex
da ta structures and operations, integrity checking, and triggers, etc. They are con-
fined to simple, predefined alphanumeric types. On the other hand, OOPLs (Object-
Oriented Programming Languages) and OODBMS (Object-Oriented Database Man-
agement Systems) allow developers to define their own ob jec t /da ta types. These user-
defined types are indistinguishable from the pre-existing types from the system view
point.

Modeling hierarchical da ta (composite object) in RDBMS is cumbersome. The
developer has to create numerous tables to model the complex data. When being
requested to retrieve da ta in the composite object, the system has to join many of
these tables on the fly which is a time-consuming job.

In OODBMS, an object can consist of a collection of other objects by two ways.
One way is through embedded objects. That is, aat object is stored directly in another
object as one of its fields. The other is through pointer~ or object referencing. In this
case, the address of an object is stored in another object as a field. Because there
are object identifier to each object including composite object, explicit links between
objects and information to cluster data, the performance is improved when such objects
are stored in an OODBMS. The time-consuming join operations in RDBMS is saved
by direct object referencing in OODBMS.

Aimed at supporting the new applications, researchers have adopted two different
ways. One is to build OODBMS from ground up (revolutionary approach). Such
systems include O2 [151], ObjectStore [347] and GemStone [83]. The other is to
extend an existing RDBMS to support abstract da ta types (evolutionary approach).

*This research is supported in part by a grant from AIRMICS and UNISYS.
lDepartment of Computer Sciences, Purdue University, West Lafayette, IN 47907
$ Department of Computer Sciences, Purdue University, West Lafayette, IN 47907
w of Computer Sciences, Purdue University, West Lafayette, IN 47907
�82 of Computer Sciences, Purdue University, West Lafayette, IN 47907

88 C H A P T E R 5. T R A N S I T I O N F R O M A REL. TO O B J E C T MODEL

Such systems include P O S T G R E S [557], Starburst [379] and O - Raid [153]. Both
ways have been successful and have their advantages and disadvantages. While the
revolutionary approach is focused on supporting abstract types from ground up and
allows the system to be finely tuned, the development cost and time is relatively great.
On the other hand evolutionary approach allows reuse of RDBMS software which is
cost-effective and could shorten the developing time of the software significantly. The
flexibility of the design and implementation in this approach is restricted and the
performance is bounded by the underlying system. In the following discussion we will
be focused on the evolutionary approach. We start on surveys of systems using this
approach and focus on the O-Raid system we developed at Purdue University.

5.2 Survey of Extended Relational Systems

P O S T G R E S In addition to business applications, POSTGRES expands to sup-
ports object management and knowledge management. Object management entails
storing and manipulating nontraditional da ta types such as bitmaps, icons, text and
polygons. Knowledge management includes the ability to store and enforce a set of rules
that are part of the semantics of a application. Such rules enforce integrity constraints
and allow the derivation of data that is not directly stored in the database [557].

It also supports class, class inheritance and user-defined functions in the DBMS. In
the POSTGRES approach, Classes are modeled by relations. A tuple within a relation
represents a class instance. The attr ibutes define the instance variables. A relation
may inherit the at tr ibutes and the functions defined for another relation. POSTGRES
defines a relation called superclass relation. This has three attributes, class, superclass
and seqnum. The class and superclassattributes store the class name and the superclass
name respectively. The seqnum at tr ibute stores a number, used for resolving conflicts.

Object referencing in POSTGRES is realized through storing procedure valued at-
tributes in a relation. Such at tr ibutes can contain a QUEL query to retrieve tuples
from other relations. Accessing the procedure valued attr ibute automatically executes
the query, retrieving the desired data. The procedure valued attr ibute thus serves as
a pointer to another object.

Starburst Starburst supports user-defined types through extending a relational
DBMS. Its goal is to provide the desirable features of object-oriented, logic, deduc-
tive and other DBMS technologies, while still retaining all the strength of a relational
DBMS [379]. I t supports user-defined production rules. These rules could form a for-
ward chain that enforce da ta constraints through performing actions when predefined
conditions are satisfied (triggered).

Starburst supports user-defined types and functions. The user-defined functions
must be statically linked with the rest of the Starburst system. Dynamically linking a
user-defined function with the system is underdevelopment [379]. There two ways of
storing complex objects in Starburst. One is to store the entire object in a 'long field'.
This means that the system has minimal ability to apply selection predicates based on
the contents of this 'long field' in a query. The other is to store the components of an
object as rows in a table. This allows objects to constructed by composing these rows
using different relational views. Similar to POSTGRES, Starburst supports object
referencing by embedding queries in da ta fields. These queries defined the da ta objects
to be constructed.

5.2. SURVEY OF EXTENDED RELATIONAL SYSTEMS 89

I*pp .t on I I I I
Programs [[User-Interface [I User-Interface

S Q L + + Q u e ~ e s ~ y

] SQL++Query Processor]

Read/Write l
Sets

] RAID Transaction Manager]

Persistent Storage

Figure 5.1: O-Raid System Layout

O - R a l d O-Raid extends in layers the implementation of an existing distributed re-
lational system called RAID [61] (See Figure 5.1). O-Raid integrates the relational
and object models. As a result it retains the simplicity of the relational model while
providing the functionality of the object model. Specifically, the relations in O-Raid
dan contain attributes of user-defined types, i.e., the tables can contain objects in their
columns. The user-defined types are generally classes. A class is a set of objects having
common features. In the class definition, the common features of objects are defined
by instance variables (members) and methods (functions). The state of an object, i.e.,
the values of the instance variables in the object, can only be changed though the
execution of methods defined in the class.

O-Raid supports both inter-object referencing (or pointer referencing) and intra-
object referencing (or embedded object referencing, where an object is stored within
another object). In queries persistent pointers to user defined types in attributes of
a relation is allowed. A persistent pointer in O-Raid is represented by three integers,
object identifier (OID), relation identifier (RID), and a offset (OFFSET) [420] that
uniquely identify the object and its class. Objects, classes, and inheritance are sup-
ported together with a predicate-based relational query language. O-Raid objects are
compatible with C++ objects and may be read and manipulated by a C++ program
without any '~impedance mismatch".

90 C H A P T E R 5. T R A N S I T I O N F R O M A REL. TO O B J E C T MODEL

R A I D O-Raid

Language: SQL Language: SQL++

Tables o f

s imple types only

e.g. integer, char

Predicates of simple
comparisons

e .g .= , > , <

Expressiveness o f query:

Somet imes m a y be

non-intuit ive and long

Tables of

simple types and
any user-defined

types e.g. structures
and functions

Predicates o f comparisons

and user-defmed fuctions

e.g. conta in_key0

Expressiveness o f query:

Intuitive and terse

Figure 5.2: Query Language (RAID vs. O-Raid)

5.3 O-Raid System Design and Implementation
In O-Raid [153, 60] we are exploring the extensions to the relational system to imple-
ment an object-oriented system.

5 . 3 . 1 Expand Query Language
We have extended the standard SQL query language called SQLq-+, to support queries
involving objects [420]. Figure 5.2 compares the features of the query languages sup-
ported in RAID and O-Raid.

In queries the objects are manipulated (retrieved or updated) using methods defined
in the object class in Cq-+. O-Raid [153] is built on top of the RAID [61] distributed
relational database system. An O-Raid relation needs to be mapped to a RAID relation.
Specifically, a relation involving user-defined types has to be transformed to a new
relation with attributes of simple types. The object-relation data model poses new
requirements for the schema specification facility, also referred to as Data Definition
Language (DDL) facility:

�9 Relation containing objects: To support an extensible collection of data types, a
facility for registering classes (user-defined types) is essential. The structure and
methods for complex objects needs to be registered with the database.

�9 Dynamic loading and execution of methods In O-Raid the methods used for ma-
nipulating the objects are dynamically loaded and executed. The facility for

5.3. O-RAID S Y S T E M DESIGN A N D I M P L E M E N T A T I O N 91

dynamic loading and execution of method needs method symbol name as op-
posed to method signature. Thus when a class is registered we need to generate
a table mapping all its method signatures to corresponding method symbols.

Schema for databases spanning multiple sites In O-Raid the relations can be
replicated at all database sites (]ull replication), or the relation can be replicated
at selected set of database sites (partial replication). The replication of selected
fragments of a composite objects is also supported.

5.3.2 E xtend Data Definit ion Facility
To create a database, users must specify the schema on which the structures of the
database is built. A schema specification facility called dbedit is developed for spec-
ifying database schemas and to generate the corresponding meta information in the
database. Classes are defined using C + + [560] programming language and they specify
the structure as well as the methods that manipulate the data. The extensions to the
tradit ional DDL include:

�9 Registerclass-name. This allows a user to store new user-defined types in to a da-
tabase including the code that defines and implements the classes and functions
(methods).

�9 Create table table-name ...

This allows users to create a table with its column to be of user-defined types
and to be able to invoke new functions in order to construct objects and filter
da ta in the queries.

�9 Distribute table table-name. This could specify a table to be replicated over
multiple sites. It could be used for selective replication of data.

We will illustrate the schema specification facility of O-Raid system through an
example. Suppose we want to creat a two-site document database:

�9 The Document contains 4 sections, namely introduction, indexing, replication and
conclu'sion.

�9 Since 2 users from 2 different sites (raid9 and raid11) have different access pat-
terns, it requires that introduction and conclusion sections be fully replicated,
section indexing is only created at raid9 site, and section replication only at
raid11 site (See Figures 5.3).

The Document and Section classes could be defined in C + + as follows (see Fig-
ure 5.4 and 5.5):

The above user-defined classes can be registered to the system by the command:

R E G I S T E R _ C L A S S Document;

The components of REGISTER_CLASS are shown in Figure 5.6, in more details:

�9 C-{--]-_Parser: Input: C + + programs; Output: Class information, including
class name, class size, superclass, member types and their size in bytes.

�9 Gen_. I t e la t ion : Input: the output of the last step; Action: generate metadata
files to store the class relation and class at tr ibute information.

e.g. A tuple 4 0 1 "Document" "pintro_sec" 7 9 1 "Section" in the CLASSAT-
TRIBUTE means that at tr ibute pintro_sec belongs to relation Document, is of

92 C H A P T E R 5. T R A N S I T I O N F R O M A REL. TO OBJECT MODEL

Site raid9

_1
-q Introduction [

. i ii::oil])
-]-I Conclusion]

Site raidl 1

F igure 5.3: A 2-si te Documen t Da tabase . Ident ica l copies of sect ions are con-
nec ted by l ines wi th arrows. Site r a id9 ' s view of the documen t s enclosed in the
d o t t e d bounda ry .

type class Section spanning column 7 to 9 and is a pointer to object (The] after
9; if 0, it means embedded object). 4 0 1 says that tuple id is 4, version is 0 and
1 means the tuple is used.

�9 G e n _ g e t h o d _ g a p : Action: Compile the C + + file and generate the corre-
sponding object file (. o). Generate a table mapping all its method signatures to
corresponding method symbol names.

e.g. Document::Docurnent(char *, char *) is a method signature, and

___SDocumentPcT1 is a method symbol name, which dynamic loader can use
directly to execute the constructor method Document().

�9 U p d a t e _ C l a s s _ M e t h o d : Action: The object files and method signature tables
created in the previous step are stored in the database. The table is stored in a
metada ta file called CLASSMETHOD.

S u p p o r t D y n a m i c L o a d i n g a n d E x e c u t i o n o f M e t h o d s : When user in-
vokes a function (method) in her query, the method signature is directly available from
the query. But the dynamic loader needs the method symbol name of the precompfled
method code for execution. Thus the Method Signature Table is consulted to convert
method signature to method symbol name before being able to dynamically execute a
method during query processing. The table is generated as follows:

�9 invoke the UNIX command nm on the class object file (. o) and select the mangled
names for the methods.

�9 process them with a demanglerprogram and build the desired table. The deman-
gler program generates the method signature from a mangler method symbol.

A method signature table of our example Document class is shown in Figure 5.9.

S c h e m a S p e c i f i c a t i o n The procedure of specifying the database schema of our
example to the O-R~id database system is shown as follows:

5.3. O-RAID S Y S T E M DESIGN AND IMPLEMENTATION 93

// Document.h
class Section { // both raid9 and raidll
public:

char heading[TITLE_LEN];
char text[MAX_TEXT];

Section(char*t);

void printobj();
};

class Section9 { // for raid9 site

};

c l a s s S e c t i o n l l { / / f o r r a i d l l
. . .

};

class Document { // both raid9 and raidll

public:
char name[MAX_NAME];
char title[TITLE_LEN];
class Section *pintrosec;

class Section9 *pindex sec;
class Sectionll *preplic_sec;
class Section *pconclsec;
Document(char *n, char *t);
void printobj();

};

Figure 5.4: Header file Document.h for definition of class Document

94 CHAPTER 5. TRANSITION FROM A REL. TO OBJECT MODEL

/ / Document.cc
/ / Constructor and Methods d e f i n i t i o n s
Sec t ion : :Sec t ion(char *t) {

s t rcpy(heading, t) ;
s t r c p y (t e x t , ">>") ;

}
void Section::printobjO {

if(this!=NULL) {
printf("Heading: Zs\n", heading);

}
}

// Similarly for Section9 and Section11
// For class Document
Document::Document(char *n, char *t) {

strcpy(name, n);
strcpy(title, t);
pintro_sec = NULL;
pindex_sec = NULL;
preplic_sec = NULL;
pconcl_sec = NULL;

}

void Document : :printobj () {
printf("Name: ~s\n", name) ;
printf("Title: Zskn", title);
pintro_sec->printobj();
pindex_sec->printobj();
preplic_sec->printobj();
pconcl_sec->printobj();

Figure 5.5: Source file Document.cc for Constructor and Method code.

5.3. O-RAID SYSTEM DESIGN AND IMPLEMENTATION 95

Register Class

C + + Pa r se r

I e n _ R e l a t i o n

I e n _ M e t h o d M a p

I update-r176 I
Proces s o rde r

Figure 5.6: Th e components of REGISTER_CLASS command.

0 0 I "Section" "s" 5 6 0 "Section"

. . o

3 0 I "Document" "d" 5 18 0 "Document"

4 0 i "Document" "pintro_ser 7 9 I "Section"

7 0 1 "Document" "pconcl_sec" 16 18 I "Section"

8 0 I "documents" "d" 3 16 0 "Document"

Note: From left to right, column by column it is "tuple id", "version", "used flag",
"relation name", "attribute name", "start column", "end column", "level of object
indirection", "class name".

Figure 5.7: Metadata file: CLASSATTRIBUTE

96 CHAPTER 5. TRANSITION FROM A REL. TO OBJECT MODEL

0 0 1 "Section" I0 640 "Document.o"

I 0 1 "Section9" II 640 "Document.o"

2 0 1 "Sectionll" 19 640 "Document.o"

3 0 1 "Document" 13 208 "Document.o"

Note: In the last row "Document" is a class relation; 13 is the class id for that relation;
208 is the number of bytes for that class; "Document.o" is the name of the object file
in which the class is implemented.

Figure 5.8: Metadata file: CLASSRELATION

0 0 1 "___7SectionPc" " S e c t i o n : : S e c t i o n (c h a r *)"
I 0 I "___8DocumentPcTl" "Document::Document(char *,

char *)"

4 0 1 "_printobj__TSection Section: :printobj()"

5 0 I " printobj_ 8Document Document: :printobj()"

Note: Columns left to right are "tuple id", "version", "used flag", "method symbol
name", "method signature".

Figure 5.9: Method Signature Table: CLASSMETHOD

5.3. O - R A I D S Y S T E M D E S I G N A N D I M P L E M E N T A T I O N 97

Invoke dbedit on a database name (dbed i t C o m p)
with the following DDL commands:
install ; {* initialize database directory *}
config(raid9.cs.purdue.edu /uraid9/databases);
{* declare raid9 and its directory as one site
Similarly for raidl l *}

reg is te rc lass Document;
{* Register classes defined in Document.cc
into the database Comp *}
c lassread; {* Reread the existed classes *}

{* A table with an attribute of type Document *}
c rea t e t ab le documents(Document d);

{* 2-site replicated tables *}
d i s t r i b u t e t ab le documents, Document, Section
(raid9.cs.purdue.edu/uraid9/databases);
d i s t r i b u t e t ab le documents, Document, Section
(r aid] 1.cs.purdue.edu /uraidll /databases);

{* Single site tables *}
d i s t r i b u t e t ab le Section11(raid11.cs.purdue.edu
/uraid11/databases);
d i s t r i b u t e t ab le Section9(raid9.cs.purdue.edu
/uraid9/databases);

repl ica te ; {* Action *}
qui t ;

Note: The comments of each command (in bo ld face) are put in between {* and *}.

5.3.3 Data Manipulation Language (DML)
Users interact with the database directly through DML facility by submitting queries.
Extensions to the queries include:

�9 Insert into table-name: <attributes>. Here the attributes could be a simple
type value, e.g. integer or a constructor method (function) call with arguments.

�9 Select * from table-names where predicate. In the "where" clause, the predicate
can not only be simple attribute such as name = "John" but also involve filtering
functions supplied by users such as contain_key("database").

�9 Introduce variables that allow users to store, retrieve and update intermediate
results by other queries. For example, assign to variable: select query; update
variable set statement.

Two kinds of variables are supported in O-Raid user interface. One is the tem-
porary variable whose life time is the login session of the user. The other is the
global variable whose life time is permanent. The global variable has the same

98 CHAPTER 5. TRANSITION FROM A REL. TO OBJECT MODEL

effect as a relation. Compared with the global variable, temporary variable has
much less overheads in execution of queries.

I n s t a n t i a t e t h e D a t a b a s e We continue with~ our example. The database is in-
stantiated by submitting queries to the user interface as follows:

�9 Invoke RAID servers and UI process on the database

/uraidg/ databases/ Comp.

�9 Input the following DML commands to UI:

i n s e r t i n t o documents:<Document("ind_rep",
"Indexing and Replication Experiments")>;

/

c r e a t e v a r i a b l e @s: &Section("Introduction");
u p d a t e documents se t d.pintro_sec = @s;

c r e a t e v a r i a b l e @s: &Section9("Indexing");
u p d a t e documents se t d.pindex_see = @s;

c r e a t e v a r i a b l e @s: &Section11("Replieation");
u p d a t e documents se t d.preplic_sec = @s;

c r e a t e v a r i a b l e @s: &Sect ion('Conehsion");
u p d a t e documents se t d.pconcl_see = @s;

The i n s e r t i n t o command constructs an in-memory object through constructor
method Document() defined in Figure 5.5. The object is converted into tuple and
inserted into relation documents.

The command c r e a t e v a r i a b l e @s: &Section(' Introduction") first construct an
in-memory object through constructor method Section()defined in Figure 5.5. The
address of the object is assigned to temporary variable s (denoted by prefixing character
@).

The command u p d a t e documents set d.pintro_sec = @s sets the attribute d.pintro_sec
of the relation documents to point to what the variable s is pointing to, which is the
object created in the previous command.

Q u e r y E x e c u t i o n i n O - R a i d After a user query is parsed, related relations are
brought into the memory. The attr ibutes of the relations involved in the query are
checked to see if they are of user-defined types, for example, Seminar is a user-defined
type. For at t r ibutes of user-defined types, e.g. the at tr ibute s in the example s e l e c t
query, an object is constructed for each tuple in the relation c o l l o q u i a . Here each
tuple contains an entry for a seminar. The query predicate is then evaluated on the
constructed object and depending upon the true/false value the object is selected or
rejected.

If the user-defined methods are involved in the predicate, the methods signa-
tures are mapped to the methods symbol names. For example, the method sig-
nature Keys: : con t a in_key (cha r *) in the sample s e l e c t query is mapped to the
method symbol name _contain_key_4geysPc via the methods symbol table created

5.4. P E R F O R M A N C E S T U D I E S 99

when r e g i s t e r _ c l a s s command is invoked. Bazed on the symbol names, the pre-
compiled method code is then loaded and linked dynamically with the process that is
handling the user query and the method is executed. For update queries in the end
of query processing, a translation from objects to tuples of the relation (reverse con-
version) takes place before writing relations to the database. O-Raid interact with the
underlying RAID system through Read/Write operations and lair_transaction, com-
mit_transaction primitives provided by the RAID system.

G r a p h i c a l U s e r I n t e r f a c e A graphical user interface called O-UI has been en-
gineered using Suite system [152] to allow access and direct manipulation of O-Raid
database relations and objects [434] (Figure 5.10). This interface facilitates the users
in composing their queries to an extent that parts of the user queries are provided
automatically.

Earlier, we had built a simple teletype interface for O-Raid called S-UI, which
accepted a query typed by the user and displayed the query result (if any) in a tabular
form. The interface was simple and portable but had several limitations. The display of
relations with a large number of tuples or at tr ibutes was difficult to view. The tabular
display of da ta was awkward for relations containing objects. A flexible mechanism for
display of objects was desired. We wanted to display objects through a special display
method defined for that class, which specifies how the objects of that class should be
displayed[6]: Another limitation was that the query result could not be reused for
a subsequent query. This increased the effort required to obtain desired information
through a series of steps (query refinement). Also, the manipulation of relations could
only be done by specifying update queries.

To overcome these limitations we embarked on building the O-UI graphical inter-
face. We wanted to build the graphical interface based on the direct manipulation
paradigm [521], with features such as mouse based interactions, pop-up menus, win-
dows, icons, and graphical display of data. Another goal was to minimize the amount
of information the user has to know (such as query language syntax, etc.) and reduce
the da ta that needs to be typed.

5.4 P e r f o r m a n c e Studies

We have conducted experiments on O-Raid to identify the overheads involved in ex-
ecuting S Q L + + queries [540]. This allows us to assess the effort required to extend
a relational system with objects, evaluate the efficiency and usability of some of the
design and implementation decisions we have taken, and gain experience in using data-
base objects. We found that about 15% overheads incur on the response time of query
processing.. We consider this reasonable as O-Raid provides more expressive power and
convenience to the users than its relational counterpart.

For replicated database, we build a two-site database, using Read-One-Write-All
(ROWA) replication control algorithm. Table 5.1 and 5.2 show the comparison of the
overheads under local, remote and full replication access for s e l e c t and i n s e r t queries
respectively. The' full replication scheme has the benefit of lowest cost for local read
access, but h ~ the highest cost for write.

Based on this observation, a selective replication scheme for composite object is
proposed in [541]. The composite object called document is created with four s e c t i o n
subobjects. Two users are simulated to access the document object. The access prob-
ability for the two user sites is shown in Table 5.3.

100 CHAPTER 5. TRANSITION FROM A REL. TO OBJECT MODEL

I d m : O b j e c t w i n d o w f o r r B l a U o n _ d i s p l a y - O

SOL++ Query Sbrir~ = ~ e l e c t K From ~ J ~ d . ~

Relation InFo:
relat ion type: User Defined
q u e * - y t~4oe: All
number o? attr ibutes: 5
atag~_~eq
number oF tupla~* 7

+ + + +

I Up I I Down I
+ + + +

5peed~ 3

Tuples:
id uid

+ + + +

I H e l p I I Q u i t I
+ + +

last_name ? i r ~ t _ n a m a po~i~ion

0 6 ~ h . j

I 2 3 lubenow
2 1 s j [& i 1
4 4 krl e
5 11 Ygz
S 5 tmc

I Cancel l l Insert l
+ § + +

Tupla To Update*
id: 22| 4
uid: nixontl
lest_name: Nixon
Firat_name: Teresa
po~ition~ UG

Jiao~ Yinmhe
Lubenow Kara
5rinivasan Ja~annathan

Frle~en Karl
Zhan9 Yon@guan9
CJ1un9 Tai

+ + + §

l B e l e t e I
+ + + +

G
UG
G

G
G
G

Figure 5.10: Query Interface and Relation Display Window

Query
Type
local

remote

full
replic [125,126]

T r a n s -

l a t i o n Read Writes TOTAL
132 318 121 589

[131,132] [317,319] [118,123] [585,592]
133 354 167 673

[131,135] [352,357] [164,171] [668,677]
125 321

[320,322]
120

[116,123]
585

[581,5881

Table 5.1: Comparison of processing time (in ms) for select queries with objects
on 25 'tuples

5.4. P E R F O R M A N C E S T U D I E S 101

Query SQL Trans-
Type parsing lation
Local 10 7
Insert [9,10] [7,7]
Remote 10 7
Insert [10,11] [7,7]
Two-site 10 7
Insert [9,10] [7,7]

Writes TOTAL
172 193

[167,176] [189,197]
232 255

[226,239] [248,2611
242 263

[234,250] [255,271]

Tab le 5.2: C o m p a r i s o n of process ing t ime (in ms) for insert queries wi th ob jec t s

Section Name sitel site2
"introduction" 0.25 0.25
"indexing" 0.375 0.125
"replication" 0.125 0.375
"conclusion" 0.25 0.25

Table 5.3: Access p robab i l i t i e s by site1 and site2 users

Table 5.4 and 5.5 contain the response time for s e l e c t query and upda te query
under three replication schemes, namely full replication, selective replication and no
replication. In the selective replication scheme, the sections "introduction" and "con-
clusion" are fully replicated on the two sites. However, only a single copy of the "in-
dexing" and "replication" sections is maintained at si tel and site2 respectively. The
two sites can both be on a LAN, or one at local and the other across the Internet.

From the above da ta we could see that the selective replication scheme shows strong
benefits over the fully replicated and the single copy schemes in the WAN as well as
in the LAN environment, considering the combination of retrieve and update opera-
tions [540]. The selective replication scheme allows users to fine tune the replication
and achieve high performance.

Emulated full replic seletive replic no replic
Host site1 site2 site1 site2 site1 site2
LAN 238 233 249 253 236 299

ecn.purdue 252 240 256 260 257 360
uiuc 256 256 278 299 248 552
uta 252 247 293 342 247 806

helsinki.fi 251 239 341 431 245 1534

Table 5.4: Select query response t ime (ms)

102 CHAPTER 5. TRANSITION FROM A REL. TO OBJECT MODEL

Emulated full replic seletive rephc no replic
Host sitel site2 sitel site2 sitel site2
LAN 331 335 321 322 279 353

ecn.purdue 371 375 348 350 295 420
uiuc 438 452 392 353 287 604
uta 527 526 440 476 288 861

helsinki.fi 812 814 '703 707 301 1619

Table 5.5: Update query response t ime (ms)

5.5 R e s e a r c h Issues

We are currently investigating several issues including indexing of relations containing
objects [295], selective rephcation of parts of composite objects [59], providing inte-
grated access to a variety of data sources through the federated objects [585], and
supporting transactions on fragmented composite objects [584].

R e p l i c a t i o n The traditional scheme of replicating an object in its entirety, for in-
creasing the availability, would incur high performance and storage overheads when
applied to composite objects such as multimedia documents and large pieces of soft-
ware. Our extension allows a replication scheme, which allows replication of selected
parts (subobjects) of the composite object. Such composite objevt replication can be
used to tune the replication granularity to meet both the availability and performance
requirements of distributed applications, and at the same time minimize the storage
costs. For example, a "document" object may be a composite object consisting of
pointers to four section objects, namely the "introduction", "indexing", "replication",
and "conclusion". Each of these sections can be independently distributed and repli-
cated by choice.

I n d e x i n g We are extending O-Raid to support path indices [58, 295]. Path indices
allow efficient selection of composite objects based on the nested member attribute
values. The goa] is to identify the cost of creating and maintaining indices and the
performance benefits resulting from path indices. The study will help us develop poli-
cies regarding use of path indices for different applications. We are considering support
of indexing on methods that represent derived attributes. For methods with no argu-
ments, indices will be built after the method values are precomputed. This technique
of precomputation cannot be used for methods with arguments. In general, for these
methods there inay not be any efficient strategy for maintaining indices. However, we
are looking for a partial solution. We plan to identify characteristics of the commonly
occurring methods (with arguments) and develop suitable index structures for them.

F r a g m e n t a t i o n We use object fragmentation as the basis for the transaction pro-
cessing mechanism, which to a great extent avoids intersite communications and block-
ing delays [584]. In this approach much of the transaction processing is handled at the
locM participant database level. This makes the scheme especially appealing in the
presence of local autonomy requirements. As opposed to the static fragmentation
schemes, this approach is based on a demand-driven dynamic reconfiguration of object

5.5. RESEARCH ISSUES 103

fragments. The reconfiguration is supported by two mechanisms: object reincarnations
and negotiation protocols. Object reincarnation models situations such as cyclic con-
sumption of resources where the object fragment values have to be reset after a certain
time interval. The negotiation protocol reconfigures the object fragments in a given
time interval to meet the varying demand for resources. We have developed a formal
model for different fragmentation schemes and designed constructs for specifying frag-
ment distribution. We have also designed scheme for supporting object reincarnations
and negotiation protocols in a distributed database system.

C o m p o s i t e / F e d e r a t e d O b j e c t We model existing related distributed da ta by
a composite object, where each da ta source is treated as a fragment of the composite
object. A collection of methods are defined to Mlow manipulation of the related dis-
t r ibuted da ta in a controlled and consistent manner. The composite object so created,
referred to as federated object, is a pragmatic approach to da ta integration. Unlike,
heterogeneous database systems, in this approach each da ta source is not required
to have full database system capabilities. Instead, the da ta sources can be simple
files, or application generated binary files. Federated objects are especially suitable for
computer-support-cooperative work (CSCW), where coordination and communication
among a group of people is required, and the type of collaboration is dynamic in na-
ture. A dynamic data reconfiguration mechanism is proposed to allow efficient access
of data. Federated objects are constructed from existing da ta resources using a C + +
class library, which provides the mechanisms needed for access and manipulation. The
toolkit approach provides flexibility of adding application-specific mechanisms during
the da ta integration process.

Chapter 6

An Object-Oriented Knowledge Model for
KBMS-supported Evolutionary Prototyping of Software
Systems

Stanley Y. W. Su*, Yuh-Ming Shyy t

6.1 I n t r o d u c t i o n

6.1.1 Motivation
The development of complex software systems is a costly endeavor. If prototypes can be
rapidly constructed to test the structural and behavioral properties of these systems as
the developers gain more knowledge about their requirements, ,then complex systems
can evolve from a series of prototyping efforts [28, 29]. In this chapter, we take a
knowledge base modeling approach to evolutionary prototyping of software systems by
treating each prototype system as a high-level executable model of the target system,
which defines the structural and behavioral properties of the target system at any level
of abstraction (from a large program module to a single program statement) as desired
by the prototyper. The executable model evolves gradually through a series of schema
modifications and refinements to provide more and more details about the requirements
and implementations of the target system. At each stage of evolution, the model (i.e.,
the prototype) can be executed to test its functionalities and performance. All the
debugging, modification, and maintenance can therefore be performed directly against
the executable model throughout the software lifecycle as shown in Figure 6.1.

As we all know, all software systems are computer programs and, based on Wirth
[618] and Kowalski [332], we have the following formula: " P r o g r a m = D a t a S t ruc -
t u r e + Logic + Con t ro l " . If a knowledge model can uniformly model all types of
software systems in terms of their (i) structural properties (corresponding to the data
structure aspect of a program and the control structure among program segments),
(ii) operations/methods (corresponding to the procedural semantics of program al-
gorithms), and (iii) knowledge rules (corresponding to the declarative semantics of
program logic and control), then any software system in the traditionM concept can be
evolutionary modeled by this knowledge model throughout its software lifecycle. Note
that, although the semantics represented by rules can be implemented in methods,
high- level declarative rules make it much easier for a prototyper to clearly specify the

*Department of Computer and Information Science, University of Florida, Gainesville, FL
32611, U.S.A.

tVersant Object Technology, Menlo Park, CA 94025, U.S.A.

106 CHAPTER 6. AN OBJECT-ORIENTED KNOWLEDGE MODEL

semantics instead of burying the semantics in application codes and thus simplify the
tasks of testing, modification, debugging, and maintenance. It is not necessary to make
the traditional distinction among software systems (e.g., application systems, operat-
ing system, and data base management system) because all of them are executable
models of the underlying object-oriented knowledge base as shown in Figure 6.2. The
structuraJ and behavioral properties of all object classes which model programs and
application domain objects are stored in an object-oriented knowledge base under the
management of a Knowledge Base Management System (KBMS) and can be shared
and reused among the users of various application domains.

We have extended an object-oriented semantic association model OSAM* [564, 565,
634] with reflexivity and control associations as an extensible framework for KBMS-
supported evolutionary prototyping described above. The advantages of this approach
are three-fold. First, by using a single unified knowledge model and schema notation,
we eliminate the mismatch between the traditional data-oriented models [108, 266]
and the process-oriented models [142, 426, 452, 406] to support both structural and
behavioral prototyping within an object-oriented framework. Secondly, all types of
software systems, application domain objects that these systems deal with, and related
meta information can be uniformly modeled by the knowledge model and managed
aJad processed by an underlying KBMS, or the so-called "Next-Generation Database
Management System" [196, 4], which uses this knowledge model as its underlying
model. Thirdly, instead of serving as throw-aways or being limited to conceptual
design, the model of a target system can evolve from specification to implementation
throughout the software lifecycle as shown in Figure 6.1. We have also developed a
knowledge base programming language cMled K as a high-level interface to define,
query, and manipulate the knowledge base as well as to code methods [522, 523]. In
this chapter, we shall concentrate on the knowledge model itself and its application in
evolutionary software development.

6.1 .2 R e l a t e d W o r k s

As an extension to relational, semantic, and object-oriented data models, knowledge
rules have been incorporated into many research works in next-generation database
systems such as HiPAC [92], ODE [7], OSAM* [564], Postgres [377], and Starburst
[378]. However, these models do not provide facilities for explicitly modeling method
implementations.

Object-Oriented data model provides a uniform framework by encapsulating both
the structural properties and part of the behavioral properties (in terms of signature
specifications of methods) of a target system into object classes. Nevertheless, the
implementation part of each method is still left as a blackbox and cannot be further
modeled. Because the specification of methods does not carry enough behavioral infor-
mation, the implementation is often prone to errors. Several research works have been
done in an effort to provide an integrated diagram notation for static and dynamic
aspects of software systems. Both Kung [338] and Markowitz [389] tried to combine
ER data model and data flow oriented process specification as a single graphic design
tool for conceptual mddeling. However, they do not explicitly model process imple-
mentations and therefore cannot support evolutionary prototyping of software systems
throughout their entire lifecycles. Besides, as behavior properties (processes) are not
incorporated into an object-oriented framework, they cannot take advantage of object-
oriented paradigm such as inheritance and object-oriented database system support.

Brodie and Ridjanovic [80] proposed ACM/PCM (Active and Passive Component

6.2. KNOWLEDGE MODEL OVERVIEW 107

Modeling) methodology for structural and behavioral modeling of database applica-
tions using an integrated object/behavior schema. Three types of control abstractions
(sequence/parallel, choice, and repetition) are used to represent the behavioral relation-
ships between an operation and its constituent operations. Since behavioral properties
are explicitly modeled only at a gross level of detail by relating operations to form
high-level, composite operations, there is not enough information for the behavioral
schema to be executable and evolve into the target system at the implementation level.

Kappel and Schrefl [307] proposed object/behavior diagrams as a uniform graphic
representation of object structure and behavior based on a semantic data model and
petri-nets. Behavior diagrams are split into (i) life-cycle diagrams which identity pos-
sible update operations and their possible execution sequences with synchronization
constraints, (ii) activity specification diagrams which represent method specifications,
and (iii) activity realization diagrams which represent method implementations at any
level of details. Though closely related to our work, object/behavioral diagram is more
of a graphic design tool than a formal knowledge model. Because there is no kernel
model to model object/behavior diagrams themselves, software systems represented by
these diagrams cannot be uniformly modeled and managed by some underlying KBMS.
For example, a user will not be able to inquire about the structural and behavioral
properties of objects.

The rest of this chapter is organized as follows. In Section 6.2, we give an overview
of the knowledge model. Structural and behavioral abstraction mechanisms of the
knowledge model are described ill Section 6.3 and 6.4, respectively. Section 6.5
summarizes this research work and gives our conclusions.

6.2 Knowledge Model Overview

6.2.1 Classes

We use classes as the knowledge definition facilities to classify objects by their common
structural and behavioral properties in an integrated fashion. Classes are categorized
as entity classes (E_Class) and domain classes (D_Class). The sole function of a domain
class (e.g., integer, real, and string) is to form a domain of possible values from which
descriptive attributes of objects draw their values. An entity class, on the other hand,
forms a domain of objects which occur in an application's world and can be physical
entities, abstract things, functions, events, processes, and relationships. The struc-
tural properties of each object class (called the defining class) and thus its instances
are uniformly defined in terms of its structural associations (e.g., aggregation and gen-
eraJization [527]) with other object classes (called the constituent classes). Each type of
structural association represents a set of rules that govern the knowledge base.manip-
ulation operations on the instances of those classes that are defined by the association
types. Functional associations between object classes can also be specified by such
association types as "friend" [561] and "using" [71] to facilitate programming in the
large as will be described in Section 6.3.1. Manipulation of the structural properties
of an object instance is done through methods, and the execution of methods is auto-
matically governed by rules to maintain the system in a consistent state or to trigger
some pre-defined actions when certain conditions become true. In other words, the
behavioral properties of each object class are defined as methods and rules applicable
to the instances of this class. The procedural information (algorithm) of methods can
be explicitly modeled using control associations as will be described in Section 6.4.1.

108 CHAPTER 6. A N OBJECT-ORIENTED KNOWLEDGE MODEL

Since rules applicable to the instances of a class are defined with the class, rules rele-
vant to these instances are naturally distributed and available for use when instances
are processed. Structural associations, functional associations, and control associations
are all called "class associations" as each of them specify an association between the
defining class and the constituent classes. A schema is defined as a set of class associa-
tions, which corresponds to a real world application. A sample entity class definition of
Student is given in Figure 6.3 to illustrate the skeleton of a class definition. A detailed
description will be given in the lat ter sections.

6.2 .2 Objec ts and Ins tances

Objects are categorized as domain class objects (D_Class_Object) and entity class ob-
jects (E_Class_Object). Domain class objects are self-named objects which are referred
to by their values. Entity class objects are system-named objects each of which is
given a unique object identifier (oid). We adopt a distributed view of objects to sup-
port generalization and inheritance as in [345, 634] by visualizing an instance of class
'X' as the representation (or view) of some object in class 'X'. Each object can be
instantiated (as an instance) in different classes with different representations but with
the same oid. Each instance is identified by a unique instance identifier (lid) which is
the concatenation of cid and oid, where cid is a unique number assigned for each class
in the system. Each entity class object (and therefore all its corresponding instances
in different classes with the same oid) can be either persistent or transient. After a
user session ends, all the transient objects created in this session are deleted and all
the persistent objects are stored back into the database. A detailed discussion of per-
sistence can be found in [522]. Each entity class is associated with an extension which
is the set of all its instances.

6.3 S truc tura l A b s t r a c t i o n

Structural properties of objects are modeled by using various structural association
types. In Section 6.3.1, we give a brief description of the kernel association types
"aggregation" and "generalization". A three-level information hiding mechanism is
described in Section 6.3.2. As each class can be thought of as a reusable software
module in object-oriented software development, two types of functional associations
are provided to facilitate programming in the large. The introduction of the "friend"
and "using" associations also illustrates the extensibility of the knowledge model. In
Section 6.3.3, We illustrate the model reflexivity and the structural schema notation.
A brief description of structural association patterns is given in Section 6.3.4.

6.3 .1 S t r u c t u r a l A s s o c i a t i o n D e f i n i t i o n s

Aggregation. For each object class, one can define a set of at tr ibutes (which are also
expressed as da ta members or instance variables in other object-oriented programming
languages) to describe the state of its instances in terms of their associations with
other classes by using the aggregation (A) association type. Each at t r ibute specifica-
tion corresponds to an instance of class "Aggregation" and also a named aggregation
association (A-link) from the defining class to the constituent class. The name of an
at t r ibute must be unique within the defining class. An aggregation association defines
either (i) a value at t r ibute if its constituent class is a domain class, or (ii) a reference

6.3. STRUCTURAL ABSTRACTION 109

at t r ibute if its constituent class is an entity class. Multi-valued at tr ibutes are speci-
fied using the constructors "set", "list", and "array [size]". Note that an aggregation
association between two entity classes is interpreted as a bi-directional link to support
bi-directional navigation and to maintain the referential integrity of the knowledge
base. For example, before deleting a Department instance, the system can follow the
"major" link of Student in the reverse direction to identify those students who ma-
jor in this department and remove their "major:' links to this particular Department
instance.

Generalization. For each object class, one can use generalization (G) association
to specify its immediate superclass or subclass. Class 'B' is said to be a subclass or
specialization of class 'A ~ (i.e., there is a generalization association from 'A ' to 'B') if
for each object which has an instance in class 'B' , it also has an instance in class 'A' .
Both instances have the same old and are conceptually connected by a generalization
association (G-link).

6.3.2 Encapsulation and Inheritance

We adopt the C + + three-level information hiding mechanism [561] by classifying ag*
gregation associations and methods as either "public", "private", or "protected". Note
that all the rules are treated as "protected" by definition. At the class level, all the
(i) public/protected aggregation associations and other types of associations, (il) pub~
l ie /protected methods, and (iii) rules defined by a class are inherited by its subclasses.
At the instance level, an instance of class 'A ' stores only the at tr ibutes defined for
'A ~, and it inherits all the public/protected attr ibutes from its corresponding instances
(with the same oid) of all the superclasses of 'A' . Name conflict in multiple inheritance
is resolved by requiring the user to explicitly specify from which superclass a particular
property is inherited.

Friend: This association type is used to support the three-level information hiding
mechanism described above. A "friend" (F) association specifies that all the constituent
classes are "friends" of the defining class and thus authorizes them to access the private
and protected properties of the defining class.

Using: Similar to the "~include" macro in C + + , a "using" (U) association speci-
fies that all the public interfaces defined by the constituent classes will be available to
the defining class (client- server relationship). Note that though this information has
been implicitly captured in paraaneter specifications and method invocations, we in-
clude it at the class level for bet ter readability and maintainability of complex software
systems. For example, a user can easily capture the overall structural and functional re-
lationships among system modules by just reading the association definition or graphic
display of the system schema rather than going into the detailed codes of each method.
Besides, the compiler can make use o f the semantic information provided by the "us-
ing" associations in a system schema to automatically include all the necessary classes
for compilation. Note that the "using" association provides a modular mechanism at
a larger granularity than ordinary classes as one can either (i) functionally compose
many classes into a big module structure or (ii) functionally decompose a big module
into smMler modules.

6.3.3 Extensible Kernel Model

Model extensibility is achieved via a reflexive kernel model shown in Figure 6.5 in which
all the da ta model constructs described above such as classes, associations, methods,

110 CHAPTER 6. AN OBJECT-ORIENTED KNOWLEDGE MODEL

and rules are modeled as first- class objects. One can extend the data model by modi-
fying this set of meta classes. This kernel model also serves as the data dictionary as all
the object classes in the system are mapped into this class structure. One can therefore
browse and query any user-defined schema as well as the dictionary uniformly. Note
that Figure 6.4 illustrates the overall generalization lattice, and Figure 6.5 shows the
detailed structural relationships among those kernel object classes as we will describe in
the following sections. In our structural schema notation, (i) entity classes and domain
classes are represented as rectangular nodes and circular nodes, respectively: (ii) a gen-
eralization association is represented by a "G" link from a superclass to a subclass, and
(iii) an aggregation association is represented by an "A" link from the defining class
to a constituent class. Note that the root class "Object" is represented by a special
notation because i t is neither an entity class nor a domain class. The sole function
of class "Object" is to serve as the collection of all the objects in the system. After
compilation, any user-defined class (e.g., "Person" and "Student" in Figure 6.4 will
be added to the class structure as an immediate or non-immediate subclass of either
"E_Class_Object" or "D_Class_Object", while at the same time the objects correspond-
ing to the class definition, associations, methods, and rules of the defining class will be
created as instances of the system-defined entity classes named "Class", "Association",
"Method", and "Rule", respectively. Note that this class structure is reflexive in the
sense that we use the model to model itself. For example, while any user-defined or
system-defined entity class is a subclass of "E_Class_Object", "E_Ctass_Object" itself is
also an entity class (represented by a rectangular node). Similarly, "D_Class_Object"
itself is also a domain class.

As any application domain (including the model itself) is uniformly modeled and
mapped into the kernel model, the class structure can be further extended at any
level of abstraction. For example, one can use the kernel model to incrementally
extend the model itself by either (i) adding new structural association types or intro-
ducing subtypes of existing association types (e.g., "Interaction", "Composition", and
"Crossproduct" [564]) by specifying their structural properties (in terms of existing
structural association types) and behavioral properties (in terms of rules which govern
the knowledge base manipulation operations on the instances of those classes defined
by the association types) or (ii) extending the definition of existing association types
(e.g., add new at t r ibutes "default_value", "null_value", "optional", "unchangeable",
and "dependent" [523], as well as their corresponding rules for association type "Ag-
gregation") so that more semantics can be captured in the schema and maintained
by the KBMS instead of being buried in application codes. Once a new association
type is defined, it becomes a semantic construct of the extended da ta model and can
be used in the definition of any object classes (including any other new association
type). In such a way, the da ta model itself can be incrementally extended to meet the
requirements of various application domains.

6.3 .4 Structura l A s s o c i a t i o n Pat t erns

Since the development and execution of all software systems using the evolutionary pro-
totyping approach are supported by a KBMS, any program execution would generally
involve the processing of a persistent knowledge base. For knowledge base retrieval and
manipulation, a knowledge base programming language should include some knowledge
manipulation constructs in addition to general programming constructs. In our work
on K [522, 523], we use pattern-based querying constructs for this purpose. We modify
the context expression of OQL [11,233] as the primitive construct for specifying struc-

6.4. BEHAVIORAL ABSTRACTION 111

tural association patterns based on which the system can identify the corresponding
contexts (sub-knowledge-bases) that satisfy the intentional patterns. In general, each
association pattern can be defined as

class_l ' [' <intra-class selection condition> '] '

<op> <direction> ' ['<association-name> '] '

class_2 ' [' <intra-class selection condition> '] '

<op> <direction> ' [~ <association-name> '] ' . . .

where <op> could be either an "associate" ("*") or a "non-associate" (" !") operator
and <di rec t ion>can be either ">" or "<" so that the defining class of <association-name>
is a/ways at the open side, i.e., the left-hand-side of ">" or the right-hand-side of "<".
One can also explicitly specify a range variable over a class in the association pat-
tern as "<vat> : <class>". For example, "g : Grad [maj or. name=' ' CIS ' '] *> [advisor]
p : P r o f e s s o r !< [i n s t r u c t o r] Course '~ specifies a sub-knowledge-base that contains
all the graduate students of CIS department who has an advisor (i.e., there is an %d-
visor" link connecting this student with a professor) who does not teach any course
(i.e., this professor is not connected through the "instructor" association with any
course instance), as well as their advisors and those courses which these advisors do
not teach. Here, g and p are variables that represent the graduate students and pro-
fessors satisfying the association pattern specification, respectively. Instead of using
a class notation, one can also directly designate objects by replacing class name with
any user- defined variable. For example, " t h i s *>[advisor] Professor" specifies a
context which consists of the particular student denoted by "this" and his/her advisor.
A context can be thought of as a normalized relation whose columns are defined over
the participating classes and each of its tuples represents an extensional pattern of rids
that satisfy the intentional pattern. A detailed description of more complex associa-
tion patterns and the use of association patterns to express universal and existential
quantifiers can be found in [522].

After a context is identified, one can use the context looping statement provided
by the system to manipulate objects over each extensional pattern. One can use range
variables to implicitly project over only those columns which he/she is interested and
eliminate the resulting redundant tuples. For example, the following statement will
print the name of each student who takes any CIS course. Note that we use range
variable s to do a projection over Student column and remove the redundant tuples so
that each qualified student will appear only once even if this student takes more than
one CIS courses.

con tex t s : S t u d e n t * > [e n r o l l] Course[of~ered _by .name="CIS ' s]
do s . n a m e . d i s p l a y () ;

end _con t ex t ;

6 .4 B e h a v i o r a l A b s t r a c t i o n

Behavioral properties of objects are modeled by methods and rules. In the tradi-
tionaJ object-oriented programming, a method consists of a signature which specifies
the name of method, parameters, and the data type of a returned value (if a vaJue is
to be returned) and the actual program codes that implement the method. However,
in the prototyping of a complex system, the prototyper may want to avoid the actual
coding of a method at a particular point in time and use instead some simpler table

112 CHAPTER 6. A N OBJECT-ORIENTED KNOWLEDGE MODEL

lookup codes to simulate the function of the method (i.e., given some legitimate input
data, produce some legitimate output value by a table lookup). Or the prototyper may
feel that the method is still too complicated to code directly and wants to decompose
its implementation into program segments interconnected by a control structure. In
this case, the method implementation can be represented by a control structure of
its program segments which are modeled as object classes with their own methods to
define their functionalities. In other words, each program segment (whose size could
vary from thousands of statements to a single statement) can be modeled as an object
class along with a method (the default method name is "main") to represent the func-
tionality of this segment. To activate a program segment, one just sends a message to
an instance of the corresponding object class to invoke the proper method. Through
this decomposition process and, at each step, each method associated with an object
class is either represented by an actual or simulated program, or by a control structure
of program segments that model the method. Each control structure can be used by
the prototyping system for automatically generatblg the corresponding codes. As each
method is executable, the model of the entire software system is executable and can
gradually evolve into the target system by modifying and refining the executable model.
Thus, procedural abstraction and functional decomposition are also incorporated into
the proposed object-oriented framework. For the above reason, the meta model of the
"Method" class shown in Figure 6.5 consists of an execution mode and a signature of
its method name, parameter declarations, and the return type. Based on the execution
mode which is either "model" or "operational", the system can choose one of the fol-
lowing to execute: (i) a method_model object which is the prototype model (schema)
of a method implementation, and (ii) a piece of simulated codes or actual implemen-
tation of the method in some programming language. In Sections 6.4.1 and 6.4.2, we
describe the modeling of method implementation in terms of control associations and
method_model objects, respectively. A description of rules is given in Section 6.4.3.

6.4.1 M e t h o d Model and Control Associat ions

It is shown in [137] that three forms of control structures (sequence/parallel, choice,
and repetition) can be used to define all partial recursive (i.e., computable) functions.
As mentioned in Section 6.3.3, one of the advantages of the extensible kernel model
is that we can extend the model itself by introducing new association types to carry
whatever information we need in association links. In order to explicitly model method
implementations in an object-oriented framework, we define a class called "Control" as
a subclass of "Association" to model the control relationships among program segments
that implement the method. Control associations are categorized as "Sequential" (S),
"Parallel" (P) , "Synchronization" (Y), "Testing" (T), and "Context_Looping" (L) a s
shown in Figure 6.4. A method model is defined as a class schema in which one uses
object classes to model prograxa segments and control associations among these object
classes to model the control structure of these program segments that implement a
part icular method.

Figure 6.6 represents some program segments with basic control constructs using
control associations. Each rectangular node shown in Figure 6.6 is an entity class which
models a program segment that constitutes a method implementation, and each control
association in our model represents a possible control flow in terms of message passing
between these object classes. A Context-Looping association is used to model the con-
text looping statement in which the system (i) first establishes a relation representing a
sub-knowledge-base satisfying the intentional association pattern which is modeled by

6.4. BEHAVIORAL A B S T R A C T I O N 113

the first class in Figure 6.6(8), and (ii) performs certain operation for each tuple of the
relation as described in Section 6.3.4. To sum up, each program segment in a method
model can be described by a triplet (C, M, P) where 'C ' is an object cl~s, 'M' is the
"mMn" method of 'C ' that performs the functionality of the program segment being
modeled, and 'P ' is a message passed to a specific instance of 'C' to invoke method
'M'. In other words, 'C ' and 'M' can be thought of as the object-oriented procedural
abstraction of the program segment being modeled, and 'P ' represents the activation of
this particular program segment. Through an iterative process, any complex software
system can be modeled to any level of details at which point the prototyper can begin
to write actual codes in the target language.

The advantages of using method models are four-fold. First, instead of visualizing
each method as a black box, a method model provides a graphic representation of
method implementation to capture the behavior properties of a method. Secondly, the
method associated with a class that models a program segment can be further modeled
by another method model. The process can be repeated to any level of abstraction as
desired by the prototyper, and the lowest level of abstraction is each individual program
statement. Thirdly, a KBMS can use method models for an automatic generation of
codes in the target language where each program segment modeled by (C,M,P) will
be replaced by the actual codes of 'M' or the actual codes recursively generated from
the method model of 'M'. The resulting codes can then be compiled by the compiler
of the target language for execution. Fourthly, a KBMS can directly execute a method
model by using an interpreter to dynamically activate each program segment in a
control structure following the control association finks. Since all the structural and
behavioral information needed for execution are stored in the control association links,
the execution of a method model can be thought of as the processing of the set of
control association links which constitute the method model.

Structurally, each control association link can carry different behavior information
as defined by the following attr ibutes where (1) "context_branch" and "sub_kb" are
defined by "Context_Looping", and (2) "test_branch" is defined by "Testing" as shown
in Figure 6.5.

(1) context_branch and sub_kb: a Context_Looping association can be specified by
a context_branch at t r ibute whose value could be either "next" or "exit" to represent
the iteration or exit of the looping, respectively). Note that the defining class of a Con-
text_Looping association corresponds to the program segment which, when activated,
will generate a relation representing the sub-knowledge-base satisfying an intentional
association pattern. During the execution of a Context_Looping association, the sys-
tem will also keep a pointer to the relation (the value of "sub_kb") over which the
context looping is performed.

(2) test_branch: a Testing association can be specified by a test_branch at t r ibute
whose value could be either "true", "false" (for modeling the "if-then-else" statement),
"otherwise", or any other value (for modeling the "case" statement) as shown in Figure
6.6. The defining class of a Testing association corresponds to the program segment
which can be activated to generate the proper value of "test_branch" based on which
the system can choose one of the possible control flows to follow during the execution
time.

The behavioral properties of each control association type are described by the
following algorithm of execution. We assume that for each process (in the case of
concurrent system) created by a user session, there is a "wait_set" for recording those
control association links which are waiting for synchronization. We also assume that
each entity class which models a program segment defines a method called "main" to

114 CHAPTER 6. A N OBJECT-ORIENTED KNOWLEDGE MODEL

represent the functionality of this program segment. To activate a program segment
modeled by class 'X', we create a transient instance of class 'X' and apply the "main"
method of class 'X' to this instance.

Case 1. There is a Sequential (S) association link L1 between class 'A ' and class
'B' . We activate the program segment modeled by class 'A' . Then, if there is no con-
trol association link start ing from class 'B' , then we activate class 'B' and terminate.
Otherwise, we continue to process the next control association link(s) from class 'B'
(i.e., those control association objects whose defining class is class 'B').

Case 2. There is a list of Parallel (P) association links between class 'A ' and class
'BI ' , 'B2',..., and ~Bn'. We first activate the program segment modeled by class 'A' .
Then, we fork n new processes in paralIel, one for each class 'Bi' . For each class
'Bi' , if there is no control association link starting from 'Bi', then we activate 'Bi ' and
terminate the process. Otherwise, we continue to process the control association link(s)
starting from class 'Bi ~.

Case 3. There is a Synchronization (Y) association link between class 'B' and class
'AI ' . There is also a set of Synchronization association links from class B to classes
'A2' , 'A3',...,'An'. Let L1, L2,...,Ln represent these Synchronization association links,
respectively. We first activate the program segment modeled by class 'A' . Then, if
"wait_set" already contains L2 to Ln, then the synchronization condition is met and
we do the following: (1) remove L2 to Ln from the "wait_set", (2) if there is no control
association link start ing from class 'B' , then activate the program segment modeled by
class 'B'; otherwise, continue to process the control association link(s) starting from
class 'B' . Otherwise ("wait_set" does not contain all L2 to Ln), we terminate the process
which currently executes L1, and add L1 into the ~'wait_set".

Case 4. There is a list of Testing (T) association links between class 'A ' and class
'BI ' , 'B2',..., and 'Bn'. We first activate the program segment modeled by class 'A ' and,
based on the returned value, the system will choose one Testing association link whose
"test_branch" at t r ibute value is equal to either (i) the returned value, or (ii) "otherwise"
if none of the test_branch values matches the returned value. Assume this chosen
association link is defined from class 'A ' to class 'Bi'. If there is no control association
link start ing from class 'Bi', then we activate the program segment modeled by class
'Bi' and terminate. Otherwise, we continue to process the next control association
link(s) start ing from class 'Bi'.

Case 5. There are two Context_Looping (L) association links between class 'A '
and class ' B I ' and 'B2'. Let L1 represent the association link whose "context_branch"
at t r ibute value is "next" (and assume which is defined from 'A ' to 'BI ') , ~nd L2
represent the association link whose "context_branch" at tr ibute value is "exit" (and
which is defined from 'A ' to 'B2'). If ~'Ll.sub_kb" is null, then we activate the program
segment modeled by class 'A ' and return a pointer to a relation representing the sub-
knowledge-base over which the looping will be performed. The "sub_kb" at t r ibute of
L1 will be set to this pointer. If %l.sub_kb" points to an empty relation or all the
tuples have been processed, then we do the following: (1) delete the relation, (2) set
"Ll.sub_kb" to null, (3) if there is no control association link starting from 'B2', we
activate the program segment modeled by 'B2' and terminate; otherwise, we process
the next control association link(s) starting from 'B2'. Otherwise (i.e., there are more
tuples to be processed), we get the next tuple and continue to process the next control
association link(s) start ing from 'BI'.

6.4. BEHAVIORAL ABSTRACTION 115

6.4.2 Method_xnodel Object and Evolutionary Prototyp-
ing

As shown in Figure 6.4, "Method_model" is a subclass of the class "Schema". Each
method_model object represents the executable model of a method and is described by
(i) a set of class association objects (inherited from class "Schema"), (ii) a starting point
which is a control association object in (i), and (iii) a set of local variable declarations.
Note that in order to unambiguously preserve the semantics of the order of execution
(control flow) when a method model is mapped into a set of association objects, each
class which appears in more than one places in the method model must be recorded
by using alias names internally. An alias name is formed by appending an underscore
and an integer to the class name, e.g., Sort_l and Sort_2. Note that without using
alias names, the system will not be able to restore the model correctly. For example,
the control structure restored from three consecutive ~'Sequential" associations A-B,
B-C, and C-A will form an infinite loop instead of a sequence if no distinction is
made between these two appearances of class 'A' . Besides, each method_model object
must know which association object is the "starting point" of execution. From the
start ing point, the method model can be restored and processed by following the control
associations.

In the following, we illustrate the concept of evolutionary prototyping and the use
of all types of control associations by developing "eval_GPA0" which is a method of
Student as shown in Figure 2.1. Note that although "eval_GPA0" is a rather simple
method which normally could have been directly coded, the technique illustrated by this
example can be applied to the modeling of complex methods of a large software system
to any level of details. Assume we have defined Transcript as an entity class whose
each instance represents the grade point of a particular student for a particular course,
and we need a program to compute the GPA of a given student. For this example,
it is obvious to model this program as a method of class Student with the signature
"eval_GPA 0 : GPA_Value". In the beginning, one might just write a simple piece of
simulated codes to generate some legitimate GPA_Value from some given legitimate
student instance as the receiver of this method by either performing some table lookup
or inquiring the user interactively so that this method can be executable (in operational
mode).

Later on, one may decide to model the detail of this method by decomposing its
functionality into five consecutive program segments: (1) compute the total grade
points of this student and assign this value to a local variable~ (2) compute the total
credit hours of this student and assign this value to a local variable, (3) get the GPA
by dividing results from (1) and (2), (4) print a message if the GPA is below 2.0, and
(5) return the GPA. Each program segment can be modeled as an entity class with a
"main" method to represent its functionality, and each "main" method can be given
simulated or actual codes or recursively modeled as described in Section 6.4.1. Note
that for this example, both segment (1) and segment (2) can be further decomposed
as Context_Looping control structures, and the computations can be performed over
the same context concurrently. Therefore, we combine them together to illustrate
the Context_Looping, Parallel, and Synchronization associations. A method model
at a particular stage of decomposition is shown in Figure 6.7. We first declare local
variables sl , s2, and GPA to hold the accumulated grade points, accumulated credit
hours, and G P A value, respectively. The receiver of this method is denoted by the
pseudo variable "this". We first use a Context_Looping association to i terate over
the context specified by "ths *< [s t u d e n t] t : T r a n s c r i p t *> [course] c : Course" to

116 CHAPTER 6. AN OBJECT-ORIENTED KNOWLEDGE MODEL

evaluate the accumulated grade points and credit hours of this student in parallel. Note
that the updates of s l and s2 are performed in parallel and must be synchronized before
the execution can be continued. After the looping is finished, we get the GPA value
by dividing s l by s2. A message is printed if this student has a GPA lower than 2.0.
Finally, we return the GPA value. Note that in some cases it is necessary to introduce
entity classes which model null program segments in a control structure. For example,
the classes "null_l" and "null_2" in Figure 6.7 model the null program segments which
serve as the "fork" and "join" points of control flows, respectively. This example
shows that it is possible to model a method recursively to such a detailed level that
each program segment contains only a single statement. Naturally, the segment size
(i.e., the level of detail) in a model will be determined by the prototyper. By using a
graphic user interface as part of a prototyping environment, a prototyper can click the
mouse but ton to select any class in a method model and view the program segment
it represents as shown in Figure 6.7. A control structure of the kind shown in Figure
6.7 can be used by a KBMS to dynamically execute a method model or automatically
generate the proper executable code that implements the method as shown in Figure
6.3.

6 .4 .3 R u l e D e f i n i t i o n

Rules serve as a high-level mechanism for specifying declarative knowledge that governs
the behavior of methods. We modified and extended the rule language of [12, 566] so
that it can be seamlessly incorporated into the knowledge base programming language
K [522]. Each rule is specified by a set of trigger conditions and a rule body. Each
trigger condition consists of two parts: (1) timing specification or coupling mode,
which can be either "be fore" , " a f t e r " , " immedia te_af ter" , or " i n _ p a r a l l e l ' , a n d (2)
event specification, which can be a KBMS operation or user-defined method. The rule
body consists of (i) "condition" clause which is a guard expression, and (ii) "action",
and "otherwise" clauses, both of which can be simple or compound statement. Each
guard expression is in the form " (g u a r d l , g u a r d 2 , . . . ,guardN I t a r g e t) " and the
evaluation of a guard expression can return either (i) true: if all the guards and the
target (all of which are boolean expressions by themselves) are true, (fi) skip: if any of
the guards is false when they are evaluated from left to right, (hi) false: if all the guards
are true but the target is fMse. All the rules are assumed to be active when a user
session begins. However, during the execution of a user program, one can explicitly
activate or deactivate any particular rule by sending the "activate()" or "deactivate()"
messages to a specific rule object, respectively.

Each active rule of class X will be checked (i.e., the evaluation of the rule body)
according to the coupling mode at either (i) before the triggering event, (ii) immedi-
ately after the triggering event, (hi) in parallel with the triggering event, or (iv) not
immediately after the triggering event, but at the end of the parent event which causes
the triggering event. The rule body of each rule is evaluated as follows: (i) if the
condition-clause returns true, then the action-clause (if provided) is executed, (ii) if
the condition-clause returns skip, then do- nothing, and (hi) if the condition-clause
returns false, then the otherwise-clause (if provided) is executed. For example, the rule
CIS_.rulel specified in Figure 6.3 will be executed at the end of those methods which
are applied to a student instance and update the major of this particular student. The
otherwise-clause will be executed if this particular student is a CIS major (guard is
true) and his/her GPA is not greater than 3.0 (target condition is false). Similarly,
General_rule1 will be checked after the method "suspend".

6.5. CONCLUSIONS 117

6.5 Conc lus ions

In this chapter, we take a knowledge base modeling approach to evolutionary prototyp-
ing of software systems by introducing a unified and reflexive object-oriented knowledge
model as an extensible framework for (i) capturing both the structural and behavioral
properties of any target system at any level of details, and (ii) reflexively modeling
the knowledge model itself as a kernel model so that all the meta information (struc-
tural and behavioral properties of objects) can also be modeled as object classes. Five
types of control associations (sequential, parallel, synchronization, testing, and con-
text_looping) are introduced for explicitly modeling the behavior properties of methods
in terms of control flow and message passing relationships between object classes. We
have developed a prototype of the knowledge base programming language K [522,523]
on top of ONTOS 2.1 [278] as the first step toward a full-fledged KBMS-supported
software development environment for supporting evolutionary prototyping. We are
currently extending the graphic user interface of OSAM*.KBMS [346] to support the
definition and processing of control associations. Any user-defined structural/behavior
schema will be translated into K code for execution and also mapped into the kernel
model for storage. A prototype processor which can dynamically interpret K code
and control association objects is also under development at the Database Systems
Research and Development Center of the University of Florida.

A c k n o w l e d g e m e n t - This research is supported by National Science Foundation
under grant ~CCR-9200756. The development of an executable KBMS and the trans-
lator of K is supported by the Florida High Technology and Industry Council under
grant ~UPN900978.

118 CHAPTER 6. AN OBJECT-ORIENTED KNOWLEDGE MODEL

prototyper test data
~ prototyping tools 1

analysis & ~ executable . b. prototype
modeling model of an execution

evolutionary
prototype

satisfy
o ~ c e ~ fdu~pclion ~ target system

reqmremenm ~: derived ?

release the I
product

~fisfy
e P l o ~ c e
reqmrem�9 .~

no n ' ~ n ~ e e

yes

Figure 6.1: An Overview of a KBMS-supported Evolutionary Prototyping Pro-
cess

6.5. CONCLUSIONS 119

~:~?~

Figure 6.2: A Universal KBMS-Supported Software Development System

120 CHAPTER 6. AN OBJECT-ORIENTED KNOWLEDGE MODEL

- , a t i t y . c 1 ~ 1 Student i s
~ssociations:

a" ~pecialization of Person;/* Student is a subclass of Person */
friend of Faculty; /* authorize Faculty to access the private and

~protected properties */
aggregation of
public: /8 definition of public attributes */
enroll: set of Course; /a a studen~ can enroll in a set of courses
*/

college.report: array [4] of GPA_Value; /* annual report of every
college year */
major: Department;
protected: /* definition of protected attributes */

S~: $#_Value;
methods: /~ the s igna tu re of methods */
public:
method eval_GPA() : GPA_Value;
private:
method suspend() : void; /* no return value */
me~hod inform_all_instructor() : void;
rules:
rule CS_rulel is
/* after updating the major of a student, if the hey major is "CZS"
then ~he GPA of this student must be greater than 3.0,

otherwise we suspend this student */
triggered after update major
condition (%his.major.name = "CIS" I this.eval_GPA() > 3.0) /*

guarded condition */
othermise this.suspend()
end CS.rulel;

rule Studen~::General.rulel is
/* after suspendin E a student, if this s~udent enrolls in any

cours � 9
then inform all the instructors of this s~udent */

~riggered after suspend()
condition this.enroll != NULL
action ~his.inform.all_instructor()
end General_rulel;
implementations: /* actual coding of me~hods */
method eval_GPA() : GPA_Value is
local sl, s2 : real := O; GPA : GPA_Value; /, local variable

declarations */
begin
context this *<[student] t:Tr~nscrip~ *>[course] c:Collrse
/* looping over a con~ex~ */

6.5. CONCLUSIONS 121

do parbegin /, for each <this,t,c> tuple, do the following ,/
sl :: sl + c.credits " t.grade.point;

/s calculate the accumulated grade points */

s2 :: s2 + c.credits; /* calculate the accumulated credit hours e/
pa.r end;
end_context; /* end of contex~ looping */

GPA :: s l /s2;
if GPA < 2.0
then "GPI Belou 2.0".display();
end.if ;
re~urn GPA;
end ava1.GPA;
end Student ;

Figure 6.3: The Class Definition of Entity Cl~s Student in K

122 CHAPTER 6. AN OBJECT-ORIENTED KNOWLEDGE MODEL

i ~ ~Sel+EList,EArray,

_ ~ "1 ~ ~ ~ - ~ ~ ~
I ~ e ~ . - z ~ ! t / Model J I -- l I Ass,~l i ion I

Figure 6.4: Class Generalization Lattice of the Extensible Kernel Model

3'
q C~

 >-

O
q

ff
q

O
q �9

o
"

D
Cl

as
s

E
Cl

as
s_

O
bj

ec
t

de
fin

in
g_

cla
ss

 /
/

~
~

r
~

1A
 ~

ex
te

ns
io

n
I

A
 !_

~
'-

:s

et
of

 -

[
Cg

 Ru
~e

C_geMt

/

/c
on

st
itu

e~
nL

cl
as

s
i

~

I
As

so
r

r.
..~

 s
e'

~
I

~.
l~

I

,
,

I
l"

~
I

~
'

~
~

'
~

Sc
he

m
a

I p
ro

to
ty

p~
~e

xe
cu

t[
on

'
i-

'l

"
~o

~~
~O

~e

1
~

(
I X

 ~
17

61
76

]

A
gg

re
ga

u~

I
I

ru
le

 (
~

f.

~

('
~

:"
',

~
-

I
J

c~
e

I
-n

~ .
..

.

I
A

[
[

_n
am

e ~
,-J

~

"-
J v

oo
y

[
M

et
ho

d
[

O

sig
[n

at
ur

eU
O

 ~"

ot
ec

fio
n

�9

M
od

el
li

nk
~

te
cf

io
nl

tl

l~
~

an
d

t A
 ~

-~

!o
f

(~
)

0
]

~A
~-

-~
I

I
U

I

.
L_

)
~

"~
'~

t~
~

/"

!.

-N

[
c~

17
6

[
op

e~
tio

u
/

"~
~

'~
nf

co

n~
,~

uc
to

r'-
-"

,I
~

~
�9

L.

J
/

~
"~

ix
-~

fil
~t

er

re
tu

rn

L
.Y

u

~

~
�9

na

A
/

~X
'~

Se

qu
en

tia
l

[
na

~'
-

~ ~
/[

|~

IT
el

/ .

.
.

.

Co
nt

ex
t_

Lo
op

in
g

.
.

...
.,

(
~

~

[-
-(

7~
 na

m
e

te
st

t~

"(
'~

co
nt

ex
t..

I

ni
za

tio
u

I
0

br
an

ch

x,
.,/

~

br
an

ch
-

su
b-

kb

M

~,
~~

0~

C

O

O

O

O

(1
)

Se
qu

en
ce

I
I

(4
)

C
as

e

I
I

(7
)

W
hi

le
-D

o

I ...
..

I
T

m

8

(2
)

If
-T

he
n

(~
)

Pa
ra

lle
l

I
I

I-
I

(g
) C

on
te

xt

'
I

t

N
ot

e:
 A

ll
 th

e
re

et
tn

g~
la

r
no

de
s

sh
ow

n
he

re
 a

re
 e

nt
it

y
cl

as
se

s
w

hi
ch

 m
od

el
 th

e
pr

og
ra

m
 s

eE
em

en
ts

 th
at

co
ns

ti
tu

te
 a

 m
et

ho
d

im
pl

em
en

ta
ti

on

(3
)

If
-T

he
n-

E
ls

e

(6
)

R
ep

e~
t-

U
nt

H

C3

6.5. CONCLUSIONS 125

S t u d e n t :: e v a i _ G P A 0 : G P A V a l u e

i i i

loca l s l , s2 : r e a l := 0;

G P A : G P A _ V a l u e ;

I

L

G P A := s l J s 2 ~'.-:::::e~.>:~.~#~l
:.'.~:~'~-~..~'~:~:~;~'r'2~

:::::::::::::::::::::::::::::::: "::.-:~ ~::;~:':$~, ~:.....~, ,!::~-:.~ ~
!

] S] m a i n 0 p

::.::~::::.':::!.:'~:':/'.:.,.::::: ~:&

Figure 6.7: The Method Model of "eval-GPA 0

Chapter 7

Applying OOAD in the Design and Implementation of an
Intelligent Geographic Information System

Ramesh Subramanian*,Nabfl R. Adam t

7.1 I n t r o d u c t i o n

Object-oriented Analysis and Design (OOAD) is currently an active area of research,
and several OOAD techniques have been suggested for the Object-oriented design of
computer-based applications (e.g. [124, 141,147,148,184, 296,356,357, 358,355,359,
400,405,435,468,532,615]). Notable among the suggested techniques are: the method
of Coad and Yourdon [124], the approach by Meyer [400], the Respons!bility-Driven Ap-
proach by Rebecca Wirfs-Brock from Tektronix [616,617,615], Ensembles, which is on-
going work at ttewlett Packard led by Dennis de Champeaux [141], the Object-oriented
Role Analysis, Synthesis and Structuring method (OORASS) by Trygve Reenskaug at
the Seater for Industriforskning in Oslo, Norway [468], Frameworks by Johnson at
Urbana-Champaign [296] and the Demeter method developed by Karl Lieberherr at
Northeastern University [356,357, 358, 355, 359].

Recently, some studies that survey, compare and contrast the various OOAD ap-
proaches and techniques have appeared in the literature (e.g., see [617, 413, 187]).
These studies seek to categorize the various approaches by identifying their capabili-
ties, and their focus is towards identifying the particular effectiveness of one approach
over the other. In one particular study, Wirfs-Broek and Johnson [617] view the above
approaches as complementing each other. To our knowledge, there has been no study
that tests the efficacy of the approaches by applying them to actual, complex and real-
life modeling problems. This situation places the practitioners in a difficult position,
since nobody wants to commit scarce time and resources towards adopting a particular
approach that has not been adequately tested on industry-sized problems.

Adopting approaches that have been inadequately tested could also cause other
problems, since in practice, the analysis and design stages have important ramifica-
tions on the implementation stage. For instance, (as explained in [248, page 147]),
a "disjoint mapping" would result, if an OO design is implemented in a non-object-
oriented language. One of the strengths of the OO approach is the use of the same
language environment for the analysis, design, and implementation phases [26, 74].
That is, the analysis is done in terms of the objects that make up the actual system.

*CIOS Department, School of Business, University of Alaska-Anchorage, Anchorage, AK
99508, Email: afrs@acad2.alaska.edu

tMS/CIS Department, G S M , Rutgers University, Newark, NJ 07102,
adam@adain.rut gers.edu

128 C H A P T E R 7. A P P L Y I N G O O A D T O A N I N T E L L I G E N T GIS

The results of the analysis are transformed into a software design that is expressed
in terms of objects. Finally, the design is implemented also in terms of objects. This
consistency throughout the analysis, design, and implementation phases avoids the po-
tential mismatch that could result during the transition from one phase to the other.
Maintaining this consistency also requires that the OOAD used to carry out first steps,
namely analysis and design, be adequately tested for its real life application.

In this chapter we detail a modeling study that seeks to address the above issue.
Namely, we detail a real-life, complex modeling problem, and illustrate, step by step,
how to analyze the problem domain and design a model using one of the OOAD
approaches, namely the Responsibility-Driven Approach. We consider this study to
be a first step towards a practical analysis of the suitability of the various OOAD
approaches for modeling specific problems domains.

The chapter is organized as follows: in Section 7.2 we detail the characteristics of
the geographic database application that we model. In Sections 7.3 and 7.4 we discuss
the methodology that we adopt to develop our model~ and describe the Responsibility-
Driven Approach. In Section 7.5 we detail, step by step, our approach to developing
the geographic da ta model. In that section we also detail how our model acquires
and handles knowledge about spatial contexts and user perspective. In Section 7.6 we
briefly touch upon the implementation of our Model, and show how the various features
of our Model and Query Processing System are used to process certain imprecise queries
by using an actual query processing scenario. We present our conclusions in Section
11.6.

7.2 Geographic Databases: Modeling & Query
Processing

There exists a large number of potential applications related to Geographic Infor-
mation Systems (GISs). Examples include: applications concerned with storing and
manipulating the characteristics of politicalspatial entities such as states, counties and
towns; those that are concerned with storing and manipulating information pertaining
to certain naturally occurring geographical features such as lakes, rivers, mountains
and oceans; others that deal with the mapping of population distributions, land re-
source utilization, the spread of vegetation and certain special districts such as electoral
districts, water pumping districts, and school districts.

Geographic da ta modeling requires the definition of high-level objects such as coun-
ties, towns, and districts from low level da ta dements such as points and lines [5]. Fur-
thermore, spatial objects possess certain unique characteristics - - for instance, even
though the state of a spatial object may remain unchanged, its representation and re-
lationships with other objects may be perceived differently in different contexts or user
perspectives. Thus, if a country level perspective is assumed then the representation
of the cities can be considered as points. If a city level perspective is assumed, then
a city and its components can be considered as polygons. In the same fashion, at a
particular perspective level, a bridge can be considered to be a line, but at a higher
level of perspective, it could be assumed to have a point representation.

Thus, depending upon user perspective, the assumed representation of spatial ob-
jects could change. This can impact the results of a query such as "What is the
distance between X and Y?" - - depending upon the perspective of the user, the rep-
resentation of the objects under consideration m a y change, thereby impacting the

7.2. MODELING ~ Q U E R Y PROCESSING 129

results produced. This example shows that implementing even a semantically well-
defined operator such as "distance" could become a complex exercise, if we try to
incorporate the notion of user perspective and object representations in relation to
the perspective. Examples of other semantically well-defined operators include "in-
tersect" and "area". While several spatial database researchers have defined and
implemented such semantically well-defined spatial operators, very few of the im-
plementations incorporate the notion of dynamically deriving different user perspec-
tives and object representations. For details of previous work in spatial databases see
[223, 424, 101, 102, 36, 474, 249, 438, 237, 485,486,229].

In addition to semantically well-defined operators, we were interested in another
class of operators that are actively being studied in the literature. These are the ill-
defined or relativistic spatial operators. One prominent example of this is the study of
the operator "near" by Robinson [472], in which he developed a C program that uses
fuzzy logic and human machine interaction to derive an approximation of "near".

"Near" (or "close-to"), "between" and "adjacent-to" are examples of semantically
ill-defined spatial operators. Such operators do not have a precise definition in the
literature. Also, their interpretations change with user perspective. Thus, two towns,
for example, may be considered to be close to each other at one perspective, but not
so at another perspective. Similarly, two streets may be considered to be adjacent to
each other even though there may be a building block between them.

From the above discussion, it can be seen that spatial (geographic) databases differ
in character from conventional databases in the representation of inter-object relation-
ships. In conventional database applications, relationships among data objects are all
known beforehandand can therefore be represented explicitly in the database. In spatial
databases, on the other hand, numerous implicit relationships may exist among spatial
objects, and it is impractical to represent all of the relationships explicitly. Therefore,
several such relationships need to be derived dynamically. This necessitates the devel-
opment of new models and query processing strategies for efficient representation and
manipulation of spatial data.

In our study we develop a model that supports the following:

�9 Defining high-level spatial objects from low-level da ta elements.

�9 Facilitating the explicit representation of certain naturally occurring relation-
ships among spatial objects (e. g. the containment hierarchy that is exhibited
by most spatial objects) and at the same time providing adequate facilities for
deriving, on a dynamic basis, the many and complex relationships that exist
among objects.

�9 Incorporating the notion of user perspective and different object representations
in relation to perspective.

�9 Facilitating the implementation of a class of semantically ill-defined (hereafter
will be referred to as imprecise) spatial operators such as "close-to", "between"
and "adjacent- to ' . Here, the user must have the flexibility to specify his/her
own operational parameters for processing the operators.

�9 Facilitating application flexibility i. e. , the ability to extend the model and its
implementation to other similar applications.

�9 Encapsulating deductive reasoning that facilitates spatial query processing per-
talning to the imprecise query operators.

We are interested in applying our model to such application areas as districting
(electoral and water), and public utilities maintenance management. Districting is the

130 C H A P T E R 7. A P P L Y I N G OOAD TO A N I N T E L L I G E N T GIS

process by which a certain area of land is divided into several pieces, in order to satisfy
certain requirements and needs. For example, an electoral district may be drawn based
on the population size, composition of the population and other constraints such as
compactness ~ and contiguity ~ of the district. A pumping district may be allocated
based on the current population and expected growth of the proposed district as well
as the availability and ease of access to a water supply facility such as storage tank or
pumping station.

A system such as the one developed in this study would provide the tools required
for making the districting process easier. That is, the new geographic data modeling
and query processing techniques would provide the means for "interactive districting".
We are particularly interested in using our model and implementation for answering
the following types of queries:

�9 Is polling-center y close.to every sub-area of voting district X?

�9 What are the towns and counties which lie between districts X and Y?

�9 What are the counties adjacent-to pumping district X?

�9 What are the districts that are close-to the water source X?

�9 Retrieve aJ1 the towns whose populations (each) exceeds 75,000 and which lie
between the pumping district X and town Y.

Given the above general requirements of our geographic apphcation, we illustrate
in the next few sections how we proceeded to design and implement the model.

7.3 Spatial Data Modeling

7.3.1 The Design Methodology

In [616], Wirfs-Brock classifies OO design methodologies into DataDriven Approaches
and Responsibility-Driven Approaches and argues in favor of the latter approach. The
latter approach intuitively seems to have certain merits over the former approach since
it provides a convenient way of designing objects and the methods ~ncapsulated within
them. This is achieved by focusing on the objects' " '" responslbihtms rather than the
detailed description of the objects, at the start of the design process.

Our application domain deals with queries about geographic data and their topo-
logical inter-relationships. Geographic data are complex in nature, and ~.he possible
inter-object relationships among them are numerous. In such a problem domain, the
model design process could be made efficient by focusing on the functions that the var-
ious objects must perform (i.e., their responsibilities) rather than trying to define all
the attributes of each individual object. This corresponds to the Responsibility-Driven
Approach. We use the Responsibility-Driven Approach for designing our model. First,
we provide below, brief presentation of the Responsibility-Driven Approach.

$Compactness can be defined (on a scale from 0 to 1) as the ratio of the area of a district
to the area of the smallest circumscribing circle [422]

w district must be connected in some sense, so that it cazmot be defined as an arbitrary
collection of smaller areas [422].

7.4. T H E R E S P O N S I B I L I T Y - D R I V E N A P P R O A C H 131

7.4 The Responsibility-Driven Approach
The Responsibihty-Driven Approach seeks to improve encapsulation by viewing objects
in terms of the client/server model. According to this model, a client makes a request
to a server, who provides the service requested. Both the client and the server can be
classes or instances of classes. The exact way in which a client and a server can interact
are described by a contract. A contract is a list of requests that a client can make to a
server. The client is not concerned with the exact details of the actions taken by the
server to provide the service requested. Thus, the focus in this approach is not on how
a server performs an action requested from it, but what are the services that it can
provide.

When applying this design approach, the designer is concerned more with the
behavior and the responsibilities of the objects rather than their structural details.
The structural specification of an object is focused on, only at the implementation
stage. The responsibilities of an object are: the knowledge that an object maintains,
and the actions an object can perform. The actions that are performed by an object
are either performed individually, or by collaborating with other objects.

The Responsibihty-Driven Design process is divided into two phases - - the Ex-
ploratory phase and the Analysis phase. (This discussion is adapted from [617].)

The e x p l o r a t o r y phase consists of the following tasks:

1. Identify Classes: The classes required to model the application are identified.
Classes identified may be of two types: Abstract Classes that are designed to be
inherited, and Concrete Classes that are designed to be instantiated. Abstract
Classes are similar to type definitions.

2. Identify Responsibilities: Here the overall responsibilities of the system are iden-
tified, then the responsibilities of the individual classes are derived.

3. Identify Collaborations: If a class collaborates with another class in performing
its responsibilities, such collaborations are identified during this task.

The ana ly s i s phase consists of the following tasks:

1. Analyze Hierarchies: The classes are organized in the form of a hierarchy. Such
a hierarchy will be useful in finding classes that are reusable. An is-a hierarchy
specializes the classes from top-down, and generalizes the classes from bottom-
up. Wixfs-Brock and Johnson suggest that inheritance hierarchies must model
the is-kind-of relationship. That is, "every class should be a specific kind of
its superclasses" ([617, pll0]) . The is-kind-of relationship is similar to the is-a
relationship.

2. Analyze Subsystems: A subsystem is a set of classes that fulfills some particular
purpose in conjunction with other classes in the system. Thus, acting as a
group, a subsystem of classes cooperate to fulfill a role. For instance, a graphical
appheation may have a printing subsystem which may consist of a printer, which
may be further specialized into hne printer and laser printer [617, p l l l] . One
way to determine if a group of classes form a subsystem is to try to name the
group [617]. If we succeed in naming the group, then we automatically determine
the responsibility or role of the subsystem.

3. Create Protocols: This final task in the design phase involves the implementation
of the abstract classes and their behavior, by specifying actual protocols between
the classes in the form of methods. Methods are used to describe contracts among

132 C H A P T E R 7. A P P L Y I N G OOAD TO A N I N T E L L I G E N T GIS

classes. A base method is one that is described in a superclass and is inherited
down the hierarchy by the subclass. Another method which is inherited down
the hierarchy, is known as abstract method. Such a method is reimplemented in
the subclass in order to reflect a different (as compared to its superclass) and
more specialized processing action between the subclass and its collaborator. In
C ++ such a method is also called a virtual function. A third type of method
is called template method which serves the purpose of providing an abstract
definition of an algorithm. Here the algorithm is made up of steps and each step
is implemented as an abstract or base method. For more details see [617, p112].
A fourth type of method, which is not explicitly discussed in [617], is one where
different responsibilities of the same class can be carried out, depending upon the
particular parameters passed to it. For example, consider the transactions that
have to be processed in a bank on a typical day. The transactions occur in serial
order, and may be a deposit, withdrawal, or transfer. If the bank has a method
process, then different actions could be defined within the method, depending
upon the type of transaction processed. Such a type of method definition is
termed function overloading, and is useful in describing a class of actions that
can be performed by asking the same request, but with different parameters.

In the next section we detail the development of our Spatial Model, using the
Responsibility-Driven Approach.

7.5 Developing the Data Model

7.5.1 The Exploratory Phase

In this phase, we identify the main classes that are required to model our geographic
application, their responsibilities and their collaborations. We detail our work on the
different tasks below.

C l a s s e s

We identify the following classes.

Spa t l a l_Fea tu re . This is an abstract class that represents a template for a
spatial feature. The responsibilities specified in this class are inherited by ab-
stract as well as concrete subclasses that may be identified and added to the
model at a later stage in the design process. Concrete subclasses that may be �9
added through this process are instantiated with such high-level spatial features
as "New York" state, or 1-95.

L ine_Segmen t . This is a concrete class that represents a low-level spatial ob-
ject. This class can be instantiated with the line segments from a geographic
fine segment file.

It should be noted that in addition to the above Classes, we identify more Classes
at a later stage in the Exploratory phase. This is detailed in later sections.

Our next task in the design process is to identify the overall responsibilities of the
system, as well as the responsibilities of individuals classes.

7.5. D E V E L O P I N G THE DATA MODEL 133

R e s p o n s i b i l i t i e s

�9 T h e r e s p o n s i b i l i t i e s o f t h e s y s t e m as a w h o l e are:

1. Populate the geographic da ta model with data pertaining to the United
States. This requires the system to have certain features whereby the raw
da ta (line segments) are first loaded into the model. These would then
be processed to build other high-level spatial features such as States and
Counties.

2. Derive dynamically the user perspective and the object representations of
the spatial features in the model in relation to user perspective.

3. Process queries pertaining to the spatial features in the model which involve
imprecise operators such as "close-to", %etween" and "adjacent-to".

Analysis of these responsibilities reveals that most queries pertaining to our
application would be asked with reference to certain wen understood spatial
features in our model, such as Country, State, County, and Town. Examples of
such queries include: Is County X close_to County Y?; What are the Counties
adjacent_to State X?; What are the highways that run between Town X and Town
Y?. Country, State, County, and Town are container objects that contain other
container as well as non-container objects in the model. Highways and Rivers
are examples of non-container objects.

We thus notice that the geographic features in our application can be broadly
divided into container features which contain other features and non-container
features which do not contain any other feature. Queries will be posed with
reference to the container features. Due to this fact, we define two additional ab-
stract classes, to represent the containerfeatures and the non-containerfeatures:
R e f e r e n c e _ S p a t i a l . _ F e a t u r e and Non_Refe rence_Spa t i a l . _Fea tu re , respec-
tively.

We notice here that, R e f e r e n c e . S p a t i a l _ F e a t u r e and Non___P~eference_Spatlal-
. .Fea tu re are specializations of spatial features. Therefore, they are subclasses
of Spatial_Feature, and inherit any responsibility that may be specified in the
Spatial_Feature class. This leads to an inheritance hierarchy that is analyzed in
detail in Section 7.5.2. As noted earlier, Reference_Spatial_Features are container
features that are used as reference features in most spatial queries.

Re fe rence_Spa t i a l__Fea tu re and Non-P~eference_Spat ia l__Feature are A-
bstract Classes whose characteristics are inherited down the hierarchy by its
subclasses. In order to add real life spatial objects such as States, Towns and
Highways into the model, we define Concrete Subclasses of R e f e r e n c e _ S p a t i a l -
_ F e a t u r e and N o n _ R e f e r e n c e . S p a t i a l _ _ F e a t u r e . Examples of the Concrete
Subclasses of Reference_Spatial_Features are Country, State, County and Town.
Interstate Highways, Railroads, Large Rivers, State Highways, County Roads,
and Small Rivers are examples of the Concrete Subclasses of Non_Reference-
_Spatial_Features.

These spatial features are arranged in a containment hierarchy, with Country
containing States, Interstate Highways and Large Rivers, etc., and States con-
taining Counties, State Highways, Small Rivers, etc., and Counties containing
Towns, County Roads, etc. More details of the containment hierarchy are dis-
cussed in Section 7.5.2.

134 C H A P T E R 7. A P P L Y I N G OOAD TO A N I N T E L L I G E N T GIS

At this stage in the design process we notice that even though the Reference Fea-
ture subclass such as Country contain Non Reference Feature subclasses such as
Interstate Highways, Railroads and Rivers, some of these Non Reference Fea-
tures can be divided into composite segments. The segments are part-of such
Non Reference Features. Thus,

- Non References Features such as Interstate Highways and Rivers are com-
posed o~

* State-Segments which are contained entirely by States.

* County-Segments which are contained entirely by Counties.

. Town-Segments which are contained entirely by Towns.

- Non References Features such as State Highways composed o~.

* County-Segments which are contained entirely by Counties.

. Town-Segments which are contained entirely by Towns.

This composite arrangement pertaining to the real world requires that we de-
fine additional Concrete subclasses of Non_Reference_Spatial_Feature. These
are S t a t e _ I - H w y _ S e g m e n t , C o u n t y _ I - H w y _ S e g m e n t , Town_I -Hwy_Seg-
m e a t , S t a t e _ R i v e r _ S e g m e n t , C o u n t y A Z i v e r _ S e g m e n t , Town_River_Seg-
m e n t , etc. The spatial features pertaining to these subclasses are further sub-
divided into a composite arrangement, using the part-ofrelationship. The part-of
hierarchy is given below.

Each State_I-Hwy_Segment is a part-ofsubclass Interstate Highway. Each County-
_I-Hwy_Segment is a part-ofsubclass State__I-Hwy_Segment. Each Town_I-Hwy-
_Segment is a part-of subclass County_I-Hwy_Segment. In the same way, each
State_River_Segment is a part-ofsubclass River, and each County_River_Segment
is a part-of subclass State_River_Segment and each Town_River_Segment is a
part-of subclass County_River_Segment.

Other subclasses similar to the above, pertaining to the different levels of the
containment hierarchy are also identified and represented.

T h e R u l e C las s : a r e s u l t o f i d e n t i f y i n g r e s p o n s i b i l i t i e s o f t h e s y s t e m
Another result that is derived from identifying the responsibilities of the system
is that , in order to process imprecise queries, it is necessary to incorporate into
the system a body of knowledge about contexts or user perspectives. In addition,
depending upon the problem domain, it may be required to store in the system
other problem-specific knowledge. For example, in an electoral districting ap-
plication, it may be required to store rules such as: All districts must have the
same population, and must have the same racial mix; the component regions of
an electoral district must be contiguous. We therefore, define another abstract
class: R u l e . In this class, we instantiate and maintain rules that are required
for the problem domain in question. Examples of such rules are "ancestors-rule"
(for reasoning about all the ancestors of a given object) and "perspective-rule"
(for reasoning about the correct context of a given query). We elaborate more
on these rules as well as other such rules later in this section, where we discuss
the responsibilities of individual classes.
The function and use of the R u l e class in our model is worthy of further dis-
cussion. The incorporation of rules in a spatial da ta model to reason about
the objects and their relationships within the context of a database is, to our
knowledge, not available in currently existing spatial models.

7.5. DEVELOPING THE DATA MODEL 135

Rules, in addition to methods offer a powerful construct for introducing behavior
into the da ta model. In our model, the function of a rule is different from the
function of a method. A method is a piece of procedural code that is embedded
within an object in order to perform certain actions on the database. The method
may be invoked by passing a message to the object. A ru/e, however, is created
separately and is not attached to any particular spatial object in the database.
Rules may be added or removed without interfering with any spatial object.

Rules play an important role in processing imprecise spatial operators. Rules
for determining the user's perspective and the appropriate object representation
in relation to the perspective while processing ill-defined spatial operators are
incorporated into the model. Furthermore, the Rule class also provides sup-
port to incorporate specific constraints that must be satisfied in certain problem
domains.

To illustrate, consider a districting problem, where it is required to interactively
create districts from a geographic database of the United States. In addition,
these districts must confirm to certain conditions. Assume that the geographic
database consists of States, Counties and Towns. Districts are to be created
by combining certain counties together. The database contains information per-
taining to each county's population, number of schools available, number of fire
stations available, number of community buses available, number of drivers avail-
able and number of physicians available.

Let us assume that the following are the conditions that must be met while
creating districts:
- If the population of the district is between 100,000 and 120,000, then the
number of schools required is 3.
- If the population of the district is between 180,000 and 220,000, then the
number of schools required is 5.
- If the number of schools is 5, then the number of buses required is 15.
- If the number of schools is < 5 , then the number of buses required is 10.
- If the number of school buses is between 5 and 10, then the number of drivers
required is 8.

- If the population is between 150,000 and 200,000, then the number of fire
stations required is 4.
- For each school, the number of physicians required is 2.
- If the population is between 150,000 and 200,000, then the number of physicians
required is 10.

- The district must be made up of contiguous counties.

There may be several more conditions that are required for this districting pro-
cess. An important fact to be noted here is that the conditions may change
periodically.

The query that pertains to this application is: Is the combination of County X,
Y and Z an acceptable district?

In order to process this query, first the data pertaining to counties X, Y and Z
are retrieved from the database. The combination of their characteristics is then
tested against each of the conditions. If the conditions are satisfied, the district
is acceptable.

There are two possible ways of representing the numerous conditions in the
model. One way is to write procedural code in which all the conditions are

136 C H A P T E R 7. A P P L Y I N G OOAD TO A N I N T E L L I G E N T GIS

This poses a problem, because a particular combination of conditions may require
other particular combinations of conditions to be satisfied. Thus, in the above
example, the population affects the number of schools required, and the specific
number of schools affects the number of buses required and the number of drivers
required. The number of schools as well as the population of the district affect
the number of physicians required.

Thus, the specification of such procedural code will have to be very detailed. All
the possible rules and conditions, along with the procedures to actually construct
the districts that meet the conditions will have to be incorporated. A change in
one condition would affect several conditions, thus requiring changes to be made
at several parts of the code. Furthermore, if the same type of query is repeatedly
issued, the same set of procedural operations will have to be repeatedlyperformed,
by the methods, which raises the cost of query processing.

All alternative to this approach is to store much of the conditions in declarative
form as a set of rules that is not part of a particular spatial object but is incor-
porated within the model as instances of Rule. It is less complicated to use logic
rules to specify recursive dependencies and other complex conditions, and they
are also easier to understand and maintain [88, p70]. If a condition changes, only
that specific rule will have to be changed, without worrying about the rest of
the rules. The addition of a new rule or the deletion of an existing rule can be
accomplished without disrupting the rest of the model.

Another advantage of using rules to specify and store conditions, pertains to
queries which are applied repeatedly. In a rule based approach, some of the
conditions and the intermediate results of prior queries may be saved and used
by a subsequent query thus, improving the efficiency of the query processing [88,
084].

Given the above advantages, we incorporate Rule as an abstract class within our
model.

We continue with the design process, by identifying the responsibilities of the
individual classes, below.

T h e respons ib i l i t i e s o f t he i nd iv idua l classes are:

1. Every Spatial_.Feature class has the following responsibilities:

(a) Identifies and stores boundaries of itself.

(b) Provides(requests) static characteristics, such as name and boundaries
of itself(another spatial feature).

(c) Provides distance information between itself and another spatial fea-
ture.

(d) Provides(requests) point representation of itself(another spatial fea-
ture).

(e) Provides(requests) the minimum and maximum x and y coordinates
of itself(another spatial feature).

(f) Provides the perspective when the query object is itself, or when the
query objects are itself and another spatial feature.

(g) Provides(requests) ancestors of itself(another spatial feature).
(h) Provides(requests) spatial features close_to itself(another spatial fea-

ture).

7.5. DEVELOPING THE DATA MODEL 137

(i) Provides spatial features between itseff and another spatial feature.

(j) Provides(requests) spatial features adjacent_to itself(another spatial
feature).

2. The responsibilities of class Line Segment are as follows:

(a) Provides start-point and end-point of itself in terms of latitude and
longitude.

(b) Provides a line-id which is a unique identification of itself.

(c) Constructs high-level Reference_Spatial_Feature such as State. (This
responsibility is required in order to build the high-level object State
from the low-level line segments. Once the State is created, then it is
possible to construct objects that are contained by the State).

3. The responsibilities of class Reference_Spatial_Feature are as follows:

(a) Provides(requests) all the classes of Reference SpatiaJ Features it-
(another spatial feature) contains.

(b) Provides(requests) all the classes of Non Reference Spatial Features
it(another spatial feature) contains.

(c) Provides(requests) the Reference_Spatial_Feature(s) containing
itself(another spatial feature).

The responsibilities of class Reference_Spatial_Feature are inherited by ab-
stract as well as concrete subclasses that may be identified and added to
the model at a later stage in the design process. Concrete subclasses that
may be added through this process are instantiated with Reference_Spatial-
_Features.

We notice at this stage in the design process that the possible subclasses of
Reference_Spatial_Feature are Country, State, County and Town. These are
concrete subclasses which can be instantiated with spatial features such as
"USA" and "New Jersey" state. Thus, these above subclasses are identified
and added to the model.

Reference_Spatial_Feature's responsibilities are inherited by its subclasses
Country, State, County and Town. However, the implementation of the
methods corresponding to the responsibilities may differ depending on the
specific subclass. Consider for example, the method
Make_Reference_Spatial_Features_within, that corresponds to the responsi-
bility: "Construct Reference_Spatial_Features it contains". The Country
implementation of this method constructs the States that are contained
within that country. Whereas, the same method implemented for ~ County
constructs the Towns within the County.

We also notice that in addition to inherited responsibilities and thus meth-
ods, depending on the problem domain, each subclass may also contain
specific methods which are unique to that particular subclass. For ex-
ample, in an electoral districting problem, the subclass State may have
a specific method Get_districts_contained, which retrieves all the electoral
districts that are defined within that state. On the other hand, the subclass
Town may have a specific method Get_district_containing, which retrieves
those districts that the town is part of.

4. The responsibilities of class Non_Reference_Spatial_Feature are as follows:

138 C H A P T E R 7. A P P L Y I N G OOAD TO A N I N T E L L I G E N T GIS

5.

(a) Provides(requests) the Spatial Feature(s) containing it(another spatial
feature).

(b) Provides(requests) the line segments that i t(another spatial feature) is
composed of.

Similar to Reference_Spatial_Feature, the responsibilities of
Non_Reference_Spatial_Feature are inherited by its abstract and concrete
subclasses, which may be identified later in the design process. Examples
of concrete subclasses are: Interstate Highways, State Highways, County
Roads and Rivers. These subclasses are instautiated with actual Road
features and Highway features.
In addition to methods that correspond to the inherited responsibilities,
each subclass may contain methods that apply to that specific subclass
only, depending upon the specific problem domain.

The responsibilities of the class Rule are as follows:

(a) Provides static characteristics, such as its name and its description.

(b) Performs rule processing on the (spatial feature) arguments provided,
and returns the results.

The responsibilities of the Rule class are eventually inherited by all its
concrete subclasses, which are then instantiated with rules.
We notice at this stage of the design process that possible subclasses of the
Rule class, given our problem domain, are: Container_Rule, ~neestor_Rule
and Object_Representation_Rule. These concrete subclasses can be instan-
tinted with rules that fit into the category of each subclass. The above
subclasses are identified and added to the model.

Within our problem domain, the subclasses of Rule have the following
additional responsibilities:

(a) The Container_Rule: reasons and provides the container of a given
Reference or Non Reference Spatial feature by reasoning over the ap-
propriate instance of Container_Rule.

(b) The Ancestor_Rule: reasons and provides the ancestors of a given Ref-
erence o r Non Reference Spatial feature.

(c) The Object_Representation_Rule: reasons and provides the object rep-
resentation of a given Reference or Non Reference Spatial Feature.

(d) The Adjacency_Rule: reasons and determines if two given Reference or
Non Reference Spatial Feature(s) satisfy the conditions for adjacency.

Clearly, more subclasses of the Rule superclass can be added, depending
upon the requirements of the problem domain.

C o l l a b o r a t i o n s

In our model the following categories of collaborations are identified.

�9 Collaborations between Reference_Spatial_Features and Line Segments - to es-
tablish boundaries of the reference spatial features, and to determine the fines
within the spatial features.

�9 Collaborations between Non_Reference_Spatial_Features and Line Segments - to
establish boundaries of the Non Reference Spatial Features, and to determine
the lines within the spatial features.

7.5. DEVELOPING THE DATA MODEL 139

�9 Collaborations between Reference_Spatial_Features and Rules - to reason about
notions such aS contexts and object representations.

�9 Collaborations between Non_Reference_Spatial_Features and Rules - to reason
about notions such as contexts and object representations.

�9 Collaborations between Reference and Non Reference Spatial Features - to de-
termine the Reference Spatial Feature that contains the Non Reference Spatial
Feature, and to determine imprecise spatial relationships between them by im-
plementing.operators such as "close-to", "between" and "adjacent- to" .

7.5.2 The Analysis Phase

A n a l y z e H i e r a r c h i e s

In Section 7.5.1, we observe that Reference_Spatial_Features contain other Reference
as well as Non Reference Features, whereas Non_Reference_Spatial_Features do not
contain any other features. Analysis of the "Identify Responsibilities" and "Identify
Collaborations" phases reveals that the classes Reference_Spatial_Feature and Non-
.Reference_Spatial_Feature are specializations of the more general Spatial_Feature class,
and inherit its responsibilities.

We also identified concrete subclasses of Reference_Spatial_Feature and
Non_Reference_Spatial_Feature. Subclasses of the former are Country, State, County
and Town. Subclasses of the lat ter are Interstate Highway, River, Lake, Railroad, State
I-Hwy Segment, County I-Hwy Segment, Town I-t twy Segment, State River Segment,
County River Segment, Town River Segment, State Railroad Segment, County Railroad
Segment, Town Railroad Segment, State Highway, County St-hwy Segment, Town St-
hwy Segment, County Road, Town Cty-Rd Segment and Town Street.

The hierarchy that exists at this stage of the design process is given in Figure 7.1.
We notice, however, that the hierarchy in Figure 7.1 does not reveal any information

on how the geographic objects are organized in the real world, and the relationships
among them. That is, there is no notion of the different perspective levels that are
inherent among geographic objects. All the concrete subclasses of Reference_Spatial-
_Feature are organized into one group, and all the concrete subclasses of Non_Reference-
_Spatial_Feature are organized into another separate group. The inter-relationships
between these two groups are not apparent.

An analysis of the organization of geographic objects in the real world reveals
that objects exhibit a natural hierarchical ordering. Thus, each Country contains
Reference_Spatiai_Features such as States, and Non_Reference_Spatial_Features such as
Interstate Highways, and large Hydrographic Features (e.g. Large Lakes and Rivers);
each State, in turn, contains Reference_Spatial_Features such ms Counties and Non-
_Reference_Spatial_Features such as State Highways. Each County contains Reference
Features such as Towns, and Non Reference Features such as County Roads; each Town
contafins Reference Features such as Neighborhoods, and Non Reference Features such
as Town Streets.

Further, at any level in the hierarchy, there exists only one particular type of sub-
class of Reference_Spatial_Feature. This subclass contains not more than one other
type of subclass of Reference_Spatial_Feature, and one or more types of subclasses of
Non_Reference_Spatial_Feature. For example, the class Country (a Reference_Spatial-
_Feature) contains one type of subclass of Reference_Spatial_Feature, the class State,
and one or more types of subclasses of Non_Reference_Spatial_Feature, such as class

140 CHAPTER 7. APPLYING OOAD TO AN INTELLIGENT GIS

Abstract class Spatial_Feature.

Abstract class Reference_Spatial_Feature supvrclass Spatial_Feature.
Concrete class Country superclass Reference_Spatial_Feature.
Concrete class State superclass Reference_Spatial_Feature.
Concrete class County superclass Reference_Spatial_Feature.
Concrete class Town superclass Reference_Spatial_Feature.

Abstract class Non_Reference_Spatial_Feature superclass Spatial_Feature.
Concrete class Interstate Highway superclass Non_Reference_Spatial_Feature.
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class
Concrete class

River superclass Non_Reference_Spatial_Feature.
Railroad superclass Non_Reference_Spatial_Feature.
Lake superelass Non_Reference_Spatial_Feature.
State Highway superclass Non_Reference_Spatial_Feature.
State I-Hwy Segment superclass Non_Reference_Spatial_Feature.
State River Segment superclass Non_Reference_Spatial_Feature.
State Railroad Segment superclass Non_Reference_Spatial_Feature.
County Road superclass Non_Reference_Spatial_Feature.
County I-Hwy Segment superclass Non_Reference_Spatial_Feature.
County River Segment superclass Non_Reference_Spatial_Feature.
County Railroad Segment superclas s Non_Reference_Spatial_Feature.
County St-hwy Segment superclass Non_Reference_Spatial_Feature.
Town Street superclass Non_Reference_Spatial_Feature.
Town I-ttwy Segment superclass Non_Reference_Spatial_Feature.
Town River Segment superclass Non_Reference_Spatial_Feature.
Town Railroad Segment superclass Non_Reference_Spatial_Feature.
Town St-hwy Segment superclass Non_Reference_Spatial_Feature.
Town Cty-Rd Segment superclass Non_Reference_Spatial_Feature.

Figure 7.1: Preliminary geographic-objects hierarchy

7.5. D E V E L O P I N G THE DATA MODEL 141

Interstate Highway, class River and class Railroad. In the same way, the class State (a
Reference_Spatial_Feature) contains one type of subclass of Reference_Spatial_Feature,
the class County, and one or more types of subclasses of Non_Reference_Spatial_Feature,
such as class State Highway, State I-Hwy Segment and State River Segment. This
ordering proves to be very useful in describing perspective l e v e l s - each level in the
containment hierarchy represents a single perspective level, such as Country level, State
level, County level and Town level.

We incorporate this view of the real world containment hierarchy explicitly in our
model by specifying that:

�9 A Reference_Spatial_Feature at a particular level in the hierarchy can contain
not more than one other Reference_Spatial_Feature, and the contained Reference:
_Spatial_Feature must be of a different type (subclass) than the container Reference-
_Spatial_Feature.

* A Reference_Spatial_Feature at a particular level in the hierarchy can contain one
or more Non_Reference_Spatial_Features, and the contained features may belong
to different types of subclasses as long as those subclasses are not also contained
by any other Reference_Spatial_Feature.

A n a l y z e S u b s y s t e m s

The following subsystems are identified.
The collaborations between Reference_Spatial_Feature, Non_Reference_Spatial_Feature,

Line_Segments and Rules indicate the existence of a subsystem which is comprised of:
Spatial_Feature, its subclasses Reference_Spatial_Feature and Non_Reference_Spatial-
_Feature, and their respective subclasses such as Country and State. Thus, if at a
later stage a new subclass, such as "Neighborhood" is to be added to the model, this
could be accomphshed by extending this subsystem, without disrupting the rest of the
apphcation.

In addition to the Spatial_Feature subsystem, we also identified another subsys-
tem that results from the collaboration between class Reference_Spatial_Feature and
class Rule, and class Non_Reference_Spatial_Feature and class Rule. This subsys-
tem is comprised of: Rule and its subclasses such as 'r and "Object-
Representation_Rule". The advantage of having such a subsystem is that the addition
of a new class of rules at a later stage could be accomplished without affecting any of
the other classes in the model.

C r e a t e P r o t o c o l s

This task involves specifying the implementation of the abstract classes and their be-
havior which is specified in the form of methods. The base classes as identified above
are: Spatial Feature and Line Segment.

The base and abstract methods for each of the classes so far identified are discussed
below.

* Base M e t h o d s .

The following base methods are specified for the base classes:

1. Base methods of class Spatial_Feature:

(a) Get_boundary- provides the boundaries of the spatial feature by col-
laborat ing with the class Line Segment.

142 CHAPTER 7. APPLYING OOAD TO A N INTELLIGENT GIS

(b) Get_distance_between- provides the distance between itself and another
spatial feature.

(c) Find_perspective- determines the perspective of a query by identifying
the spatial features that are addressed in the query, and then collabo-
rating with the Rule classes.

(d) Get_max-x_and_min-x- computes the maximum and minimum x coor-
dinate values of spatial feature by collaborating with Line Segment.

(e) Get_max-y_and_min-y- computes the maximum and minimum y coor-
dinate values of spatial feature by collaborating with Line Segment.

2. Base methods of class Line_Segment:

(a) Make_Reference_Spatial_Features- constructs spatial features by grou-
ping the fine segments belonging to a a given spatial feature.

�9 A b s t r a c t M e t h o d s .
These methods are defined when it is required to have a particular method be
inherited down a hierarchy with each subclass having a different implementation
of the method.
In our application, an abstract method Make_boundaryis described in the super-
class Spatial_Feature. This method is inherited down the hierarchy by the sub-
classes Reference_Spatial_Feature and Non_Reference_Spatial_Feature, and fur-
ther down, by their subclasses Country, State, County and Town~ and Inter-
state_Highway, State_Highway, County_Road and Town_Street. Here, Country,
State, etc., are each subclass of Reference_Spatial_Feature existing at the same
level of the hierarchy. As noted earlier in Section 7.5.1, the implementation of
the methods corresponding to the responsibilities may differ depending on the
specific subclass. Thus, the State implementation of the method Make_boundary
determines those line segments that form the boundaries of States (i.e., those line
segments which have two different States lying on each of their sides), and then
builds the boundaries of the States. Whereas, the same method implemented
for a County determines the line segments that form the boundaries of Counties,
and then builds the boundaries of the Counties.

We emphasize this point by giving another example: Consider, the method
Make_Reference_Spatial_Features_within, that corresponds to the responsibility:
"Construct Reference_Spatial_Features it contains". The Country implementa-
tion of this method constructs the States that are contained within that country.
Whereas, the same method implemented for a County constructs the Towns
within the County.

We list the abstract methods in our application, in Appendix 7.7.

�9 O v e r l o a d e d m e t h o d s .

In addition to the Base Method, which is inherited down a hierarchy without any
change in its implementation, and the Abstract Method, in which the implemen-
tation may change down the hierarchy, we use another type of method, referred
to as Overloaded Method.
An Overloaded method is inherited from the Base Class down the hierarchy. In
an Overloaded Method, different implementations of the same method can be
described for the same class, by providing the method with different kinds of
information, in the form of parameters. This functionality is useful in our ap-
plication. For example, a spatial feature such as County may have a method

7.5. D E V E L O P I N G T H E D A T A M O D E L 143

Non_Ref. Spat.
Feat-Segments

COHPONEIIT~ OF OUR
HOD, EL

Countrg

n~ains I

State i
nkains I

Coun~g I

,ntainsJ
To',,,,tn

,ntains[

Neighborhood I

I Note : Slanted line denote "part-of" relationship

I I

I I l-Skate Hwy

I . ,I

#[State Hw9

I I Countg Road st.h~g,

I Town Slree~

I ,

River

\

$t~

ct ,

Ref..Spatial_feat Non-Re f-.Sp aria1 _feat

T I l E GEOGR A P H I C C O N T A I N H [I H T I t l E R A R C H Y

I

Railroad

~ad.S

Figure 7.2: The Spat ial Da ta Model

Find_object_close_to. We mentioned in Section 7.2 that close_to is a notion that
may have different interpretations depending upon the user perspective or con-
text. Now if we invoke the method Find_object_close_to on a particular instance
of County without giving any further information about the user perspective,
the method may carry out a default implementation. If, on the other hand, we
provide the method with additional information about the perspective, such as
perspective = Country level, or perspective = State level, the method will carry
out different implementations, depending upon the perspective provided.

Overloaded methods help us achieve better encapsulation. Had the Overloaded
Method functionality not been available, we would have had to provide the dif-
ferent perspective-varying implementations by using a series of "if-then-else"
Statements which would have limited the program reusability and understand-
ing. The Overloaded Methods identified in our model are listed in Appendix
7.7.

This completes our discussion of the Spatial Data Model. The components of the
model, and the geographic containment hierarchy that we model, are summarized in
Figure 7 .2 .

144 C H A P T E R 7. A P P L Y I N G OOAD TO A N I N T E L L I G E N T GIS

7.6 Implementation

The model was implemented using LAURE which is an object-oriented language de-
veloped at Bellcore by Caseau [88]. LAURE is a powerful knowledge representation
language based on sets. It is both an interpreted and a compiled language, and can be
used easily in both modes. This feature is especially useful during the system develop-
ment and testing stages by providing a fast prototyping functionality. LAURE supports
large programs, provides efficiency similar to C ++ , and offers a clean interface with C.
In addition, LAURE provides a deductive system with sound, efficient and complete
resolution of deductive rules, a feature that is very useful in our application' to reason
about user perspectives and object representation in relation to user perspectives, and
to process imprecise queries.

We give below, only brief details of our LAURE implementation, since a comprehen-
sive discussion is beyond the scope of this chapter. For a comprehensive discussion of
our implementation, please see [567]. A description of the class Spatial_Feature, along
with some sample queries and answers in LAURE syntax, is presented in Appendix
7.6. The class Spatial_Feature described in the appendix contains method-templates
(the actual code is not included here, since it is beyond the scope of this discussion) for
determining imprecise relationships such as "close_to", "between", and "adjacent_to".

For the purposes of our implementation, we used "raw" geographic line segment
da ta from the U.S. Bureau of Census' T IGER file [595]. The line segments that we
used pertained to the state of Rhode Island, U.S.A. Approximately 1500 low-level line
segments that covered a cross section of all the counties, towns, state highways, county
roads and town streets were loaded into the model, and then queries were posed to the
geographic database.

The queries that we posed consisted of both precise as well as imprecise topological
operators. Some query examples (in English) are given below. The actual query syntax
can be found in Appendix 7.6.

Q1. Add the boundary of "Bristol" county to State boundary.
Comment: Evaluates to "true" implying that the request was accomplished success-
fully.

Q2. Get the names of the counties contained by Rhode Island.
result: returns Bristol, Kent, Newport, Providence, Washington.

Q3. Get all the Non-reference-feature-contained of State Rhode Island.
Comment: returns Summit Greene Road, Plainfield Pike, Wallum Lake Road.

Q4. Is Providence town Close_to? Bristol town?
Comment: Here close_to? is an imprecise operator. Since an explicit perspective is not
provided, the system determines the possible perspective, using the embedded rules,
and then affirms that perspective with the user. Based on the user's response, addi-
tional information is assumed or computed. Then the result to the query is computed
and returned.

Qs. Get all the Towns that are Close_to~ Providence town.
Comment: The processing is similar to query Q4.

In addition to the above queries, it is also possible to combine query operators
to form conjunctive queries such as: "Get all the Towns that are close_to Providence
A N D lie between Cumberland and Cranston O R are adjacent_to Bristol". In all of
these cases, our implementation proved to successful and thus robust.

7.7. C O N C L U S I O N 145

7.7 Conc lus ion

In this chapter we presented our experience in applying the Responsibility-Driven Ap-
proach to the design and implementation of a complex, real-life geographic application.
The approach's emphasis on identifying and designing object-classes based on respon-
sibilities rather than their characteristics proved to be very effective in achieving a
robust design and implementation that is close to user requirement and at the same
time enhancing the application's extensibility and maintMnability.

Future work includes investigating the applicability of our geographic model to a
varied set of problem domMns such as electoral districting and public utilities manage-
ment.

146 CHAPTER 7. APPLYING OOAD TO AN INTELLIGENT GIS

A P P E N D I X

A.1 List of Abstrac t M e t h o d s

1. Abstract Methods of class Spatial_Feature.

(a) Get_point_representation with null implementation.
("Null implementation" means that the method defined for the object in
question does not have any implementation. It exists as a template which
is inherited by the subclasses of the object. A method inherited in such
a manner by a subclass may have a real (non-null) implementation, corre-
sponding to the responsibilities of the subclass).

(b) Make_boundary with null implementation.

(c) Make_point_representation with null implementation.

(d) Make_min-max-x with null implementation.

(e) Make_min-max-y with null implementation.

2. Abstract Methods of class Reference_Spatial_Feature (superclass Spatial_Feat-
ure).

(a) Get_point_representation with implementation to get point representation
of Reference_Spatial_Feature.

(b) Make_boundary with null implementation.

(e) Make_point_representation with null implementation.

(d) Make_min-max-x with null implementation.

(e) Make_min-max-y with null implementation.

(f) Make_Re]erence_Spatial_Features_within with null implementation.

(g) Make_Non_Reference_Spatial_Features_within with null implementation.

3. Abstract Methods of class Non_Reference_Spatial_Feature (superclass Spatial_Feature).

(a) Get_point_representation with implementation to get point representation
of
Non_Reference_Spatial_Feature.

(b) Make_boundary with null implementation.

(c) Make_point_representation with null implementation.

(d) Make_min-max-x with null implementation.

(e) Make_min-max-y with null implementation.

It is worth noting that we make use of the Abstract Methods for such imple-
mentation details as loading the raw data which is originally at a low-level (fine
segments), and then constructing high-level objects such as States, Counties,
Towns and Roads from the low-level objects. This is a very useful and im-
portant functionality of our model because it proved to us that the model was
capable of ref lec t ive capabilities i.e., the model's components themselves could
be used for loading the raw data, and deriving high-level data and populating
the various classes that are described in the model.

7 . 7 . CONCLUSION 147

We continue our discussion of Abstract Methods by listing those which pertain to
the high level objects Country, State, County and Town. The Abstract Methods
listed below are used to get the reflective functionality discussed above.

4. Abstract Methods of class Country (superclass Reference_Spatial_Feature).
It should be noted that the Abstract Methods encapsulated by subclasses such as
Country have specific implementations corresponding to their responsibilities).

(a) Make_boundarywith implementation to construct Country from Line_Segment.

(b) Make_point_representationwith implementation to compute point represen-
tation of Country.

(c) Make_min-max-x with implementation to compute the maximum and min-
imum x coordinate values of Country.

(d) Make_min-max-y with implementation to compute the maximum and min-
imum y coordinate values of Country.

(e) Make_Reference_Spatial-Features_within with implementation to construct
States contained by Country, in collaboration with Line_Segment.

(f) Make_Non_Reference._Spatial_Features_within with implementation to con-
struct Non_Reference_Spatial_Features at the State level that is contained
by Country, in collaboration with Line_Segment.

5. Abstract Methods of class State (superclass Reference_Spatial_Feature).

(a) Make_boundary with implementation to construct State from Line_Segme-
nt.

(b) Make_point_representationwith implementation to compute point represen-
tation of State.

(c) Make_min-max-x with implementation to compute the maximum and min-
imum x coordinate values of State.

(d) Make_min-max-y with implementation to compute the maximum and min-
imum y coordinate values of State.

(e) Make_Reference_Spatial_Features_within with implementation to construct
Counties contained by State, in collaboration with Line_Segment.

(f) Make_Non_Reference__Spatial-Features_within with implementation to con-
struct Non_Reference_Spatial_Features at the County level that is contained
by State, in collaboration with Line_Segment.

6. Abstract Methods of class County (superclass Reference_Spatial_Feature).

(a) Make_boundarywith implementation to construct County from Line_Segment.

(b) Make_point_representationwith implementation to compute point represen-
tation of County.

(c) Make_min-max-x with implementation to compute the maximum and min-
imum x coordinate values of County.

(d) Make_min-max-y with implementation to compute the maximum and min-
imum y coordinate values of County.

(e) Make_Reference_Spatial_Features_within with implementation to construct
Towns contained by County, in collaboration with Line_Segment.

148 CHAPTER 7. APPLYING OOAD TO AN INTELLIGENT GIS

(f) Make_Non_Reference_Spatial_Features_within with implementation to con-
struct Non_Reference_Spatial_Features at the Town level that is contained
by County, in collaboration with Line_Segment.

7. Abstract Methods of class Town (superelass Reference_Spatial_Feature).

(a) Make_boundary with implementation to construct Town from Line_Segme-
nt.

(b) Make_point_representationwith implementation to compute point represen-
tation of Town.

(c) Make_rain-max-x with implementation to compute the maximum and min-
imum x coordinate values of Town.

(d) Make_min-max-y with implementation to compute the maximum and min-
imum y coordinate values of Town.

(e) Make_Reference_Spatial_Features_within with null implementation since in
our appfication the Town class does not contain any Reference_Spatial-
_Feature.

(f) Make_Non_Reference.Spatial_Features_within with implementation to con-
struct Non_Reference_Spatial_Features below the Town level that is con-
tained by Town, in collaboration with Line_Segment.

8. Abstract Methods of subclasses of Non_Reference_Spatial_Feature.

The classes Interstate_Highways, State_Highways, Rivers, Railroads, County-
_Roads and Town_Streets fall under this category. These are linear objects which
do not contain any other object. In order to avoid the repetition of ideas, we
provide specifications of the Abstract Methods for only one representative class
of such objects here.

(a) Make_boundarywith implementation to group the component llne segments
which make up the concerned object.

(b) Make_point_representation with null implementation.

(c) Make_min-max-x with implementation to compute the values of the maxi-
mum and minimum x coordinate values of the concerned object.

(d) Make_rain-max-y with implementation to compute the values of the maxi-
mum and minimum y coordinate values of the concerned object.

A.2 List of O v e r l o a d e d M e t h o d s

1. Overloaded Methods of Spatial_Feature:
In the following, "X", "Y" and "Z" represent spatial features.

(a) X close_to? Y.
Determines if X is close to Y.

(b) close_tol X.
Determines the spatial features that are close to X.

(c) Z b e t w e e n ? X, Y.
Determines if Z lies between X and Y.

7.7. CONCLUSION 149

(d) X be tween! Y.
Determines the spatial features between X and Y.

(e) X ad jacen t_ to? Y.
Determines if X and Y are adjacent to each other.

(f) ad jacen t_ to! X.
Determines the spatial features adjacent to X.

A.3 I m p l e m e n t a t i o n notes in L A U R E syntax

A . 3 . 1 The Spat ial_feature class

[spatial_feat :: union superset (named_object)
comment "represents high level spatial objects, e.g. State"
with

(slot name -> string) ; i.d. code
(multi_slot boundary -> line_seg)
(slot elevation-> number)

(multi_slot lines_within -> line_seg)
(method point_reprn -> point)

=> [the implementation code goes here])
(multi_method adjacent_to -> spatial_feat

comment "finds features adjacent to itself"

=> [the implementation code goes here])
(method adjacent_to? (x:spatial_feat) -> boolean

comment "finds if x is adjacent to oself"
=> [the implementation code goes here])

(multi_method between (b:spatial_feat) -> spatial_feat

comment "finds objects between oself and b"

=> [pers as nil [pers <- [[[[ancestors(oself) find]
intersect [ancestors(b) find]] nth] owner]]]
[if [and [rep(oself) = "poly"] [rep(b) = "poly"]]

[the implementation code goes here]
else_if [and [rep(oself) ="point"] [rep(b)="point"]]

[the implementation code goes here]
else [the implementation code goes here]
])

(method between? (x:spatial_feat y:spatial_feat
perspective:string) -> boolean

comment "finds if y is between oself and x"
=> [the implementation code goes here])

(multi_method close_to (perspective:string) -> spatial_feat
comment "finds features close to itself"
=> [the implementation code goes here])

(method close_to?(x:spatial_feat perspective:string)->boolean
comment "finds if x is close to it"
=> [the implementation code goes here])]

NOTE: ~pers'' denotes the perspective, and '~rep'' denotes the
object representation.

150 CHAPTER 7. APPLYING OOAD TO A N INTELLIGENT GIS

A.3.2 Sample Q u e r i e s - (in LAURE syntax)

QI. Add boundary of "Bristol" county to State boundary

laure> [y all [x select State [[x name] = "RI"]] [[y boundary]
add ["Bristol" get_boundary "RI"]]]

eval> t ; ; ;returns ~true' indicating successful completion of
query

Q2. Get the names of the counties contained by a State RI

laure> [y all [Ix get_all State [[x R_feat_contained] ?]] nth I]
["~A~~, '' printf [y name]]]

eval> Bristol
Kent
Newport
Providence
Washington

Q3. Get all NR_feat_contained of State RI

laure> [y all Ix all State [[x NR_feat_contained] return]]

["~A~Y, '' printf [y name]]]

eval> Summit Greene Road

Plainfield Pike

Wallum Lake Road

Q4. Is Providence Town close to Narragansett?

laure> [[Ix select Town [[x name] = "Providence"]] nth i]
close_to?
[[x select Town [[x name] = "Narragansett"]] nth I]

{} geometric]

eval> (determines user perspective, computes and returns true or
false)

Q5. What are the towns close to Providence Town?

laure> [[Ix select Town [[x name] = "Providence"]] nth i]
close_to]

eval> (determines user perspective, computes and returns all towns
close to Providence) '

Chapter 8

Indexical Databases

James Clifford*

8.1 M o t i v a t i o n

The "three great da ta models" [594] were created in response to a set of needs arising
in certain tradit ional da ta management and processing environments, and to a large
extent they have been successful in meeting those needs. Today, however, the expanded
use of. and familiarity with, a variety of computers and software systems are generating
more sophisticated da ta management and processing needs. Today's sophisticated
users are running into a kind of "brick wall" in the current generation of Database
Management Systems (DBMS), nearly all of which are based on one of these three da ta
models. This phenomenon is, to be sure, not unique to the database arena; by and
large a~l areas of computer usage are experiencing the limits of today's software. The
growing revolution in expert systems, decision support systems, etc., all of which are
a t tempts to tackle ever more sophisticated problems for which traditional programming
languages and software development methodologies are largely inadequate, at tests to
this fact.

Simply put, today 's data models and DBMS's were largely designed for storing and
retrieving facts. (Recent work in the area of "object-oriented database systems" does
not seem to have digressed from this overall perspective.) While this functionality is
sufficient for many, if not most, of the applications and functions which the corporate
DBMS is intended to service, a growing segment of the DBMS user community, having
become comfortable, in many cases proficient, with the "just the facts, please..." mode
of use is now interested in having the system support much more of their needs. Among
the kinds of information needed are the following: opinions, expectations, judgments,
personal observations, histories, predictions, expert advice, hypothesized scenarios,
design versions, locations in space/time, simulations, sources of data, model or software
used to compute the data, etc.

Certainly most, ff not all, of these functions can be met by some combination of
the DBMS and a host programming language. But by and large the advantage of
a DBMS has been the accessibility of the information and the functionality of the
system to end users through an interactive query language. The "Host language ~-
DML" approach has, of course, always supported the transaction processing and report
production component of da ta processing, but the interactive query language mode is
what has made a DBMS so attractive, because, by abstracting the general functions of

*Department of Information Systems, Leonard N. Stern School of Business, New York
University, New York, New York 10012-1126.

154 CHAPTER 8. INDEXICAL DATABASES

database querying into a general purpose set of querying functions, it allows access to
the contents of the database without the need]or programming.

Today there are many research efforts underway to expand the data structuring and
data processing functionality of a DBMS to meet these expanding needs. The economic
realities of today's world would seem to doom most of these to failure, however, for two
major reasons. One is that each such effort has targeted, by and large, only one facet
of the problem, one potential user community, if you will, and the other is the growing
commercial success of today's relational systems and the SQL language in particular.

This chapter is an attempt to generalize the notion of an extended relational model.
Building upon the author's experience in one particular type of relational extension,
namely an extension to capture the semantics of the temporal dimension of data at the
model level ([116], [117], [123], [122],[119], [120]), this chapter investigates a model to
encapsulate a wide class of such extensions into the notion of a generalized functional
data type.

The basic model for the semantics of this expanded model, called the I nde x i c a l
D a t a M o d e l (I D M) , is borrowed from intensional logic, an attempt to formalize
the pragmatic component of linguistic theory. An intensional logic looks at the phe-
nomenon of context as a major contributing component to defining the interpretation
of a language. As described by Pdchard Montague [414]:

In interpreting a pragmatic language L we shall have to take into ac-
count the possible contexts of use. It is not necessary to consider them in
their full complexity; we may instead confine our attention to those among
their features which are relevant to the discourse in question. Thus it will
suffice to specify the set of all complexes of relevant aspects of intended
possible contexts of use. We may call such complexes indices, or to borrow
Dana Scott's term, points of reference. For instance, if the only indexical
feature of L were the occurrence of tense operators,* then the points of
reference might naturally be chosen as moments of time, regarded as pos-
sible moments of utterance. On the other hand, if L contained in addition
the first person pronoun T ... two aspects of the context of use would
become relevant, the speaker as well as the moment of utterance; and a
point of reference might naturally be chosen as an ordered pair consisting
of a person and a moment of time.

The I n d e x i c a l D a t a Mode l , therefore, apphes the same notion of indexical se-
mantics to the realm of relationM databases, in recognition of the need for potentially
many points of reference in increasingly complex database applications. Moreover, fol-
lowing the guidelines proposed in [118], the model to be proposed will be a consistent
extension, not only of the Historical Relational Data Model (HRDM) [119], but more
importantly of the underlying relational data model itself. In this way we believe that
there is some hope that commercial systems, built upon the model, have a chance of
success - because the model is a consistent relational extension, a DBMS built upon
the system has some chance of being truly "upwardly compatible" with existing DBMS
such as DB2 or Ingres.

lit was precisely consideration of such a situation that informed the development of the
Historical Relational Data Model (HRDM) [119].

8.2. THE INDEXICAL D A T A B A S E MODEL 155

8.2 The Indexica l Database Mode l

In this section we present an overview of the Indexical Database Model. We begin
with a presentation of the structures of the model - indexical relations - which will be
seen as a general extensi~ to ordinary relations. We then provide an overview of a
relational algebra for the model, focusing on those operators which take advantage of
the expanded representational capability of the indexical relations.

8 . 2 . 1 The S t ruc tu res

Let UVD = {VD1, VD2 . . . , VD,~a } be a (universal) set of va lue d o m a i n s where for
each i, VDi ~ 0. Each value domain VDi is analogous to the traditional notion of a
domain in that it is a set of atomic (non-decomposable) values.

(For example, an example application might have VDi = {Management, Finance,
Accounting}.)

Let UA = {Aa ,A2 , . . . ,A ,~} be a (universal) set of a t t r i b u t e s . Each at tr ibute
names some property of interest in the application area.

(For example, we might have Aa = D E P A R T M E N T .)
Let UID = {IDa, ID2, . . . , ID,~a} be a (universal) set of i n d e x d o m a i n s , where

for each i, I D i r ~, and the cardinality of each IDi is at most countably infinite.
(For example, we might have IDa = {Halderman, Ehrlichman, Mitchell}, and

ID2 = { . . . , to, t l , . . . } .)
Let UI = {la, I2 , . . . , 1~ } be a (universal) set of ind ices . Each index I~ represents

a "contextual coordinate"[354] which contributes to the context in which a particular
fact is to be interpreted.

(For example, we might have I1 = V A L I D T I M E , and I2 = O B S E R V E R S .)
The sets UVD, UA, UID and UI are all pairwise disjoint. ID O M : UI -~ UID is

a function which associates with each index I in UI its i n d e x d o m a i n ID in UID. We
denote the index domain of index I by IDOM(I) . In order to give a uniform meaning
to each index I the function IDOM is defined at the database scheme level, and not
at the relation scheme level.

(For example, we might have I D O M (O B S E R V E R S) = IDa, and
I D O M (V A L I D T I M E) = ID2.)

Let VC ---- { { ~ V D 1 , . . . , (~)VDnd } be a set of value comparator sets, where e&ck
6)VD, = {OVD~I,...,OvDi,} is a set of va lue c o m p a r a t o r s over VD~. More pre-
cisely, each OvDi~ in | is a set of ordered pairs {< vj, vk > Ivj,vk 6 VD~ and

vj OVD~3 vk}. Minimally, we require for each value domain VDi that {=, r C OVD,j,
i.e:, that all value domains support equality and inequality comparisons.

Let IC = { 0 I D 1 , . . . , | } be a set of index comparator sets, where each (gID~ -----
{0iz~,~,...,/~XD~ } is a set of i n d e x e o m p a r a t o r s over IDj. More precisely, each OzD~i
in OIDi is a set of ordered pairs {< idp, idq > lidp, idq C IDj and id v OZDID j idq}.
Minimally, we require for each index domain IDj that {=, #} C 0ID~j, i.e., that all
index domains support equality and inequality comparisons.

These preliminary definition serve, in effect, to define the basic vocabulary of our
model. Armed with them, we can proceed to define an I n d e x i c a l R e l a t i o n s c h e m e
t t as a 5-tuple R = < A, K, VDOM, IDOM, DOM > where:

1. A C UA is the set of a t t r i b u t e s of scheme R

2. K C A is the d e s i g n a t e d key of scheme R.

156 C H A P T E R 8. I N D E X I C A L D A T A B A S E S

3. V D O M : A --+ U V D is a function which gives the va lue d o m a i n of each
attribute of scheme R; we denote the value domain of attribute Ai in scheme R
by V D O M (A i , R).

4. I N D : A --+ 2 tz~ is a function which gives the set of ind ices of each attribute of
scheme R; we denote the indices of attribute Ai in scheme R by IND(A~, R). ~

5. The d o m a i n of an attribute A~ in scheme R, denoted DOM(A~, R), is a function

D O M : A --+ V D O M (A i , R) 2"rDOM(IND(Ai'R)) which gives the domain of each

attribute of scheme R. Note that the domain of an attribute is the set of all
possible functions from its I D O M to its V D O M .

A t u p l e t on s c h e m e t t is an ordered pair t = < i, l > where

1. t.i : A --* I -+ 21DOM(IND(Ai'R)) the i n d e x l l f espan of a t t r i b u t e A in t u p l e

t, is a function that gives the i n d e x l l f espan of each attribute Ai E A. We
denote the i n d e x l l f e span of a t t r i b u t e A~ in t as t.l.Ai.

2. t.v : A -+ T UD is a function that associates with each attribute A~ E A a
temporal-based function from the a t t r i b u t e i n d e x l i f espan t.l(Ai), to the
domain assigned to attribute Ai. That is, t(A,) : t.l(A~) --+ DOM(A~) We
denote the va lue of a t t r i b u t e A~ in t as t.v.A~. Note that t.v.Ai is subject to
two constraints:

(a) the d o m a i n c o n s t r a i n t , namely, Yi[t(Ai) E DOM(Ai)], and

(b) the key c o n s t r a i n t , namely, for any two distinct tuples t i , t j ,
t~(K) # t j (g) .

In general, we would like to allow a tuple to be only partially defined; i.e., if the
domain of an attribute Ai in relation R DOM(Ai , R) is the set of all functions in
V D O M (A i , R) IDOM(AI'R), at any given time the tuple instance will be only a partial
function in this space. We omit the details of this point, but point out that it would be
analogous to our treatment of li]espans in [119]. In other words, the following points
would have to be addressed:

1. A notion of index span, similar to that of a lifespan in historical databases, would
need to be defined for each index

2. The issue of the homogeneity ([202], [119]) of the tuple in each of the index
dimensions would need to be addressed. In other words, proceeding from the
most to the least general treatment, each attribute-value pair could have its own
index span for each index, or each tuple could be homogeneous in all of its index
dimensions, or each relation could be homogeneous in all of its index dimensions.

Finally, we can define an i ndex i ca l r e l a t i o n r on scheme R as a finite set of
tuples, r ---- { t l , t~ , . . . t~} , on scheme R.

8.2 .2 D i s c u s s i o n o f the S t ruc tu res

As discussed in [120]), there have been two different strategies for incorporating a
temporal dimension into the relational model in the literature. In one, the schema of
the relation is expanded to include one or more distinguished temporal attributes (e.g.,

SNote that it is by allowhlg a different IDOM for each attribute of R that our model is
inhomogeneous.

8.2. T H E I N D E X I C A L D A T A B A S E M O D E L 157

H alderman --~

Jan --~

Feb -~

Dec ~ 10000
Jan ---* 20000
Feb --* 30000

Dec -+ 40000
Jan ~ 50000
Feb --* 60000

Ehrlichman

J a n

Feb --*

Dec --~ 60000
Jan ---* 50000
Feb --* 40000

Dec --~ 30000
Jan --~ 20000
Feb ~ 10000

Figure 8.1: A Complex Funct ion as an At t r ibu te Value

time, or START-TIME and END-TIME) to represent the period of time over which
the fact represented by the tuple is to be considered valid. This approach has been
referred to in the hterature as tuple time-stamping or as a first-normal form (1NF)
model; in [120]) the term ungrouped is introduced for this type of approach. In the
other approach, referred to as attribute time-stamping or as a non-first-normal form
(NINF) model, instead of adding additional attributes to the schema, the domain of
each attribute is extended from simple values to complex values (functions, e.g.) which
incorporate the temporal dimension. [120]) introduces the term grouped for this latter
approach.

In the ungrouped approach an "object's" entire history is represented within a
single tuple, within which the time stamps are embedded as components of the values
of each attribute. In the grouped models, by contrast, all of the information about an
object is represented in a single tuple. [120] contrasts these two approaches and shows
that temporally grouped models are more expressive than temporally ungrouped models.
The Indexlc~l Data Model, then, is a grouped model in precisely the same sense or
for precisely the same reasons. Thus, a value in the Indexical Database Model is not
atomic, but rather a complex function, like the one in Figure 8.1.

It is well known (see discussion in [112]) that any function of n arguments can be
represented by an equivalent function of n - 1 arguments. We can therefore choose to
represent n-place functions hi:e:

~ e l , ~ e 2 , ~ . . . ~ r ... ~

by their equivalent 1-place function:

< { e l , e ~ , . . . , e n } , v >

158 CHAPTER 8. INDEXICAL DATABASES

< Halderman, Jan, Dec > --* 10000
< Halderman, Jan, Jan > --~ 20000
< Halderman, Jan, Feb > -+ 30000
< Halderman, Feb, Dec > --* 40000
< Halderman, Feb, Jan > --~ 50000
< Halderman, Feb, Feb > --~ 60000
< Ehrlichman, Jan, Dec > --~ 60000
< Ehrllchman, Jan, Jan > ~ 50000
< Ehrlichman, Jan, Feb > --+ 40000
< Ehrlichman, Feb, Dec > ~ 30000
< Ehrlichman, Feb, Jan > -+ 20000
< Ehrlichman, Feb, Feb> -+ 10000

Figure 8.2: Example of Attribute Value as I-Place Function

Thus, the value in Figure 8.1 could equivalently be represented as in Figure 8.2.
I D M can make extensive use of this ability - - at the definitional, operational, or user
levels - - to view values in either of these two fashions. In addition, since the order of
the indices is irrelevant in these functions, they can be viewed in whatever order the
user deems appropriate to the task at hand.

8.2.3 An Indexical Example: The Watergate Database
In this section we give an example from the familiar world of politics, of an Indexical
Database with three index sets. These are used to represent answers to the familiar
questions asked during the televised Senate Watergate Hearings, i.e. "What did the
President know and when did he know it?". We generalize slightly, and have an index
set for each of these three points of reference: (i) "Who knew it" , (ii) "When was it
known?" and (iii) "When was it believed it to have occurred?"

For our Watergate exaznple, we might choose to define the following three index
sets:

11 = Observers =
{ H alderman, Ehrlichman, Dean, N ixon, Mitchell, Colson, Liddy }

I2 = Data_Time = {July, August, September, October}
I3 = Rec_Time = {July, August, September, October, November}

For simplicity, we will consider only a single relation on the following scheme:

P R O J E C T S = < ApROJBCTS, KPROJECTS, VDOMpRoJECTS, IDOMPRoJECTS
where:

1. ApI~oJECTS = { P N A M E , A P P R O P R I A T I O N , A P P R O V E R }

2. KPROJECTS = {PNAME}

3. VDOMpI~OJECTS is as follows:

VDOMPRoJECTs(PNAME) = {Watergate BreakIn, Watergate Coverup,
Ellsberg BreakIn l

V D O M P R o J E c T s (A P P R O P R I A T I O N) -- positive integers
VDOMPRo JECTS (A P P R O V E R)

8.2. THE INDEXICAL DATABASE MODEL 159

{ N ixon, Mitchell, H alderman, Ehrlichman }

4. IDOMpRoJ~cTS is as follows:

IDOMpRojECTs(PNAME) --
IDOMp~oJ~cTs(APPROPRIATION)
{Observers, Data_Time, Rec..Time}
IDOMpRoJEcTs(APPROVER) = {Observers, Data_Time, Rec_Time}

We can more simply view the structure of this relation as follows:
PROJECTS(P_NAME,

APPROPRIATION: <Observer, Rec_Time, Data_Time>,
APPROVER: <Observer, Rec_Time, Data_Time>)

where each attribute is followed, where necessary, by the ordered list of its indices.
Note that we have indicated that the attribute P_NAME is the key of this relation,
and have decided that it is not indexical, i.e., it 's value is not a function from any of
the indices in the model.

In the rest of the chapter, in discussing examples of algebraic operators for the
indexical data model, we will refer to the instance on this schema shown in Figure 8.3.

Note that other applications would have an entirely different set of indices appro-
priate to the application. Examples could include the following:

�9 Sources of data, e.g. Harris, Gallup, TRW, etc.

�9 Models, e.g. Lotus, Quattro, Excel, etc.

�9 Versions of certain "objects", e.g. V1, V2, ...

�9 Points in Time

�9 Points in space

�9 Coordinates in space and time

�9 etc.

8.2.4 The Operations
In [122] we discussed some of the considerations that underlay the way in which we
set about to define an algebra for historical relations. Chief among these was the
notion of C'dimensional purity ~ for reduction operators. By this we mean that each
of the dimensions of a multi-dimensional object should be accessible through its own
reduction operator. The same consideration informs the shape of the algebra of I D M ;
specifically, there will be operators to access the attribute dimension, the base value
dimension, and the index dimension. In the rest of this section, we will outline the
basic operators in an extended algebra for the Indexical Data Model as follows:

1. the set theoretical operators: union (U), intersection (N), difference (-) , and
Cartesian Product (x),

2. extensions to the traditional relational operators: project (II), select (a), and
join (~), and

3. new operators: function restriction(~), and drop index (6)

This presentation is based upon the algebra of H R D M [119].

o~
 g O

~

o~
 B

G
~

H
 l

l.
I,

)
J

E
C

T
5

P
N

A
M

E

A
P

P
R

O
P

R
.

IA
T

IO
N

:
<

O
b

.e
ev

r
R

~
-T

im
e,

D

at
a.

T

im
e>

[

A
P

P
ft

O
~

,E
R

:
.C

O
b

+
e

'r
v.

r.

R
e~

-T
im

~
,

O
~

ta
-T

,
im

e>

~
V

tt
*

r|
tt

.
B

re
sk

-l
a

W
tt

*
t[

=
t*

C

o
v

er
u

p

"
D

e
c

--

IO
0

o
o

]m

n

2
~

0
0

0

F
e

b

--

3
0

~
0

0

D
r

--

+
o

o
o

o

Jo
~

--

~
0
0
o
o

F
e

e

--

6
0
0
0
0

�9

"
D

=
r

--

3
0
0
0
0

J
=

~
3

o
o

o
o

Je

n

--

F
eb

--

.~

o
o

o
o

D
r

--

3
0
O
O
0

F
eb

--

J=

n

~o
o,

)o

L
F

+
S

--

,o

o
o

o

J

I
!~

 ..
..

....
..

t
I i

~'
~

-
~"

='
"

]
,

F
�9

A

f~
xo

~

I, !'

D
~

c
~

,~
.1

+,
+r

16
2

"

Ja
n

--

I

J4
m

~

,~+
4"

 t I
 o

h+
 iI

 I

l
F

I+

M
II

C
&

Il
l

I

D
ie

+

~
f

i I
ch

.+
il

fi

b

--

J=
m

M

,
tc

P
l+

ll

F
ib

--

.'+

4"
, +

 C
+

 r

|

I '
D

e
c

--

~
.f

il
ck

=
|l

]

"

F
ee

N

,z
:o

~

D
=

c
--

N

ix
o

n

"~
 J

F
|

~
,'

r
n

�9
D

*c

~
.'

u
f,

tc
k

.l
l

"
"

i
J*

m

,~
r

t t
 c

h
.

s|
 I

i
i

!
i

J
L

E
h

r/

,c
h

m

+

,;

--

D
r1

6
2

~

,t
.4

.
la

k
=

l
f

J=
~

.+

~1
",

I
r

.I

I
F

e
b

~

,%
+f

 |
t r

o

H

E
U

=
b

er
g

B

re
~

k.
lm

E
h

e
h

c&
m

~
a

J~
n

F
r

J
~

F
+
b

D
=

c
~

2
0

0
o

0

~
"

l
F

eb

--

2
0

0
0

0

O
r

--

~O
O

O
O

~ =

J=

~

--

.~
u

o
u

o

; i

i
+

ta
n

~

3
0
0
o
0

F
r

--

3
0
0
0
o

E
&
r
l
,
c
h
m
s
n

F
=

b

J=
n

J=
n

.W

it
c~

+
4

~
|

J
�9

 '~
=

6

N
l~

o
a

D
ic

~

N
i~

o
~

l=

n

N
,z

e
~

J
F
~
6

N
s=

o
~

J=
~

~

,W
t|

ch
~

ll

V
e
b

M
it

ch
al

l

D
a

=

~
A

4
'I

Ic
h

~
H

J4

~

~
M

if
ch

=
|l

F
~
b

~
A

4
=

tc
tl

=
ll

.
,O

=c

--

~
.,

,,
~

o

J=
.

4o
o.

o
=

[
F

=
b

--

+o

oo
o

i

D
=

r
--

.~

u
u

o
U

J=

n

.+
.*

,u
d

F

r
--

3

d
o

.u

D
e

=

--

.~
=

lo
u

o

1
=

~

;o
l,

oo

F
e
b

--

6
o

n
o

o

D
*

C

--

~
o
u
O
O

F
a
b

--

~
o

l.
~

o

D
e

c
--

~
o
O
O
O

J=

n
~
o
o
o
u

F
=

I,

--

~*
,o
,-
',

Ja
n

--

F
.b

J=
n

L
I

r

8.2. T H E I N D E X I C A L D A T A B A S E MODEL 161

S e t T h e o r e t i c O p e r a t o r s

Indexical relations, like regular relations, are sets of tuples, and so the s tandard set-
theoretic operations - U, N, - , and x are defined over them. However, as in the
relational model, we restrict the application of these operators to u n i o n - c o m p a t i b l e
relations. The not ion of union-compatibi l i ty must be expanded to encompass having
the same number of columns over the same complex domains.

If r l on R1 and r2 on R2 are union-compatible, then

1. r l U r2 :- {t on scheme R3[t E r l or t E r2}

where R3 - -< A1, K1,VDOMI, IDOM1 >

2. r l N r2 = {t on scheme R3[t E rl and t E r2}

where R3 = < A1, h ' l , VDOM1, IDOM1 >

3. r l - r2 --- {t on scheme Rl[t C r l A t r r2}

As pointed out in [119], the result of these operations is, unfortunately, often coun-
terintuit ive. The result, for example, of the union of two relations r l and r2 will not
automatical ly "merge" tuples which refer to the same object during different, bu t pos-
sibly overlapping, indices. Following [119], we can define three object-based versions
of union, intersection, and difference, all of which rely on the concept of m e r g e a b l e
t u p l e s .

Two relations r l and r2 on schemes R1 =< A1, K1, VDOM1, IDOM1 > and R2 = <
A2, K2, VDOM2, IDOM2 > are m e r g e - c o m p a t i b l e if and only if A1 = A2,/(1 = K2,
, VDOM1 = VDOM2, and IDOM1 = IDOM2.

Note that merge-compatibil i ty requires tha t the two referenced relations have the
same key, and is therefore a stronger constraint than union-compatibil i ty.

Two tuples t l and t2 on schemes R1 = < A1,K1,VDOMI, IDOM1 > and R2 = <
As, K2, VDOM~, IDOM2 > are m e r g e a b l e if and only if

1. R1 and R2 are merge-compatible

2. their key value is the same over all indices, and

3. if the tuples are defined over the same index spans, their values must agree on
these indices

Condit ion 2 states tha t the tuples have the same key value, and thus are assumed
to denote the same object. Condit ion 3 states tha t at all indices in the intersection of
the index spans of the two tuples, each pair of corresponding at t r ibutes have the same
value. In other words, Condit ion 3 states that the two tuples do not contradict one
another.

The merge of tl and t2, (tl + t2) is then defined a~ the tuple ta where:

t3(A) = t l (A) u t2(A) for all A e A1

Given a tuple t and a set of tuples S, t is m a t c h e d i n S if there is some tuple
t ~ C S such that t is mergeable with t ' ; otherwise t is n o t m a t c h e d in S.

Wi th these prel iminary definitions we can define more semantically-based set-
theoretic operations, denoted tJo, no, and - o :

For example, if relations r l on R1 and r2 on R2 are merge-compatible, then:

162 C H A P T E R 8. I N D E X I C A L D A T A B A S E S

r l Uo r2 = {tit E r l and t is not matched in r2 V

t E r2 and t is not matched in r2 V

3t~ E r~ 3t2 E r2[t = tl + t2]}

C A R T E S I A N P R O D U C T The Cartesian Product of two relations r and s on
Schemes R and S can be defined in the usual way as:

r l x r2 =

where

{t on scheme R313t1 E r l , 3t2 E r2[

VA E Rl[t . v (d) = tl .v(A)] A

VA E R2[t.v(A) = t2.v(d)]}

R3 =< A1 U A2, IQ U K2, VDOM1 U V D O M 2 , I D O M I U IDOM2 >

As pointed out in [119], however, we note that this definition can result in inhomo-
geneous tuples, because the index spans of the resulting tuple is not guaranteed to be
uniform across the attributes. Various alternative definitions could certainly be given
wherein the index spans of the resulting of the resulting tuple is adjusted in some way.
Further research is needed to determine how best to handle the question of homogeneity
or inhomogeneity in indexical databases. This and other problems with the Cartesian
Product operator in temporal databases are well-known ([396]).

E x t e n d e d R e l a t i o n a l O p e r a t o r s

P R O J E C T The project operator 7r when applied to a relation r removes from r
all but a specified set of attributes; as such it reduces a relation along the attribute
dimension. It does not change the values of any of the remaining attributes, or the
combinations of attribute values in the tuples of the resulting relation. Let r be a
relation over the set of attributes R and X C R. Then the p r o j e c t i o n of r o n t o X
is given by: ~'x(r) = { t (X) i t E r}
P r o j e c t i o n E x a m p l e

The query 7rpRoJECT(funding)
would yield the relation in Figure 8.4 showing which Projects were currently recorded
in the database. Similarly, the query 7rpI~OJECT, STATUS(funding) would yield the
relation in Figure 8.5 showing what was thought by various observers and at various
times about the approval of these projects.

Note that because ~r does not specffically refer to the values in a database, it is
virtually unaffected by the fact that I D M relations are "grouped" (see [120]), (except
that complex values might "collapse").

S E L E C T In [119], we defined two versions of SELECT for historical databases,
which can be viewed as Indexical Databases with a single index, representing the so-
called "valid time" dimension of the data. We called these two operations SELECT-IF
and SELECT-WHEN, and defined them as follows:

a-IF(AO~,Q,L)(r) = {t E rlQ(s E (L n t.1))[t(A)sOa]}
~r-WHENAoa(r) = {ti3t' E r[t.l = {si t ' (n)(s)Oa } A t.v = t'.vi,.z]}

8.2. THE INDEXICAL DATABASE MODEL 163

PNAME

Water,ate Break-In

Water,ate Coverup

Ellsberg Break-In

Figure 8.4: Projection Example 1

164 CHAPTER 8. INDEXICAL DATABASES

PNAME APPROVER: <Observer, Rec-Time, Data-Time>

Watergate Break-In

Watergate Coverup

Ellsberg Break-In.

H a l d e r m a n -+

E h r l i e h m a n --+

" D e e

I J a n
J a n -+ i F e b

: D e e

J a n
F e b --+ F e b

--~ ~ l i t c h e l l "

--* M i t c h e l l

--+ N i x o n

--+ N i x o n "

- -* N i x o n

--+ N i x o n

i D e c -+ M i t c h e l l "

J a n --* M i t c h e l l

J a n - ~ F e b --+ M i t c h e l l

= D e e -+ M i t c h e l l :

J a n --+ M i t c h e l l

F e b --+ F e b --+ M i t c h e l l

H a l d e r m a n --*

E h r l i c h m a n --*

J a n --+

F e b --+

J a n

F e b ---*

- D e c

J a n

F e b

: D e c

J a n

F e b

" D e e

J a n

F e b

: D e e

J a n

F e b

--* M i t c h e l l "

--* M i t c h e l l

--* N i x o n

- * N i x o n "

--+ N i x o n

- * N i x o n

-+ M i t c h e l l "

--+ M i t c h e l l

--* M i t c h e l l

--* M i t c h e l l :

--~ M i t e h e l l ~

-+ M i t c h e l l

H a l d e r m a n -+

E h r l i c h r n a n - -+

J a n

F e b

J ct n - -+

F e b

" D e c

J a n

F e b

" D e e

J a n

F e b

" D e c

J a n

F e b

: D e e

J a n

F e b

-+ M i t c h e l l "

--* M i t c h e l l

-+ N i x o n

-+ N i x o n -

N i x o n

N i x o n

- ~ M i t c h e l l " =

-+ M i t c h e l l

-+ M i t c h e l l

--+ M i t c h e l l :

--+ M i t c h e l l

- * M i t c h e l l

Figure 8.5: Projection Example 2

8.2. T H E I N D E X I C A L D A T A B A S E M O D E L 165

We omit the definition of the analogous operators for the generalized indexical
database model. Suffice it to say that analogs of both of these operators could be
defined, and that they would take the following parameters:

�9 an attribute A

�9 a set of < index, index_value > pairs

�9 a value (i.e., a traditional, atomic value)

For example, the following query makes use of the a- IF operator:
a - I F (A P P R O P R I A T I O N = 6 0 0 0 0 , 3 Observer ,3 i~ec_Time,3 D a f a J i m e E { F e b })

(PROJECTS)
would yield a relation that shows which projects were thought, by anybody (the
Observer), at any time (the Rec_Time), to have had an appropriation of 500000 some-
time in February (the Data_time). For the example data the Watergate Breakin sat-
isfies this query (both Halderman and Ehrlichman believed this in February) as does
the Ellsberg Brealdn (Halderman believed this in February). The result of this query
is therefore the relation in Figure 8.6.

The a - W H E N operator is illustrated by the following query:
a-WHENApPRovER=Nixo ,~ (PROJECTS)

which results in a relation showing PROJECTS ever recorded, by any observer, to
have ever been approved by Nixon, and it will only show those "perceptions" about
the PROJECTS.

N e w O p e r a t o r s

F U N C T I O N R E S T R I C T I O N This operator is intended to generalize the
Time-Slice operator that has been defined in temporal database models. Function
Restriction, symbolized by ,, evaluates the i-th index of an attribute A in relation r at
a specified value i.

~ : r x A x I x i

In general, if r is a relation on scheme R, A is an attribute in R and I is an index
of A in R, then

,A.,i,(r) = {t]3 t, C r[t(R - A) = t , (R - A) A t(A) = t,(A)(I)]i]}

F u n c t i o n R e s t r i c t i o n E x a m p l e

The following query illustrates the use of function restriction:

t A P P R O P R l A T I O N . R e c _ T i m e] d a n (funding)

This query would yield the relation in Figure 8.7, showing what was recorded about
the appropriations for the projects as of January.

As is usuaJly done with a, we can generalize this operator to apply to multiple
attributes and indices, as well as to sets of index values rather than a single value.
Thus if r is a relation on scheme R, A is an attribute in R and/1 . . . I,~ are indices of
A in R, then

$ A ' I l l { i l 1 i l m } A'Ia]{ in 1 into} (r) =

{t13 t, ~ r[t(R - A) = t,(R - A) A t(A) = tt(A)(I1)l~lA
. . . A t(A) = t'(d)(I~)l~n]}

O
ttl

G
O

~
r~

t~

P
N

A
~

IE

W
~

te
g

g
L

te
 ~

,~
ea

.k
- |

n

E
ll

sb
e

r&

B
re

~
k

.l
n

s
<

O
b

se
rv

e
r,

R

e
c

-T
im

e
,

D
~

t~
-T

im
e

~
.

D
ec

~

I0
0

0
0

Ja

n

--

2
0

0
0

0

io
n

,

F
eb

~

3
0

0
0

0

H
~

ld
er

m
a

n

--

D
e

c

~
4
0
0
0
0

F
eb

~

Ja
.

~
5

0
0

0
0

F

eb

~
6

0
0

0
0

:
D

ec

~
3

0
0

0
0

Ja

n

~
Ja

n

~
3

0
0

0
0

F

eb

~
5

0
0

0
0

D
e

c

~
3

0
0

0
0

Ja

n

~
5

0
0

0
0

F

eb

F
eb

~

6
0

0
0

0

A
P

P
R

O
V

E
R

:
<

O
b

se
rv

e
r,

R

e
c

-T
im

%

D
~

t~
-T

im
e

>

H
a

ld
er

rn
a

n

E
h

rl
ic

h
m

a
n

H
a

ld
er

m
a

n

Ja
n

P

D
e

c
~

2
0

0
0

0

"[

"
Ja

n

~
2

0
0

0
0

!

F
eb

--

3

0
0

0
0

!
I

;

!

D
ec

~

3
0

0
0

0

F
eb

~

Ja
w

.
~

3
0

0
0

0

F
eb

~

6
0

0
0

0

L
 D

e
c

~

5
0
0
0
0

Ja
n

~

5
0

0
0

0

J~
n

F

e
b

~

5
0

0
0

0

i
D

ec

~
5

0
0

0
0

Ja

n

~
5

0
0

0
0

F

e
b

~

I
F

e
b

~

5
0

0
0

0

I L

F I
Jo

p
|

F
eb

--

Ja
n

F
eb

D
ec

~

M
it

ch
el

ll
!

Ja
n

~

M
it

ch
el

l
F

e
b

~

N

i=
o

n

,
De

~
-

.i=
o.

[
]

F
eb

~

N
iz

o
n

i =

D
ec

--

M

iE
ch

el
l

'

Ja
n

~

M
it

ch
el

l
F

e
b

~

M
it

ch
el

l

E
h

rl
ic

h
m

a
n

~

'
D

ec

~
M

it
ch

el
l'

I

Ja
n

~

M
it

ch
el

|
]

F
eb

~

&
Ii

tc
h

el
|

i

i.
"

[
D~

c
--

Mi
rth

=I
ll

"
J

a
n

~

Ja
n

~

M
it

ch
el

l
F

eb

~
JV

ix
o

n

H
a

ld
er

m
a

n

~
D

ec

~
N

iz
o

n

i

,
Ja

r;

~
H

ix
o

n

F
e

b

--

F
e

b

--

N
iz

o
n

I

D
~

c
~

M
ir

Ja

n

~
M

it
ch

el
l

Ja
n

F

eb

~
Jv

li
tc

h
el

l

E
h

rl
ic

h
m

a
n

~

~
D

ec

~
M

it
ch

el
l

'

L Ja
n

~

M
it

ch
el

l
F

eb

~
F

eb

~
M

it
ch

el
l

.Ij

/~
h

rl
~

c
h

m
a

n

h~

8.2. THE INDEXICAL DATABASE MODEL 167

= = , _

III III III III

I I I I

i i

i t

~ g

~ o o o

I11 III

f t

= g

I 1

' N

i I

III 111 lrl III

l i |

I l I !

I II , , ,

f

. e

~ o o

III III

f t

1 T

g g
.~ ..~

t I

f 1 ,

= = �9 _

III Ill III III

i n i I |

I I I I

i i i

t t

~ g

E I ~ u

III III

i i i

f r

t !

t

Figure 8.7: Iota Example 1

168 C H A P T E R 8. I N D E X I C A L D A T A B A S E S

For example, Figure 8.8 show the result of the following query:

LAPPROPRIATION.Observer[Hald~rman (
gAPPROPRIATION.Data_Tirne[{ 3an,Feb} (
$(APPROV ER.Observcr[Ha|derman (
t AP P ROV En.Dat~-T'rneI{ j~ ,F,b} (f und ing))))

which restricts the relation to Halderman's view of things, and further only to his view
of the Appropriations in January and February, and the Approvers in January and
February.

D R O P - I N D E X Drop-Index, symbolized by 6, drops an index from a specified
attribute or attributes in a relation. In effect, this operation evaluates an index at ~
some specified value i, and therefore transforms an n-value into an n-l-value. Its
analog in temporal databases is to evaluate the database as of some specified value,
e.g., now. Note that 6, like 7r, changes the scheme of the resulting relation.

If r is a relation on scheme R, A is an attribute in R and 1 is an index of A in R,
then

6A.I=,(r) = {tl 3 t ' e r [t (R - A) = * , (R - A)A t l (d) (I) = i]}

D r o p - I n d e x E x a m p l e

6APPROPRIATION.Rec--Time=Feb (f u n d i n g)

would yield the relation in Figure 8.9 showing the Appropriations as they were recorded
in the database as of February.

Again, extending the operator to multiple attributes and indices, Thus if r is a
relation on scheme R, A is an attribute in R and I1 . . . I,~ are indices of A in R, then

6A.*rl =il,...,A-I~ =in (r) = {t]~ 't! e r [t (R - A) = t I (R -A)A t I (A) (I1) = il A . . .A t l (A) (In) = in]}

The query:
6APPROPRIATION.Rea--Tirne=Feb, APPROVER.Ob EhrIichman(funding)

would yield the relation in Figure 8.10 showing the Appropriations as they were
recorded in the database as of February, and the Approvers as seen by Ehrllchman.

8.2 .5 P a r t i a l F u n c t i o n s

In an ideal world our information is perfect, i.e., for each index (and combination of
indices) associated with an attribute the database records a corresponding value. In
this case there is no problem with any of the operations we would like to perform.
In a database with a complex indexical structure, however, it is likely that not all of
the data will be known or even existent. For example, data for certain moments in
time, or representing the point of view of some particular observer, or derived using a
particular model, may in certain cases be unavailable. This situation - which should
be understood as essentially different from the issue of "null values" which has a long
history of study in the context of the relational data model - has been recognized as a
problem in the special case of historical databases. In the Historical Relational Data
Model of [119] the solution of tuple "hfespans" was adopted to handle this problem.
Other researchers have employed similar techniques.

Within the context of the Indexical Data Model, the problem arises when attempt-
ing to evaluate a function at a point where it is undefined. AnMogous to the notion

t~

G
O

3"

to

P
N

A
M

E

W
6

&
er

$
st

e
B

re
x

k
-l

n

W
z

te
rg

z
te

 C
o

ve
ru

p

E
lb

b
e

r S

B
re

sk
.l

n

A
P

P
R

O
P

R
IA

T
IO

N
:

~
O

b
m

e
rv

e
r,

R

ec
-T

im
e.

D

a
la

-T
im

e
>

H
a

ld
er

m
a

n

--

Ja
n

F
e

b

--

+

Ja
n

--

Jo
.

--

2
0

0
0

0

F
e

b

--

3
0

0
0

0

io
n

--

5

0
0

0
0

'

F
e

b

--

6
0

0
0

0

Ja
n

--

2

0
0

0
0

F
eb

--

2

0
0

0
0

A
P

P
R

O
V

E
R

:
<

O
b

se
rv

e
r,

R

e
c

-T
~

m
e

,
D

6
1

8
-T

im
e

~
.

Jr

~
M

it
ch

el
l

~
"

Ja
n

--

F

e
b

--

IV

lz
o

n

J
Ja

n

--

N
ix

o
n

F
e

b

--

F
e
b

--

H
i:

co
n

J

�9

]
,

Ja
n

--

M

it
ch

e
ll

I

Ja
n

--

i
Fe

b
--

N

ix
o

n

Ja
n

~

H
iX

O
n

F

eb

--

F
eb

~

H
ix

o
n

J
i.

H
a

ld
er

m
a

n

H
a

ld
er

m
a

n

--

F
eb

--

Ja
~

~

2
0

0
0

0

F
eb

--

2

0
0

0
0

H
a

ld
er

m
a

n

Ja
n

--

M

it
ch

e
ll

"J

"

Ja
r,

--

F

e
b

--

H

iz
o

n

J
Ja

n

--

N
ix

o
rl

F

e
b

--

F

e
b

--

H

iz
o

n

I ;

Ja
n

--

F
eb

Ja
n

--

2

0
0

0
0

F
eb

~

3
0

0
0

0

I I

Ja
n

--

3

0
0

0
0

F

eb

~
6
0
0
0
0

H

a
|d

er
ra

a
n

H
a

ld
er

m
a

n

o
o

t'
~

cJ
~

0

170 CHAPTER 8. hYDEXICAL DATABASES

PNAME i APPROPRIATION: <Oblerver, Data-Time>

Halderman - -

Watergate Break-In i

Ehrlichman - -

!

!

' Dec -- 40000
Jan 5(3000
Feb 60000

r Dec - 3oooo
L Jan 50000

Feb 60000

Waterg~tte Coverup

Dee - - 20000
Jan ~ 20000

Halderman ~ Feb ~ 20000

Dec ~ 300(30
Jan -- 40000

Ehrllchman ~ Feb -- 40000

EUsberg Break-In

I Dec -- 30000]
t talderman -- Jan 30000

Feb 60000

Jan -- 50000
Ehrlichman ~ Feb - - 50000

APPROVER: <Obterver, Rec-Time. Data-Time>

Jan --

Halderman - -

Feb --

Jan

Ehrllchman - -

Feb --

�9 Dec
Jan
Feb

: Dec
Jan
Feb

�9 Dec
Jan
Feb

: Dec
JQr;
Feb

Mitchell '
- - Mitchell

Nizon

Nizon I - N i x ~
-- Nizon

- - Mitchell
- - Mitchell

Mitchell

Mitchell
Mitchell
Mitchell

Jan

Halderman

Feb

Jan ~

Ehrlichman

Feb - -

�9 Dec
Jan
Feb

: Dee
Jan
Feb

Dee

Feb

D,c
Jan
Feb

- - Mitchell
- - Mite3tell
- - N ixmt

-- N ixon
- - N ~ o n

Ni ton

- - Mitchell
Mitchell
Mitchell

Mitchell
- - Mitchell
- - Mitchell

Halderman

Ehrl ichman

Jan

Feb

J a n - -

Feb - -

I
Dea

Jan
Feb

F~.b

Dec
./an
Feb

I Der
Ja.n
Feb

Mitchell]
Mi tchdl

- - Ni.~on

Nizo~]
N izon
N ixon

- - Mitchell]
Mitchell
Mitchell

- - Mitchell]
Mitchell |
Mitchell J

: . ~

i !

Figure 8.9: Drop-Index Example

~
~

0q

O
0

0 ~
17

6

o .?

t~

t,o

P
N

A
M

E

W
at

er
ga

te
 B

re
ak

-l
n

W
at

er
ga

te
 C

ov
er

up

E
ll

sb
er

g
B

re
ak

-h
i

'
A

P
P

R
O

P
R

IA
T

IO
N

:
<

O
bs

er
ve

r,
 D

at
a-

T
im

e>

I

H
 a

ld
er

rn
a

n

-.-
*

E
h

rl
ic

h
m

a
n

i
D

ec

~
40

00
0"

i

Ja
n

.--

*
50

00
0

F
eb

--

*
60

00
0

�9

i

D
ec

--

,
30

00
0

Ja
n

--

,
50

00
0

F
eb

--

*
60

00
0

H
 a

ld
er

m
a

n

--
-,

E
h

rl
ic

h
m

a
n

--

*

.

D
ee

--

*
20

00
0

Ja
n

--

*
20

00
0

F
eb

--

*
20

00
0

|

D
ec

-.-

,
30

00
0

Ja
n

--

-,
40

00
0

F
eb

~

40
00

0

�9

.
,

D
ec

--

*
30

00
0

i

A
P

P
R

O
V

E
R

:
<

R
ec

-T
im

e,
 D

at
a-

T
im

e>

Ja
il

F
eb

*

F
�9

D

ee

~
M

it
ch

el
l

Ja
n

--

-,
M

it
ch

el
l

i

!F
eb

*
M

it
ch

el
l

I L r
D

ec

~
M

it
ch

el
l

i
Ja

n

~
M

it
ch

el
l

!
F

eb

.--
,

M
it

ch
el

l
i

L
.i

J(
ll

l
-@

F
eb

--

*

"
D

ec

*

M
it

ch
el

l
":

Ja
n

~

M
it

ch
el

l
i

F
eb

~

M
it

ch
el

l
!

�9

i �
84

D

ec

--
*

M
it

ch
el

l

Ja
n

--

,
M

it
ch

el
l

F
eb

~

M
it

ch
el

l

D
ec

--

*
M

it
ch

el
l"

H
a

ld
er

m
a

n

--
.

E
h

rl
ic

h
m

a
n

*

Ja
u

--

,
30

00
0

F
eb

~

60
00

0
I, i

D
ec

--

*
50

00
0

I
Ja

n

--
*

50
00

0
F

eb

--
*

50
00

0

i
Ja

n

--
,

i

i i i i
F

eb

*

I

Ja
n

~

M
it

ch
el

l

F
eb

--

*
M

it
ch

el
l

i
l

D
ec

--

-.
M

it
ch

el
l

'
Ja

n

--
*

M
it

ch
el

l

i[
F

eb

--
,

M
it

ch
el

l

oo

0 ",
,I

i.-
a

172 C H A P T E R 8. I N D E X I C A L D A T A B A S E S

of "lifespans" in H R D M ([119]), we can define for each Index, at either the attribute
level, the tuple level, or even the relation level, the concept of index spans to handle
this problem.

8.3 I n s t a n c e s of t he Index ica l D a t a b a s e M o d e l

The Indexical Database Model is a general model which, we claim, generalizes many of
the notions found in a number of other proposals which have appeared in the literature.
For example, the Historical Relational Data Model (HRDM) [119] is an extension of
the relational data model with a single time index to represent the so-called "valid
time" of the data it manages. In IDM this would be a homogeneous indexical model
with a single index. In this section we recast the model of HRDM as an indexical
database model.

8 . 3 . 1 H R D M

In this section we recast the Historical Relational Data Model H R D M ([119]) as an
instance of an IDM:

�9 UDH = {D1, D2..., Dn~ } is the (universal) set of va lue doma ins .

�9 UAH = {A1, A2 ,A~, } is the (universal) set of a t t r i b u t e s .

�9 UIH = {11 } = T = { . . . , to, t l , . . . } , i.e., there is only one indexl the set of t imes .

�9 UDH, UA~I, and UIH are all pairwise disjoint.

�9 V C = {OD1, . . . ,OD,a} , the set of value comparator sets, is application-
dependent. (Again, minimally each value domain must support equality and
inequality comparisons.

�9 I c = { o x l } = { 0 2 } = {=,#,<,>,<,>}.
A

Historical Relation Scheme RH is a 4-tuple RH = < AH, KH, V D O M H , I D O M H >
where:

1. A~I C UA~t is the set of a t t r i b u t e s of scheme RH

2. h ~ C AH is the key of scheme RH

3. V D O M H : A n --+ UDH gives the va lue d o m a i n of each attribute of scheme
R/-/.

4. I D O M H : AH -~ 2 v1 specifies the i n d e x d o m a i n of each attribute An; in this
case, for all attributes AH of scheme RH, I D O M (A H) = T.

A t u p l e t on s c h e m e R is an ordered pair, t - -< v, 1 >, where

1. t.1, the l i f e span of t u p l e t, is any subset of UIH

2. t.v, the va lue of t he t u p l e is a mapping such that for all attributes A E R,
t .v (A) is a mapping of the type t.1 --* D O M (A) .

Note that it is condition 2 in H R D M which stipulates that the values of each
attribute in a tuple t are partial functions, and that the domain of these functions is
the lifespan which is defined in condition 1.

A r e l a t i o n r on R is a finite set of tuples t on scheme R such that if tl and t2 are
in r, for all indices in the index spans of the two tuples, tl and t2 disaglee for those
indices on the value of the key.

8.4. S U M M A R Y A N D CONCLUSIONS 173

8.3.2 Bitemporal Database Models
The notion of a bitemporal database - a database which records not only the valid time
of the data but also the transaction time when the data was stored in the database
- is a case of an IDM with two indices. Snodgrass' Temporal Database TQuel [528],
and Ariav's model [21] could equally well be cast as instances of an IDM database. We
believe that the various models for version control ([310] provides a good overview)
could also be expressed as specific instances of an IDM database. In [121] we discuss
the issue of a uniform treatment of the valid and transaction times in bitemporal data
models.

8 .4 Summary and C o n c l u s i o n s

The modeling capability of today's DBMS's will need to be expanded if they are to
serve the needs of tomorrow computing problems. Numerous research proposals have
appeared to extend this functionality for a wider array of application areas. Among
these proposals have been a plethora of suggestions for historical databases, rollback
databases, and bitemporal databases.

We have described the I n d e x i c a l D a t a b a s e M o d e l (I D M) as a generalization of
the work done in these and related areas. In this chapter We have provided an overview
of the structures of this model and the operators in its algebra, and shown how one of
these models - the historical relational data model (HRDM) - can be seen as a variety
of I D M .

We have illustrated the power of the model by means of a few example queries
expressed in an relational algebra extended to handle indexical relations. The algebra
was chosen because its gives a better "flavor" of how you can cut and paste tables
together. In fact, we can also define a multi-sorted calculus, similar to the language
Lh discussed in [120], with variables over ordinary domains as well as over each type
of index. Since Lh is shown in [120] to be more powerful than any ungroupedlanguage
for historical databases, it is reasonable to base our indexical calculus on the same
framework. However, as [120] also points out, since there is as yet no known historical
algebra equivalent in power to Lh the issue of the completeness of an indexical algebra
remains an open one as well.

Chapter 9

A TEMPORAL QUERY LANGUAGE FOR A
CONCEPTUAL MODEL

Ramez Elmasri*,Vram Kouramajian t

9 .1 I n t r o d u c t i o n

This chapter is a summary of our work in temporal conceptual models and query
languages [173, 178, 174, 179]. Most previous work in temporal database models and
query languages has been mainly in the context of the relational model of da ta [528,201,
429, 293]; and to a lesser extent, in conceptual data models [508, 178, 632]. However,
these approaches have a fundamental pitfall, in that they fail to consider the semantics
associated with time. In this chapter, we describe a Semantic Temporal model based
on the Extended Entity-Relationship model (STEER), which distinguishes between
conceptual and temporal objects. A conceptual object, once it is created, can always
be referenced at any future time, whereas a temporal object, which we call an entity role,
has a specific existence lifespan. For example, information concerning a STUDENT
conceptual object can be referenced even after the student has completed his studies.
However, the role of that entity as an ENROLLED-STUDENT has specific s tart and
end times that define its lifespan. (STUDENT is the owner entity of ENROLLED-
STUDENT role.)

The STEER model characterizes the properties of entities (conceptual objects), en-
t i ty roles (temporal objects), and (temporal and non-temporal) attributes. I t also de-
fines temporal constraints among entity roles, differentiates between temporal and con-
ceptual relationships, and provides rules for preserving temporal integrity constraints.

We complement our model by providing temporal query language constructs. The
query language is a temporal extension of GORDAS [I77, 176], which is a formal, high-
level and user-friendly query language for the Extended Entity-Relationship model.
The temporal query language distinguishes between temporal and conceptual ob-
jects/relationships. It Mlows selection conditions to retrieve attr ibutes and relation-
ships of a role or an entity type, since attr ibutes and relationships of a role type and
its owner entity type are public to each other and can be inherited. It also provides
natural and high level temporal element constructor operators that simplify tempo-
ral query expressions. Finally, it supports temporal version restriction operators and
allows multiple temporal scopes in a temporal projection.

* Computer Science Engineering Department, The University of Texas at Arlington, Arling-
ton, Texas 76019-0015, U.S.A., elmasri@cse.uta.edu

t Computer Science Engineering Department, The University of Texas at Arlington, Arling-
ton, Texas 76019-0015, U.S.A., kom.amaj~cse.uta.edu

176 C H A P T E R 9. A T E M P O R A L Q U E R Y L A N G U A G E

The remainder of this chapter is organized as follows. Section 9.2 describes the
representation of t ime we use. Section 9.3 discusses the STEER data model. Section 9.4
presents constructs for temporal boolean expressions, temporal selection and temporal
projection. Section 9.5 describes the temporal query language. Finally, section 9.6
contains a conclusion and planned future work.

9.2 Represent ing T i m e

Let T be a countably infinite set of totally ordered discrete chronons (time points),
where T is denoted as T = {to,t1,. . . ,t tno~+l,...}. We use NULL to represent
unknown chronons, and t,~o~0 to represent the current chronon which is continuously
increasing. We define a time interval, denoted by [tl,t~], to be a set of consecutive
equidistant t ime instants; that is, the totally ordered set { t t , t z + l , . . . , t ~ - l , t~} C T,
where t~ is the first element or s tart point of the time interval and tu is the last element
or end point.

The distance between two consecutive time instances, ti and t i+l , represents the
granularity of the application; and can be adjusted to be equal to months, days, hours,
minutes, seconds, or any other suitable time unit. A single discrete time point t is
easily represented as an interval [t, t], which we will denote simply as It].

Since interval representation is not closed under set operations, [201] suggested the
concept of temporal element. A temporal element is a finite union of time intervals,
denoted by { I1 ,12 , . . . , I,~} where h is an interval in T. Notice that union, intersection
and difference operations on temporal elements are easily defined. In addition, set
comparison predicates of two temporal elements using =, 5 , D, and _ can also defined.

In temporal databases, it is customary to include a number of different time di-
mensions. The most common kinds of time are: valid time, transaction time and
user-defined time [530]. Valid time is the time that an event happened in the real
world. It gives queries the capabilities to refer to past and future states of the data-
base. The main difference between future time and historical time is that the lat ter
refers to state changes that have already occurred, and thus are known to have hap-
pened, while future time refers to state changes that are planned to occur but may
or may not happen according to the plan. Transaction time is the registration time;
that is, the time when da ta is recorded in the database. User defined-time is provided
and supported by the user of the database; its semantics are left to each application.
Because of space hmitations, we will consider only valid time in this chapter.

9.3 The Temporal Data Model
We will assume that the reader is familiar with the basic concepts of the ER model
and ER diagrams [108], as well as its semantic extensions [175], and hence present only
the main features of the STEER model.

9.3.1 Conceptual Objects: Enti t ies

Our goal is to define guidelines for determining the basic aspects of an object life
time. The conceptual existence of an object does not directly correspond to the birth,
death, and change of the object. Objects need to be modeled in a mini-world when they
become of interest. For example, employees exist in the real world as persons. However,

9.3. THE TEMPORAL DATA MODEL 177

they become objects of interest to a company only when the company wants to hire
them. At this point, the company may still want to record previous information about
these persons. If an employee leaves the company, the employee remains an object of
interest as long as the company still wishes.

Each conceptual entity e has an existence time, denoted by ET, which is unrelated
to the concept of lifespan. The start time point S T of the existence time refers to
the time the concept of the entity is materialized. There is no end time point of an
existence time. The end time can be considered to be infinity in our model, because a
concept (an entity) once realized never ceases to exist. The only time that characterizes
an entity is the start time of its existence. Hence, E T = [ST, ~) . (We also use the
notation T(e) to refer to the existence time of an entity e.)

There are two important ramifications in associating existence time with entities:

1. We can define and treat future planning concepts using similar mechanisms to
those used for historical concepts.

2. We can enhance the power of query languages and simplify their constructs while
dealing with conceptual objects, by using start time point of existence time as
the earliest possible time the entity can be referenced.

An entity type is a set of entities of the same type; that is, entities that share the
same properties. An entity type is diagrammatically represented by a rectangular box
(see Figure 9.1).

9.3.2 Temporal Objects: Roles
Entities describe one aspect of the real world, the conceptual one. The other aspect is
captured by temporal objects. The classification of objects as temporal and conceptual
gives our model the capability to faithfully represent the way people perceive the real
world. Temporal objects materialize the active role that conceptual objects play in the
temporal dimension.

We call a temporal object an entity role, since it represents the time that the entity
is participating in that role. A role type is a set of entity roles of the same type; that is,
roles that share the same properties. Each role type is associated with a single entity
type called its owner entity. Hence, owner(entity role) = entity r role(entity) =
entity role. A role type is diagrammatically represented by a dotted rectangular box,
and connected to an owner entity (see Figure 9.1). Each entity role ro of a role type
RO is associated with a temporal element T(ro) C [to, oo) which gives the lifespan LS
of the role.

The following general set of rules must hold on roles:

1. Start time of the lifespan of an entity role must be greater or equal to the start
time of the existence time of the (conceptual) owner entity. This implies a top-
down approach in creation of role types; that is, before a role is created its
corresponding (owner) entity must exist.

2. A role type is restricted exactly to one owner entity type.

3. A role type can have only temporal attributes.

4. (Temporal) attributes of a role type are public to the owner entity type; that is,
an owner entity refers to these attributes as though they are attributes of the
owner entity.

178 CHAPTER 9. A TEMPORAL QUERY LANGUAGE

5. Similarly, (temporal and non-temporal) at tr ibutes of an entity type are public
to all associated role types.

6. A role can access all relationship instances for relationship types in which the
owner entity participates.

7. Similarly, an entity can access all relationship instances for relationship types in
which the associated role participates.

9.3.3 Temporal Constraints among Roles

Our model enforces two temporal constraints among roles:

1. Existence Constraint: A sup-existence/sub-existence constraint, denoted by
ROi/ROj, holds between two role types ROi and ROj iff the following holds:
{V rojk E ROj, 3 roi~ E ROi such that rojk -- roi~}; that is, every entity role
ROj represents the same entity role in ROi. The existence constraint implies a
top-down approach in the creation of roles. A member role of a sub-existence
represents the same real world entity as some member of the sup-existence. An
entity role cannot exist in the database merely by being a member of a sub-
existence; it must be also a member of the sup-existence.

2. Li]espan Constraint: A sup-lifespan/sub-lifespan constraint, denoted by
ROi/ROj, holds between two role types RO~ and ROj iff the lifespan of any
entity role rojk E ROj is a subset of the lifespan of the entity role roiz E ROi
where roj~ - toil; that is, T(rojk) C T(roil) . Notice that the lifespan constraint
implies the existence constraint, but not vice versa.

9.3.4 Non-Temporal A t t r i b u t e s

Attr ibutes are properties of objects. Non-temporal at tr ibutes can be only properties of
conceptual entity types but not of role types. The value of a non-temporal at tr ibute of
an entity holds over the entire existence time of the entity. We assume that the reader
is familiar with the properties of non-temporal at tr ibutes of the ER model [175], and
discuss only the properties of temporal at tr ibutes below.

9.3.5 Temporal A t t r i b u t e s

Each entity type E~ (role type RO~) may have a set of basic temporal at tr ibutes TAil,
TAil, ..., TAin, and each temporal at t r ibute TAr is associated with a domain of
values dom(TAij). For example, a temporai at tr ibutes of the PERSON entity type is
Name,, and a non-temporal at t r ibute is SSN (see Figure 9.1).

The following definitions are similar to those given in [178]. For roles, the temporal
value of each at t r ibute TAi of ro, which we refer to as TAi(ro), is a partial function
TAi(ro) : T(ro) --+ dom(TAi). The subset of T(ro) in which Tdi(ro) is defined is
denoted by T(TA~(~o)). It is assumed that TA~ has a NULL (or UNKNOWN)
value during the intervals T(ro) - T(TA~ (ro)).

In the case of entities, the temporal value of each at tr ibute TA~ of e, which we
refer to as TAi(e), is a part ial function TAi(e) : ET(e) --+ dom(TA~). The subset of
ET(e) in which TA~(e) is defined is denoted by T(TA~(e)). It is assumed that TA~
has a NULL (or UNKNOWN) value during the intervals T(e) - T(TA, (e)).

9 .3 . T H E T E M P O R A L DATA MODEL 179

The partial function that describes the values of a temporal attribute is also called
a temporal assignment [201, 179]. The subset of chronons during which a temporal
attribute is defined is called the temporal element of the temporal assignment.

Several types of temporal attributes exist:

1. A temporal single-valued attributes has at most a single atomic value for each
entity (role) at each time instant [t].

2. A temporal multi-valued attribute can have more than one value for an entity (a
role) at a given time instant [t]; hence, its domain is the power set P(V) of some
simple domain V.

3. A temporal composite attribute is a list of several component temporal attributes,
and its value for each entity at time instant It] is a concatenation of the values of
its components. The temporal element of a temporal assignment of a composite
attribute is the union of the temporal elements of the temporal assignments of
its components.

In our model, each entity will be associated with a system-defined non-temporal
SURROGATE attribute whose value is unique for every entity in the database. The
value of this attribute is not visible to users, and is never altered.

9.3.6 Classes and Superclass/Subclass Relationships
Our data model supports the concepts of (conceptual) subclasses and superclasses and
their related concepts of specialization and generalization. A class is any set of entities;
hence, an entity type is also a class. Additional groupings of entities that are subclasses
(subsets) of the entities in another class are often needed. A superclass/subclass re-
lationship is implicitly defined for each subclass. Subclasses can be used to represent
generalization and specialization hierarchies and lattices. A more complete discussion
of subclasses in the EER model is given in [175].

A member entity of a subclass represents the same real world entity as some member
of the superclass. An entity cannot exist in the database merely by being a member of
a subclass; it must also be a member of the superclass. An entity that is a member of a
subclass will have the same existence time as the corresponding entity in its superclass
because the entity in the subclass represents the same real world entity as the one in
the superclass. An important concept associated with the subclass is that of attribute
inheritance. An entity that is a member of a subclass inherits all (temporal and non-
temporal) attributes of the corresponding entity in its superclass. Note that since
(temporal) attributes and relationships of a role type are public to an owner entity
type, they become public to all subclasses of the owner superclass; and thus any query
over a subclass can access those public (temporal) attributes. An entity also inherits
all relationship instances for relationship types in which the superclass participates.

9.3.7 Conceptual Relationships
A conceptual relationship type R of degree n has n participating entity types El , E2,
. . . ,En. Each relationship instance r in R is an n-tuple r = < e l , e2 , . . . ,en :> where
each e~ E E i . Each relationship instance r in R has an existence time ET. The
start time of the existence time of a relationship instance must be greater or equal
to the start time of the existence time of each of the participating entities; that is,
ST(r) > ST(e~) for each e, ~ E, (i = 1, 2 , . . . , n).

180 CHAPTER 9. A TEMPORAL QUERY LANGUAGE

9.3.8 Temporal Relationships
Our model supports temporal relationships. A temporal relationship type T R of degree
n has n participating entity types (role types) O1, O2 , . . . , On where Oi is either an
entity type (Oi -- Ei) or a role type (Oi -- ROi). Each temporal relationship instance
tr in T R is an n-tuple tr = < ol, o2 , . . . , on > where oi is either an entity (oi - ei,
ei E Ei) or an entity role (oi - roi, roi E ROi).

Each temporal relationship instance tr in T R is associated with a temporal element
T(tr) which gives the lifespan of the temporal relationship instance. If all participating
objects are entity roles, then the lifespan of the temporal relationship instance must be
a subset of the intersection of the lifespans of the roles; and if all participating objects
are entities, then the start time of the lifespan of the temporal relationship instance
must be greater or equal to the start times of all existence times of the entities.

9.3.9 Temporal C o n s t r a i n t s a m o n g Relationships
Our model enforces two constraints on temporal and conceptual relationships:

1. R-existence Constraint: A sup-R-existence/sub-R-existence constraint, denoted
by R / T R , holds between a conceptual relationship R and a temporal rela-
tionship T R where all participating object types are role types iff Y tri =
(rot, ro2, . . . , to=) E T R the following two conditions must be satisfied:

(a) 3 r~ = (e l , e2 , . . . , e=) E R, such that owner(roj) = ej, for j -- 1,2 , n.

(b) The start time of the llfespan of the temporal relationship instance tri must
be greater or equal to the start time of the existence time of the conceptual
relationship ri.

2. R-li]espan (time order) Constraint: A sup-R-llfespan/sub-R-lifespan constraint,
denoted by T R / R holds between a temporal relationship T R and a conceptual
relationship R where all participating object types are role types iff V ri --
(el, e2 , . . . , en) E R the following two conditions must be satisfied:

(a) 3 tr~ = (r o l , r o ~ , . . . , r o ~) E TR, such that o~ne~(ro~) = e~ for all j =
1 , 2 , . . . , n .

(b) The start time of the existence time of the conceptual relationship instance
ri must be greater or equal to the start time of the lifespan of the temporal
relationship try.

The R-existence and R-lifespan constraints are denoted diagrammatically in a sim-
ilar way to existence and lifespan constraints for role types. Notice that the R-lifespan
constraint is, in some sense, the reverse constraint of the lifespan constraint on role
types. It is used to model the cases where a conceptual relationship cannot exist until
after a temporal relationship has started. For example, students cannot get transcript
entry for courses until alter they have been enrolled.

9.3.10 An Example
Consider the example database schema in Figure 9.1, which describes a simplified orga-
nization for part of a UNIVERSITYdatabase. The database includes the (conceptual)
entity types PERSON, STUDENT, FACULTY, COURSE, and SECTION. Any entity

9.4. T E M P O R A L Q U E R Y L A N G U A G E C O N S T R U C T S 181

instance that is a member of any of these entity types is associated with an existence
time. The entity types S T U D E N T and FACULTY are subtypes of the entity type PER-
SON. The role types are diagrammatically represented by a dotted rectangular box,
and connected to their owner entity types. The role types and their owner entities a r e :

owner(LIVING-PERSON) = PERSON
owner(ENROLLED-STUDENT) = S T U D E N T
owner(CURRENT-FACULTY) = FACULTY
owner(VA LID-CO URSE) = CO URSE
owner(ACTIVE-SECTION) = SECTION

The conceptual relationship types are:

CS between COURSE and SECTION
TAUGHT between FACULTY and SECTION
T R A N S C R I P T between S T U D E N T and SECTION

The temporal relationship types are:

A CTIVE-CS between VALID-COURSE and A C T I V E - S E C T I O N
IS -TEA CHING between C URRENT-FA C ULTY and A CTIVE-SECTION
ENROLLED between E N R O L L E D - S T U D E N T and A C T I V E - S E C T I O N

9.4 Temporal Query Language Constructs
In non-temporal databases, a typical query will select certain entities based on boolean
predicates that involve attribute values of an entity (and of related entities). Following
that, certain attributes or relationships of each of the selected entities are displayed.
Other queries involve aggregate functions on groups of entities or their attributes. In
a temporal database, selection criteria may be based not only on attribute values but
also on temporal conditions. In addition, once an entity is selected, the user may be
interested in displaying the complete history of some of its attributes or relationships, or
to limit the displayed values to a certain time interval. To allow for temporal constructs
in queries, we will use the concepts of temporal boolean expressions, temporal selection
conditions (or temporal predicates), and temporal projection [179].

A (temporal) boolean expression is a conditional expression on the attributes and
relationships of an entity (or an entity role). For example, a boolean expression can
be Classification = 'Senior'. The boolean condition when applied to one entity e (or
one entity role to), evaluates to a function from T(e) (or T(ro)) to { TRUE, FALSE,
U N K N O W N }. We call this function a temporal assignment.

The true_time of a boolean expression, c, denoted by [c], evaluates to a temporal
element for each entity e (or each entity role ro). The temporal element is the time
for which the condition is T R U E for e (or to). As an example, the boolean condition
Classification = 'Senior', when applied to an E N R O L L E D - S T U D E N T ro (Figure 9.1),
returns a function from T(ro) to { TRUE, FALSE, UNKNOWN }. If T(ro) is equal to
[9/1/83, 8/31/87], and the student classification was senior during [9/1/86, 8/31/87],
the temporal assignment result would be:

{ [9/1/83, 8/31/86]--+ F A L S E , [9/1/86, 8131187]--+ ~ n u E }.

182 CHAPTER 9. A TEMPORAL QUERY LANGUAGE

active-sec ~ @ ~ course
e-students

act-sections

section

sections sec-course

faculties

Figure 9.1: A Temporal EER Schema for part of a University Database

9.5. THE T E M P O R A L Q U E R Y L A N G U A G E 183

The value for the true_time [Classification = 'Senior'] would be [911/86 , 8/31/87].
Next we define a (temporal) selection condition, which compares two temporal

elements using the set comparison operators =, 5 , _D, aatd C. When applied to an
entity type (or class), it evaluates to those entities that satisfy the temporal selection
condition. For example, consider the following temporal selection condition applied to
the ENROLLED-STUDENT entity role type of Figure 9.1:

Classification = 'Senior'] D [9/1/86, 5/31/87]

This selects all ENROLLED-STUDENT entity roles whose classification was 'Se-
nior' during the period [9/1/86, 5/31/87]. The condition is evaluated for each
ENROLLED-STUDENT entity role individually, and returns either a Y E S or NO
answer. All entity roles for which the answer is Y E S are selected.

We also define temporal projection. This is applied to a temporal entity and restricts
all temporal assignments (at tr ibutes and relationships) for that entity to a specific time
period specified by a temporal element T.

Temporal selection conditions are used to select particular entities based on tem-
poral conditions, whereas temporal projections are used to limit the data displayed
for the selected entities to specific time periods. Temporal boolean conditions may
be used as components in the expressions for both temporal selections and temporal
projections.

9.5 The Temporal Query Language
Much of the flexibility and power provided by a query language is dependent on the
da ta model. Our temporal query language derives its simplicity and expressiveness
from the STEER data model; in particular from the distinction between temporal
and conceptual objects, and temporal and conceptual relationships. The query lan-
guage used is a temporal extension of GORDAS [177, 176, 179]. We briefly recall that
GORDAS is a functional query language with two clauses: GET and WHERE. The
WHERE-clause specifies conditions for the selection of entities from a root entity type,
while the GET-clause specifies the information to be retrieved for each selected entity.
For example, consider the following (non-temporal) GORDAS query specified on the
database of Figure 9.1:

QI: G E T < Name, SSN, < CName o f see-course, Semester, Year >
o f sections > o f STUDENT

W H E R E Address o f STUDENT = 'Arlington'

Here, the root entity type, specified at the end of the GET-clause, is STUDENT.
The WHERE-clause is evaluated individually for each entity in the root entity type,
and selects each entity that satisfies the WHERE-dause. In this query, each STU-
DENT entity who lives in 'Arlington' is selected. (Note that the Address attr ibute is
visible to STUDENT by being inherited from LIVING-PERSONvia PERSON as we
will describe in section 9.5.1.) The o] STUDENT in the WHERE-clause is optional,
and can be left out. For each selected entity, the GET-clause retrieves the student
Name, SSN (both inherited from PERSON) and sections, and for each of the student 's
sections the CName, Semester and Year are retrieved. The connection names such as
see-course and sections are used to specify related entities of the root entity type in a

184 CHAPTER 9. A TEMPORAL QUERY LANGUAGE

functional way as though they were attr ibutes of root entities. Hence, the path sec-
tions of STUDENT specifies the SECTION entities related to each STUDENT entity
via the TRANSCRIPT relationship. A full discussion of non-temporal GORDAS is
outside the scope of this work, and is given in [177, 176].

In temporal GORDAS, we will adopt the philosophy that a non-temporal GORDAS
query is also valid, and will default to the current database state. Hence, if a temporal
GORDAS query is specified with no temporal selections or projections, we will assume
that a snapshot of the database is taken at the time instant tno~ when the query is
evaluated, and the query is processed using this database state. This will make it
possible to specify both temporal and non-temporal queries on the database within
the same framework.

In section 9.5.1 we discuss temporal projection and introduce additional temporal
element constructor operators. Section 9.5.2 presents temporal selection. Section 9.5.3
describes temporal version restriction operators. Finally, section 9.5.4 introduces op-
erators that allow multiple temporal scopes in a temporal projection.

9.5.1 Temporal Projection
A temporal query may involve a temporal selection condition or a temporal projection
condition or both. The general philosophy of GORDAS is to maintain a clean separa-
tion between the specification of conditions for selection of entities (in the WHERE-
clause) and the specification of information to be displayed (in the GET-clause). To
maintain this philosophy, we will specify a temporal projection on the data to be dis-
played at the end of the GET-clause, as in [179]. For example, consider the query
to retrieve the history of the Address and PhoneNumber of 'John Smith' during the
period 1985 to 1990:

Q2: G E T < Address, PhoneNumber > o f PERSON : [1/1/1985, 12/31/1990]
W H E R E Name = 'John Smith'

The term PERSON: [1/1/1985, 12/31/1990] at the end of the GET-clause specifies
that the temporal assignment for 'John Smith' is to be retrieved during the period
[1/1/1985, 12/31/1990]. On the other hand, the next query is non-temporal, and
displays the current (at time instant tno~) Address and PhoneNumber of 'John Smith':

Q3: G E T < Address, PhoneNumber > o f PERSON
W H E R E Name = 'John Smith'

As seen from query Q2, the temporal projection of selected entities is specified by
a temporal element at the end of the GET-clause. The temporal element may be
a time period (as in Q2) or may itself be derived from the database for each entity
(as in Q4 below). For example, suppose we want the full history of the Address and
PhoneNumber of 'John Smith':

Q4: G E T < Address, PhoneNumber > o f PERSON : ET
W H E R E Name = 'John Smith'

This retrieves the values of address and phone number over the whole existence
time (ET) of the entity. If :ETis left out, only the current Address and PhoneNumber
(at time instant tno~) are retrieved.

9.5. T H E T E M P O R A L Q U E R Y L A N G U A G E 185

Temporal attributes of a role type are public to the owner entity type; that is,
an owner entity can refer to these attributes (through inheritance) as though they
are attributes of the owner entity. Similarly, (temporal and non-temporal) attributes
of an entity type are public to all associated role types. The definition of attributes
and relationships of a role type and its owner entity type as public to each other
gives queries the flexibility to specify selection conditions and to retrieve information
involving attributes of a role or an entity type by referring to each other's attributes.
For example, in queries Q2, Q3 and Q~, the entity PERSON is able to refer to the
attributes Address and PhoneNumber of the entity role LIVING-PERSON since the
owner of LIVING-PERSONis the entity PERSON. Notice that we can specify similar
queries to the queries Q2, Q3 and Q~ by referring to LIVING-PERSON explicitly, as
in Q5, Q6 and Q7, since they only display temporal attributes:

Q5: G E T < Address, PhoneNumber > of LIVING-PERSON
: [1/1/1985, 12/31/1990]

W H E R E Name = 'John Smith'

Q6: G E T < Address, PhoneNumber > of LIVING-PERSON
W H E R E Name = 'John Smith'

Q7: G E T < Address, PhoneNumber > of LIVING-PERSON : LS
W H E R E Name = 'John Smith'

However, Q6 and Q7will only retrieve entities that are LIVING-PERSONs at time
t whereas Q3 and Q4 may retrieve deceased persons (since conceptual entities have
no end time) but then find that their attributes may be NULL at time t,~o~.

The projection of (temporal) attributes over a lifespan displays information about
a conceptual entity during the time period it participates as a particular entity role.
For example, in the next query, the history of the Address and PhoneNumber of 'John
Smith'is retrieved, during the time he was an enrolled student:

Q8: G E T < Address, PhoneNumber > of ENROLLED-STUDENT : LS
W H E R E Name = 'John Smith'

Here, the Address and PhoneNumber history are retrieved only during the lifespan
(LS) that 'John Smith ' exists in the ENROLLED-STUDENT entity role. If :LSis left
out, the current Address and PhoneNumber are retrieved if end time ET(LS) > t~o~; if
ET(LS) < t~ow, the entity will not be selected since it is not valid as an ENROLLED-
STUDENT any more.

The next query retrieves all sections that 'John Smith'has completed:

Q9: G E T < CName of sec-course, Semester, Year > of SECTION
W H E R E Name of students of SECTION __D {'John Smith'}

In this query, there is no need to project the query result over a time period since
the attributes Semester and Year, and the relationship CS (specified by see-course)
are non-temporal attributes and relationship of SECTION, and hence always exist. It
is this type of query that becomes cumbersome to specify when no distinction is made
between temporal and conceptual objects, as in [179]. For instance, if the root entity
SECTION of query Q9 is replaced by A CTIVE-SECTION, we get all sections that
'John Smith'is currently enrolled in:

1 8 6 C H A P T E R 9. A T E M P O R A L Q U E R Y L A N G U A G E

Q10: G E T < CName of see-course, Semester, Year > o f ACTIVE-SECTION
W H E R E Name o f e-students o f ACTIVE-SECTION _D {'John Smith'}

This query is implicitly temporal since it refers to the temporal entity role
ACTIVE-SECTION. The query displays the current (at time instant t~o~) sections
that 'John Smith'is enrolled in. The capability to express such temporal queries by
referring to an entity role without explicit reference to time is one of the advantages
of this model.

A temporal query may explicitly specify a temporal projection that is derived from
a temporal boolean expression. For example, suppose we want the history of Name,
Office and Salaryof each CURRENT-FACULTYentity role only when the value of its
at t r ibute Rank was either 'Assistant Pro]' or 'Associate Prof ':

Ql1: G E T < Name, Office, Salary > o f CURRENT-FACULTY
: [(Rank = 'Assistant Prof ') O R (Rank = 'Associate ProP)]]

In this case, a different time projection is applied to each selected entity role based
upon the time that entity was an assistant or associate professor; that is, the time
restriction is correlated to each individual entity role.

When we deal with temporal intervals and elements in STEER, we need additional
functionalities that are not needed in other temporal query languages [178]. For in-
stance, [entity : ET] - [role : LS~ returns the time period (temporal element) when
an entity does not participate in a specific role. Hence, to retrieve the Name, SSN~
and Salaryof each faculty during the time period she/he is not CURRENT-FACULTY
(e.g. on sabbatical or working for industry), we write:

Q12: G E T < Name, SSN, Salary > o f FACULTY
: [FACULTY : ET ~ - [CURRENT-FACULTY : LS]

Here, the Name, SSN, and Salary of a faculty are retrieved only during the period
[FACULTY : ET ~ - [CURRENT-FACULTY : LS], which is different for each
selected entity. Note the difference between the temporal expression in queries Qll
and Q12. In both queries Qll and Q12, temporal element constructor operators are
used to define temporal elements at the end of the GET-clause. However, in query
Qll, the boolean condition c = (((R a n k = 'Assistant Pro]') O R (Rank =- 'Associate
Pro]')) is based on a boolean predicate that involves at tr ibute values of an entity
role, whereas in query Q12, the boolean condition refers only to the existence time
of FACULTY and the lifespan of CURRENT-FACULTY. In query Qll, the temporal
element at the end of the GET-clause is the true_time of a boolean condition, whereas
in query Q12, the temporal element is the difference between two true_times, namely
the existence time of a FACULTYentity and its lifespan as a CURRENT-FACULTY
entity role.

The next query retrieves the history of the Name, Address and PhoneNumber of
living persons during the period they were not enrolled students:

Q13: G E T < Name, Address, PhoneNumber > o f PERSON
: [LIVING-PERSON : LS] - [ENROLLED-STUDENT : LS]

The usual set theoretic operations of UNION, INTERSECTION, DIFFERENCE
and COMPLEMENT can be combined with temporal element constructor operators.
Both previous queries Q12 and Q13 use the DIFFERENCE operator. The next query
uses the COMPLEMENT operator to retrieve the history of the Name, Address and
PhoneNumber of persons before they become faculty members:

9.5. T HE T E M P O R A L Q U E R Y L A N G U A G E 187

Q14: G E T < Name, Address, PhoneNumber > o f PERSON
: C O M P L E M E N T [[FACULTY : ET]

The idea of applying a temporal boolean condition to entity roles and entities can
be extended to temporal attributes. The true_time of a boolean condition reduced to
a temporal at t r ibute name is represented as [[temporal_attribute : time_period 7" This
corresponds to the true_time of the temporal_attribute during time_period. For example,
the next query retrieves the history of the Name, StudentNo, CName, Semester and
Year of enrolled students during the period they had a valid Classification (that is, a
Classification value that is not NULL):

Q15: G E T < Name, StudentNo, < CNazne o f sec-course, Semester, Year >
o f sections > o f ENROLLED-STUDENT : [Classification : LS

9.5.2 Temporal Selection
Next, consider the specification of temporal conditions to select entities. These will
usually involve the specification of temporal selection predicates in the WHERE-clause.
For example, consider the query to retrieve the Name and PhoneNumberof all persons
who lived in 'Arlington' on 3/30/1992:

Q16: G E T < Name, PhoneNumber > o f LIVING-PERSON : [3/30/1992]
W H E R E ~ Address = 'Arlington'] 2 [3/30/1992]

In query Q16, the WHERE-clause is a temporal selection condition. For each
LIVING-PERSONentity role, it first calculates the temporal boolean expression c =
(Address = 'Arlington'); if the true_time ~c] 2 [3/30/1992], the temporal selection
condition evaluates to Y E S and the LIVING-PERSONentity role is selected by the
WHERE-clause. Note that it is still necessary to specify the temporal projection
[3/30/1992] again in the GET-clause since leaving it out would retrieve the current
Name and PhoneNumber of each selected entity rather than those on 3/30/1992.

The next query retrieves the SectionNumber and ClassRoom of all active sections
that were held in room 'EB119'during the period 1990-1991:

Q17: G E T < SectionNumber, ClassRoom > o f ACTIVE-SECTION
W H E R E (I ClassRoom = 'EB119'] n [1/1/1990, 1/12/1991]) r 0

When we de~l with time periods, we sometimes need to access the first and last
t ime points of temporal elements. For example, to retrieve the Name, SSN and Address
of all current students who lived in 'Arlington' when they first enrolled as a student,
we w r i t e :

Q18: G E T < Name, SSN, Address > o f ENROLLED-STUDENT
W H E R E [Address = 'Arlington' ~ D ST(LS)

Here, the temporal selection condition evaluates to TRUE ff [[ci 3 ST(LS), where
c = (Address = 'Arlington'). The term ST(LS) means the start time point of a
lifespan. Note that ST(LS) is implicitly applied to ENROLLED-STUDENT since it
is the root entity role. This can also be written as ST(~ ENROLLED-STUDENT : LS
1).

188 C H A P T E R 9. A T E M P O R A L Q U E R Y L A N G U A G E

The lifespan of an entity role can be a continuous time period. This may happen
if either an entity role has come into existence in the mini-world and never ceased
to exist, or an entity role has come into existence for a while then has ceased to
exist and has never reexisted in the mini-world. In order to support the concept of
continuous and discontinued lifespans in our query language, we introduce the keywords
CONTINUOUS and DISCONTINUED. For example, suppose we want to display the
courses that have been continuously taught every semester:

Q19: G E T < Cname, CNumber, Dept > of VALID-COURSE
W H E R E C O N T I N U O U S LS

This is similar to the temporal A L W A Y S SINCE operator in temporal logic [542].
As a final example, note that a name related with any lifespan besides the root

entity mast be explicitly specified in a temporal query. For instance, the next query
explicitly specifies the lifespan of attribute Address in the WHERE-clause , and re-
trieves the Name, SSN and Address of all current students whose initial Address value
was 'Arlington':

Q20: G E T < Name, SSN, Address > of ENROLLED-STUDENT
W H E R E [Address = 'Arlington'] _D ST([Address: LS ~)

9.5.3 Temporal Version Restriction Operators
In the STEER data model, the complete history of an entity (or an entity role) is
kept. The temporal versions of an entity (or an entity role) are ordered and queries
may be restricted to specific versions of an entity (or an entity rote). A temporal
version restriction operator may be specified in the GETor WHERE clause of temporal
GORDAS queries. The syntax of our version restriction operator is:

: ([N A M E]] : I N T E R V A L < I N D E X >)

where the term [N A M E]: is optional and the term I N T E R V A L < I N D E X >
is required. The term [N A M E ~ is a true_time, where N A M E may be either a
boolean condition, or may be reduced to an entity name, an entity role name, or a
temporal attribute. The term I N T E R V A L < I N D E X > indicates a projection
either over a single interval if < I N D E X > is an integer or over a range of intervals
if ~: I N D E X > is an integer range. (Note that we assume that the intervals of a
temporal element are disjoint and in the canonical temporal element representation.)
As an example, the version restriction operator :(INTERVAL 1), when applied to
a C U R R E N T - F A C U L T Y e n t i t y role ro (Figure 9.1) restricts the temporal element to
the first interval of its lifespan. In this case, the term [N A M E]: is not used in the
version restriction operator :(INTERVAL 1). However, if the term [N A M E ~: is
used in the version restriction operator such as :(~ Address ~ : INTERVAL 1), then
when it is applied to a C U R R E N T - F A C U L T Y entity role ro (Figure 9.1) it restricts
the temporal element to the first interval of the lifespan of attribute Address.

The next query retrieves the Name and the first three Salary values for each faculty:

Q21: G E T < Name, Salary : (I N T E R V A L 1 to 3) > of FACULTY

9.5. T H E T E M P O R A L Q U E R Y L A N G U A G E 189

The term :(INTERVAL 1 to 3) in the GET-clause specifies that the projection
displays the first three Salary values for each FACULTY. Notice that once a temporal
version restriction operator appears in either the GET or WHERE clause of a query, we
immediately deal with the full temporal entity in that clause, rather than the current
entity version only.

TemporM operators may be nested and are evaluated from left to right. For ex-
ample, suppose we want to display the Name, SSN and the current Address for each
person whose first Address was 'Houston' and third Address was 'Arlington':

Q22: G E T < Name, SSN, Address > o f PERSON
W H E R E (Address : (I N T E R V A L 1) = 'Hous ton ') A N D

(Address : (I N T E R V A L 3) = 'Ar l ing ton ')

The term Address : (INTERVAL 1) = 'Houston'in the WHERE-clause means
that we first apply the temporal ordering restriction operator :(INTERVAL 1) and
then comlbare it with = 'Houston'. Similarly, the term Address : (INTERVAL 3)
= 'Arlington'in the WHERE-clause means that we first apply the temporal ordering
restriction operator :(INTERVAL 3) and then compare it with = 'Arlington'.

As seen from queries Q21 and Q22, if the term [N A M E ~: is omitted from the
version restriction operators, then the term I N T E R V A L < 1 N D E X > is applied to
the specific at tr ibute. However, if we would like to display the Name and PhoneNumber
of a person during the time period she/he first lived in 'Arlington', we could write:

Q23: G E T < Name, PhoneNumber : ([Address A 'Arlington'
: I N T E R V A L 1) > o f PERSON

In this case, the true_time of the boolean expression c = (Address = 'Arlington'
) is evaluated for each entity and then the temporal element is assigned to the first
interval of each true_time. Note that the projection over PhoneNumber may result with
multiple values. However, we could even further restrict the previous query, Q23, by
displaying only the first value of the PhoneNumber:

Q24: G E T < Name, PhoneNumber : ([Address --- 'Arlington'
: I N T E R V A L 1) : (I N T E R V A L 1) > o f PERSON

Temporal version restriction operators are not limited to attributes; they may be
applied to entities and therefore restrict queries to a specific range of lifespans. For
example, the next query displays the Name, SSN, Address, PhoneNumber, CName,
Semester, Year during the second interval of the lifespan of each ENROLLED-
S T U D E N T who currently lives in 'Arlington':

Q25: G E T < Name, SSN, Address, PhoneNumber, < CName of course,
Semester, Year > o f a-sections > o f ENROLLED-STUDENT
: (I N T E R V A L 2)

W H E R E Address = 'Arlington'

As a final example, note that any restriction condition specified on an entity is
applied before any other restriction operator is applied to its attributes. Hence, if we
would like to display for current full professors, their Name, and the initial Salary as
associate professors, we could wIite:

Q26: G E T < Name, Salary : (INTERVAL 1) > o f CURRENT-FACULTY
: [Rank = 'Associate Prof ']

p W H E R E Rank = 'Full Prof '

190 CHAPTER 9. A TEMPORAL QUERY LANGUAGE

9.5.4 Temporal Scope Operators
In the GORDAS language, one can reference the attributes of an entity related to the
root entity by using a connection name. In the temporal GORDAS, related entities
must be projected over the temporal elements of connection names. To generalize our
temporal projection capabilities, we introduce the scope operator, denoted by SCOPE,
which overwrites the temporal projection of a root entity (or related entities). For
example, if we would like to retrieve the Name and Rank attribute values of each
current faculty during their LAST - 1 interval but we would like to retrieve their
initial Salary, we could write:

Q27: G E T < Name, Rank, Salary : S C O P E (I N T E R V A L 1) >
o f CURRENT-FACULTY : (I N T E R V A L LAST - 1)

In this case, the SCOPE operator at the end of Salary attribute overwrites the
temporal projection at the end of the GET-clause.

9.6 Conc lus ions

This chapter was a summary of our work in temporal conceptual models and query lan-
guages [173, 178, 174,179]. Our model distinguishes between conceptual and temporal
objects, and characterizes the properties of entities (conceptual objects), entity roles
(temporal objects), and (temporal and non-temporal) attributes. It also defines tem-
poral constraints among entity roles, differentiates between temporal and conceptual
relationships, and provides rules for preserving temporal integrity constraints.

The query language is a temporal extension of GORDAS [177, 176, 178]. The
temporal query language derives its power from the distinction between temporal and
conceptual objects/relationships. It provides natural and high level temporal element
constructor operators that simplify temporal query expressions. These operators utilize
the entity existence times and the role lifespans in query formulations, without having
to refer explicitly to time wlues. They also use the concepts of boolean conditions,
true_times, and temporal projections [178].

Our query language allows temporal element constructor operators to be defined
over entities, entity roles and temporal attributes. It supports temporal version re-
striction operators and allows multiple temporal scopes in a temporal projection. In
addition, the concept of CONTINUOUS and DISCONTINUED temporal elements can
be used to specify conditions such as ALWA YS and SOMETIME from temporal logic.

Chapter 10

A Data Mode l for Time-Series Analysis

Arie Segev *, Rakesh Chandra t

10.1 I n t r o d u c t i o n

Researchers in the field of survey statistics often deal with observations of individual
units at a single point in time. This type of da ta is called cross-sectional data. On the
other hand, in the field of econometrics, researchers use time series data. Time series
da ta are series of observations of a single unit over several points in time. Often da ta
analysts come across da ta that is a combination of cross-sectional and time-series data.
This type of da ta is known as pooled data [159].

For example, pooled da ta would refer to any database describing every individual
of a group across a sequence of time periods. In the domain of finance, the description
of a market database is an example of pooled data. This database may contain the
end-of-day closing prices of all securities t raded on the stock exchange. Like cross-
sectional data, this database contains observations on several securities and like time
series data, it contains observations over different periods of time. Thus, pooled da ta
is important to a da ta analyst because it contains both intertemporal dynamics as well
as individual information.

The broad goals of a da ta analyst studying pooled da ta are:

1. Study of an individual da ta unit over time

2. Study of samples of da ta units by summarizing data and drawing inferences from
these summary statistics.

Analysis of pooled data presents unique problems. The main problem encountered
when analyzing time series da ta is the autocorrelation of error terms, while non-
constant variance is a problem when analyzing cross-sectional data. In pooled da ta
the analyst faces these problems simultaneously. In addition, there is the problem of
finding correlations between cross-sectional disturbances of different individual units.
[328] has also pointed out the following difficulty. The relationship between dependent
and independent variables may be different for different individuals. It has also been
observed that the regression coefficients in time series equations change over time (ei-
ther systematically or randomly). A proposed da ta model for pooled da ta must give
analysts the capability of handling these errors.

*Walter A. Haas School of Business, University of California at Berkeley, and Information
and Computing Sciences Division, Lawrence Berkeley Laboratory Berkeley, CA 94720. email:
segev@csr.lbl.gov, crakesh@csr.lbl.gov

tWalter A. Haas School of Business, University of California at Berkeley, CA 94720

192 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

In this chapter, we propose a da ta model for time-series and pooled data analysis.
This model incorporates features for tempor~al and statistical data management. In
addition, the model provides an interactive environment for data analysis and a query
language that incorporates frequently used statistical operators. We also discuss da ta
models for temporal and statistical databases proposed in the literature and explain
why no existing da ta model completely captures the complexity of time series and
pooled data.

10.2 M a i n Features of T h e D a t a M o d e l

The main features of the da ta model, developed for the analysis of pooled and time-
series data, are briefly discussed below. Each point is discussed in detail later with
relevant examples. The da ta model for pooled data features:

1. A variable vector based da ta model that conforms to the way da ta analysts
visualize their problem. Data need not be fitted in the rigid framework of rows
and columns. Instead da ta should be represented as vectors, with individual
da ta items in a time series conforming to a user specified frequency. Each vector
has a function that specifies the value of the time series for time points that
haven' t been recorded and some user-defined information associated with it,
e.g., lifespan, granularity.

2. Collections of these vectors are organized into semantic units termed Concepts.
Different Concepts can be brought together to form a hierarchy of Concepts.
Descendants of a Concept in the hierarchy would inherit the user-defined in-
formation from their ancestors. Descendants would also be allowed to override
the inherited information with user-specified values. (We note that the word
Concept is used in the singular and plural form throughout the text.)

3. Rules necessary to maintain semantic information, constraints and to trigger
actions based on conditions.

4. Built-in calendars which implicitly understands the date associated with each
da ta item in a time series and the capability of defining other calendars. Data
manipulation routines work in close association with the calendar.

5. Uniform treatment of the different notions of time. One notion of time is a
linearly ordered sequence of points or intervals along the time line. Another
notion is the set of topological relationships between events (event X before
event Y or version 1, version 2 etc.). Both these notions of time are manipulated
in a uniform manner.

The da ta model also supports two different timelines. Each element of a time
sequence is associated with a valid time and a transaction time. Valid time is
defined in [294] as "the time when the fact is true in modeled reality". Valid
time is used in Evenr Construction (explained later in the chapter). Transaction
time [294] of a database fact is the time when the fact is stored in the database.
Transaction time is used in creating a Concept_History and to allow the database
to rollback to a previous state (also discussed later in the chapter).

6. Version Management capability to account for da ta and forecast revisions.

7. The capability of transforming da ta of a particular frequency to a different fre-
quency.

10.2. MAIN FEATURES OF THE DATA MODEL 193

8. The feature that constructs pooled data from time-series data. This is called
Event Construction. Different time-series can be "joined" together to create a
combination of cross-sectional and time-series data.

9. Sophisticated interpretation and handling of missing values in the data.

10. An interactive environment which gives the data analyst the following features:

�9 freedom to create and store temporary data sets as versions of the original
dataset.

�9 ability to store the steps used for data analysis

�9 ability to backtrack during the analysis phase without much overhead

�9 fast and efficient concurrent data access

�9 a sophisticated graphical or icon-based user-interface.

11. A database query language which supports operators used frequently in data
analysis and metadata manipulation.

12. An interface to external mathematical and statistical routines.

The following section presents data models for temporal and statistical databases
that have been proposed in the literature. We discuss models which support a subset of
the features mentioned above. We also explain why no existing data model completely
captures the complexity of time series and pooled data and the rationale for proposing
this data model.

10.2.1 R e l e v a n t Research

[508] define "Time Sequences" as "sequence of values in the time domain for a single
entity instance". This definition accurately describes time-series data. Their represen-
tation of a time sequence as < s, (t, a)* > is similar to the variable vector representation
for time-series data that is proposed in this chapter. Here s is the surrogate, t is a
time point or interval and a is an attribute or vector of attributes. (t, a)* represents
the variable vector for the surrogate s. Their data model, TDM, also defines the type
of a time sequence as the information that determines the "value of the time sequence
for time points that do not have explicit data values."

A relational representation of TDM [509] includes the "family" construct as a
collection of First Normal Form (FNF) temporal and non-temporal relations with the
same surrogate type. The following section, discusses how the notion of Concepts
is an extension of the idea of "families" and illustrates its usefulness in representing
time-series and pooled data.

Clifford uses a Non-First Normal Form(NFNF) to represent temporal relations
[122]. Their representation suppresses surrogate repetition and lists the time-value
pairs of each temporal attribute in successive tuples. This is similar to the vector
representation of time-series data, proposed in this chapter.

The design and implementation of rules in databases were discussed in [554]. Tem-
poral Rules are discussed in [183] and [566]. In this chapter, rules are used to trigger
transactions (updates, modifications, numerical computations) based on clock triggered
events and/or database changes. The following sections describe the utility of rules in
data analysis, Concept Materialization and maintaining database consistency.

Temporal data models assume the association of "transaction time" or "valid time"
[530] with every tuple in a temporal relation. The proposed model associates every

194 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

time-series with a "Calendar" and every element of the time-series with parts of that
calendar . Each element in the time-series would have a transaction time - the time
it enters the database and a valid time - the time that reflects when the fact actually
occurred. This is i l lustrated in the following section. Coupling da ta manipulation
routines to the appropriate calendar is necessary and could possibly require the knowl-
edge of the relationship between two different calendars. Implementation of multiple
calendars in a temporal database have been described in [535].

Version Management and Change databases have been described in [428]. Though
temporal databases and change databases have traditionally been considered separately
in the literature, we adopt the viewpoint of [632]. They define a data type that "carries
the most generic semantics of time". This data type is used to develop a uniform
treatment of time.

Operations common in Relational Databases like Join and Select [126] have been
extended to deal with temporal data, e.g., [119], [528]. In addition, researchers have
extended the standard query languages (SQL, QUEL) to include temporal operators
[528] [488] [427]. [428] have described additional temporal operators like Time-Slice
and Moving Window. Aggregate and statistical operators have been described in [531].
These extensions to the standard query languages are further enhanced by including
sampling operators [436], event construction (similar to the event-join described in
[507]) and operators to handle missing values and transformations (changing from one
frequency to another). In addition, the query language should also be used to create
complex operators based on pre-defined and built-in operators (in the sense of abstract
da ta types [552]) and have an interface to mathematical and statistical routines written
in other languages.

Data analysis is similar to engineering design where users have private copies of
data, which is analyzed externally. Analysts typically create different versions of the
data, making their own conclusions and storing them. [311] and [97] have described
a database environment for engineering analysis. We adopt their ideas to the domain
of complex da ta analysis. Data analysis should also be tightly coupled with a so-
phisticated graphical user interface. [10] describe a graphical interface for temporal
summary management and [89] describe a graphical system for statistical databases.
We build on this research by defining a graphical user interface which includes the da ta
manipulation operators described below.

Even though the above research contains many elements necessary in our work, no
da ta model captures the entire scope of features required for pooled da ta representa-
tion and manipulation. Furthermore, no da ta model for temporal databases captures
the essential features necessary for statistical analysis of time-series data. Models for
statistical and scientific da ta management do not incorporate the environment required
for da ta analysis and provide weak support for temporal data management.

Time-series and pooled da ta analysis is an integral part of empirical finance, mar-
keting, economics and scientific research. Thus, there is an imperative need to design
and implement a database model which incorporates the entire complement of features
discussed above. In the following sections, the important aspects of the proposed da ta
model are discussed in greater detail.

10.3 V e c t o r B a s e d D a t a M o d e l

Each time series is essentially an n-ary vector and is associated with a set of user-
defined information. This information (M) is classified into (a) information that must

10.3. VECTOR BASED DATA MODEL 195

be present with every time-series (M~) (if not supplied by the user, appropriate defaults
are used) and (b) Information optionally supplied by the user (M~). M8 consists of:

1. Name : The identifier of the time series to be used in data retrieval and data
manipulation routines.

2. Calendar/Granularity : a set of pre-defined time points. This item specifies the
calendar with which the time-series is associated. For example, the time-series
IBM-DAILY-CLOSING would be associated with the calendar AMERICAN-
BUSINESS-DAYS. This means that on every day in the calendar AMERICAN-
BUSINESS-DAYS, the time-series should have a value. Granularity is a speci-
fication of the points in time in the defined calendar that can potentially have
data values [508]. The defined calendar will thus determine the granularity of the
time-series. The advantage of associating a time-series with a calendar is that
there is no need to physically store the individual time points with the values of
the time-series. When the time-series is retrieved due to a query, the individual
time points can be generated using the specification of the calendar. This is
especially advantageous for time-series with large lifespans. Since the individual
time points are not saved on disk, there are large savings in disk space utiliza-
tion. Thus, all time points of the time-series are physically stored only when the
calendar cannot be pre-defined. This is possible in the case of randomly updated
time-series like tick-by-tick stock prices.

3. Exception-Set: is a set of time points (within the calendar) on which values of the
time-series are not recorded. For example, even though IBM-DAILY-CLOSING
should be recorded on every day in the calendar AMERICAN-BUSINESS-DAYS,
there may be an important announcement on a particular day that stops trading
in the stock. Thus the value of the time-series is not recorded on that day.
The exception-set will include such time points. Thus, the actual calendar for a
time-series is the set difference of Calendar and Exception-Set.

4. Lifespan : This indicates the start time and end time of the time-series. The
end time can be specified to be co. The lifespan is used in conjunction with
the calendar and exception-set to generate the set of time points for which the
time-series has values.

5. Update Mode : This indicates whether the time-series is derived from another
time-series(s) or is base data. If the series is derived, the rule for update is
specified here. Time-series are allowed to have a hybrid update mode. For
example, a time-series recording the value of an option will change whenever the
price of the underlying

6. Frequency : This specifies the frequency with which the time-series is updated.
The time of update refers to the valid time. Valid time is defined in [294] as "the
time when the fact is true in modeled reality". Frequency is always specified with
respect to the calendar with which the time-series is associated and may be a non-
trivial function on the set of time points in this calendar. For example, suppose
EMP, a time-series which records the level of employment in the country, has the
Calendar~Granularity: "the last day of the month unless the day is a holiday in
which case it is the preceding business day". The frequency of EMP would be
monthly. If a time-series is derived from other time-series, the frequency would
be the frequency of the base data or some function of it. For example, consider
the time-series DJIA and DJIAHILO. DJIA, the Dow Jones Industrial Average,
is a weighted average of the price of a given set of stocks. It is computed every

196 C H A P TER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

time the price of a component stock changes. Thus, it is a derived time-series
with the same frequency of update as the set of underlying stocks. DJIAHILO,
is a time-series that contains the daily high and low values of the DJIA. Thus,
DJIAHILO has a daily frequency which is different from the frequency of DJIA,
even though DJIAHILO is derived from DJIA.

It is important to stress the difference between frequency and granularity. A
time-series is said to be "regular" [508], If it contains a value for each time point
in the time-series lifespan. In a regular time-series, the granularity is the same
as the frequency. In this case, the exception-set is a null set.

7. Time-series type [508]: The type of a time-series determines the value of the
time-series at time points where the value isn't explicitly specified. It falls into
one of the following categories:

. Step-wise constant: if (Ti, A~) and (Tk, Ak) are two consecutive pafirs in the
time-series such that Ti < Tk, then Aj = Ai for Ti < Tj < Tk.

�9 Continuous : a continuous function is assumed between (T~,Ai) and
(Tk,Ai) which assigns Aj to To, Ti <_ Tj < Tk based on a curve-fitting
function.

�9 Discrete : each value (Ai) is the time-series is not related to other v~l-
ues. Consequently missing values cannot be interpolated. We take the
interpretation of not available for any analysis based on these values.

�9 User defined type : missing values in the time-series can be computed based
on a user defined interpolation function.

An example of a one-dimensional time-series vector with the associated user-defined
information is shown in Table 1.

The table shows observations of a country's Gross National Product (GNP) and its
associated user-defined information. The calendar associated with GNP is a function
of "American Business Days" calendar. GNP is not derived from any other time-series
and thus its update mode is "Base Data". The frequency of update is specified as
quarterly and reflects the dollar value of the sum total of economic activity in the
quarter. The frequency of the time-series refers to the valid time of update. The
transaction time of the update is "the last day of the month succeeding the month in
which the quarter ends." For example, in Table 1 an entry for GNP with the valid
time of update as March 31 ** (end of first quarter) has transaction time of update as
April 30 *h (the month succeeding the first quarter). The type of the time-series GNP
is user-defined. This means that user-defined functions will be used to determine the
value of GNP at time points where it has not been explicitly recorded. For example,
the GNP on April 30 th (valid time) is not recorded in the time-series. This could be
derived by a function which uses the previous values of GNP as parameters or through
a function which uses other economic indicators. Rules (discussed below) can be used
to define the type of a time-series and build in the desired level of complexity. The
item "Forecast Source" is part of the user-defined information, Mu, optionally supplied
by the user. It is a list of sources used to obtain forecasts for the time-series GNP.
Table 1 fists these sources as the Wall Street Journal (WSJ) and the Federal Reserve
Board (FRB).

Now consider the case of a 2~ary vector such as the Dollar price on the Foreign
Currency exchange market.

The two dimensions of the 2-cry vector are bid-price and ask-price, which represent
traders' spreads in foreign currency markets. In this example, the transaction time of

10.3. V E C T O R B A S E D DATA MODEL 197

GNP in Trillions
valid time trans time
o3/31/91
o6/3o/91
o9/3o/91

vMue
04/30/91 1.6
07/31/91 1.5
10/31/91 1.4

M
Mr
N a m e GNP
C a l e n d a r / G r a n u l a r l t y AMERICAN-BUSINESS-DAYS
U p d a t e Mode Base Data
Frequency Last day of quarter. If holiday, then

next business day
T y p e User-Defined
Lifespan start- 1923 ; end- oo
M~
Forecas t -Source WSJ; FRB

Table 10.1: GNP Time-series

198 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

an element in the time-series is the same as the valid time of that element. Since
the time-series is updated every time there is a trade, e.g., buy/sell of the currency,
the frequency is specified to be "on-event". The type of the time-series is Step-Wise
Constant since the price remains the same between events aad every time there is an
event, the price is updated. For time-series Ask-price and Bid-price, the M~ part of
the user-defined information is the same and thus they can form a 2-ary vector.

The main advantage of the vector representation is that it reflects the way data
analysts perceive data. It also facilitates direct translation from vector manipulation
routines to actual database operations.

The representation of time-series vectors is different from the way time sequences
are represented in [508]. There, time sequences are defined as sequences of values
in the time domain for a single entity instance. Thus, time sequences are of the form
< S, (A, T)* > where S is the surrogate, A the attribute and T the time point associated
with A. In the proposed model, a time-series is in the form < (A, %)* >. The name
of the time-series is part of the user-defined information associated with it.

In the case of a 2-ary time-series, the representation is < (A1, A2, %)* >, where A1
and A2 are the two attributes which have the same M~. Note that M~ can be different
for components of an n-ary vector. However, two vectors with different frequency
cannot be dimensions of a 2-ary vector. For example, if the frequency of GNP is
quarterly and the frequency of EMP is monthly, they must be defined as separate 1-
ary vectors. Since there is a need to group these vectors in spite of the difference in
frequency, the idea of Concepts is introduced in the next section.

10.4 Concepts
Ideas similar to Concepts have been discussed previously in the literature. [509] define
a "family" as a collection of First-Normal Form (FNF) temporal and non-temporal
relations that have the same surrogate type. Concepts can be thought of as a collection
of relations but the definition presented below also allows the construction of a complex
hierarchy of Concepts with inheritance. Thus,;5~Concepts can be considered an object-
oriented extension of the idea of "families".

More formally, a Concept can be defined as a collection of n-ary vectors grouped
together to represent a semantic unit. These Concepts are called Basic Concepts.
Basic Concepts are Time-Series also and can be grouped together in a hierarchy to
form other Concepts. These Concepts are called Complex Concepts, and a hierarchy
of Complex Concepts is a concept tree. This is illustrated in Figure 1.

Figure 1 shows the Complex Concept ECONOMIC-ACTIVITY. This is a collec-
tion of Concepts describing different economic activity. The solid links in the hierarchy
describe an "is-a" link while the dotted links describe a "derived-by" link or a depen-
dency between two time-series. Concepts are shown in ovals while time-series vectors
are shown in rectangles.

The Concept ECONOMIC-ACTIVITY is described by the Concept US-
INSTRUMENTS, a collection of financial investment instruments, and USA-ECON-
IND, a collection of indicators of economic activity. The time-series GNP, INF
and EMP are the economic indicators recorded for USA-ECON-IND. The Concepts
DERIVATIVES and EQUITIES are types of the Concept US-INSTRUMENTS. Con-
cepts OPTIONS and FUTURES are types of the Concept DERIVATIVES while
STOCKA and STOCKB form the Basic Concept EQUITIES. Time'-series vectors
STOCKA and STOCKB are time series which record the price of the respective stocks

10.4. CONCEPTS 199

over time. These time-series also form the Basic Concept NYSE-STOCKS. As shown
by Figure 1, the data model allows a time-series vector to be a part of one or more
Concepts. The time-series STOCKA-MAR93 records the price of a European option
on STOCKA which expires in March 1993. This time-series is a derived time-series
since its value at any point in time is a function of several variables including the value
of the time-series STOCKA. STOCKB-JAN93 is a similar time-series. The time-series
STOCKA-MAR93 and STOCKB-JAN93 form the Basic Concept OPTIONS. As in the
case of time-series vectors, user-defined information (M,) is also associated with Con-
cepts. Concepts in the concept-tree hierarchy inherit M, from their ancestors. Only
the Name and Lifespan elements of Ms are specified for Concepts. The Update Mode,
Type, Calendar and Frequency are not specified since the time-series that constitute
the Basic Concepts in the concept tree may have different M~ and the semantics of
inheritance are ambiguous.

Part of the example in Figure 1 is used to illustrate the idea of Concepts and
describe the data model in greater detail.

There are several economic indicators watched by economists to track the state of
the economy. As shown in Figure 1, among these economic indicators are the monthly
inflation figures (INF), the monthly employment figures (EMP) and the quarterly GNP
numbers. If the nations' Economic Indicators were to be recorded over time, the
individual indicators must be recorded separately and there must be a way to group
them together.

In the proposed data model, individual indicators (INF, EMP and GNP) are rep-
resented as sequences of values in the time domain (since the observations of each
indicator over time is a unary vector). These time series are then grouped together by
the Concept USA-ECON-IND. The linkage between time-series GNP, INF and EMP
to Concept USA-ECON-IND is shown in Figure 1.

Economists could use USA-ECON-IND to see how the economy has performed
over a period of time. A snapshot of the economy would be given by the
Current_Value (CV), which is a cross-section of the economic indicators today. Each
Concept also has a Most_Recent_Value (MRV). MRV is a cross-section of the most
recent values of each time-series vector in the Concept. In the context of the example,
CV is determined by using the MRV and the type of the time-series. However, in
general, CV need not be a function of MRV. It is possible for the CV to be derived
from values of several periods in the past. For example, a time-series with type "Step-
Wise Constant" will have the same MRV and CV. However, a time-series whose type
is determined by a rule may have a different CV than the MRV. When any of the
components of the Concept change (a more recent observation is added), the MRV of
the Concept changes. At these time points the MRV _= CV. But at any other point in
the future the CV may be different from the MRV.

Logically, the Concept is an extension of a relational database view which" joins
all the component vectors of the Concept. To define USA-ECON-IND, it would seem
that GNP, EMP and INF should be joined. But, economic indicators are not always
recorded at the same points in time. For example, the GNP of the United States is
reported every quarter while figures for employment and inflation are reported monthly.
This is in contrast to interest rates which are recorded daily and the buy/sell price of
the US Dollar which is recorded almost every second !

The presence of time in the vectors and the fact that the time-series may be asso-
ciated with different calendars and have different frequencies baded on these calendars
complicates the join.. We refer to this type of join as an Event Construction and it is
discussed later in the chapter. Concepts can be difficult or impossible to express in a

200 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

temporal relational language like TQUEL [528]. This is discussed in a later section.
Table 2(a) shows the component time-series of the Concept "USA-ECON-IND"

and the MRV. The type of INF is defined by a rule. This rule states that the CV is the
sum of the MRV and the average inflation over the last twelve periods multiplied by the
difference between the present time and the valid time of the MRV. This is illustrated
in Table 2(b). Note that INF(- i) in Table 2(b) refers to the inflation in the ith
period before the current one. Table 2(c) shows the Concept "USA-ECON-IND" as a
time-series. The time-series is derived by Event-Construction.

Forecasts and predictions must also be accommodated by the data model.
Economists make predictions/forecasts of several economic indicators and collect fore-
casts from several different sources. It is useful to assess the accuracy of these predic-
tions/forecasts as time-series reveal themselves over time.

Time-series are represented as < (A, T)* > where A is the value of the time-series
at a particular point in time, T. If A is considered a vector of the actual value (A,)
and the forecasted value (Af) or a set of forecasted values (from different sources), the
forecasts/predictions can be stored. The a,ccuracy of these forecasts can be evaluated
when the actual values are revealed. For example, consider the case where there is just
one source of forecast for the GNP. At any point of time the GNP time-series would
have values of Au and A, for all time points from [time-start,valid-time-of-most-recent-
update] and A from [valid-time-of-next-update,time-end]. Here time - end is the time
till which forecasts are provided. There are three constraints on the forecast and actual
values. These constraints are necessary because the model supports only transaction
time and valid time.

1. As, transaction-time < A,, valid time. The forecast must be entered before the
actual event occurs in the modeled reality.

2. Af , transaction-time < A f , valid time. Forecasts describe an event in the future

3. A,, transaction-time 2 A,, valid time. Actual values enter the database as soon
as or after the event in modeled reality.

The data model must also be capable of dealing with revisions of existing data.
Most often, economists receive preliminary estimates of time-series data which are then
refined and revised over time. It is useful to retain the preliminary data in addition to
the revised data because it helps in:

1. assessing the impact of errors in prediction using the preliminary data.

2. assessing the quality of information of a particular source of information.

3. assessing the magnitude and number of revisions in the data 13491.

In the data model, revisions and preliminary data are considered versions. But,
versions can be thought of as topological relationships between events, which is just
another notion of time. The data structure Concept has been defined as a logical
grouping of several time-series. This notion is extended to accommodate relationships
between different versions of data. This is explained with an example below. The
Concept USA-ECON-IND is generated by the data in the time-series GNP, INF and
EMP shown in Table 3. If GNP were revised once (Table 3(a)), INF revised twice
(Table 3(b)) and EMP figures were never revised, the Concept would have a "history"
of its own (different values at different points in time). A part of this Concept-History
(upto valid time 4) is shown in Table 3(c). This history is constructed by using the
transaction times of the entries in t,he time-series. An additional advantage of the
Concept-History is that it allows rollback to any previous state of the database.

10.4. C O N C E P T S 201

GNP
v time

"12/31
03/31
06/30

t time
EMP INF

vMue v time t time v~ue v time
1.6 01/15 102 01/30
1.6 02/14 103.1 02/28
1.5 03/15 101.1 oa/al

t time value
101.1
101.3
101.5

12/31 x 1.81 12/14 y 102.1 12/31

(~)

101.5

M
Ms
N a m e
T y p e

INF
User-Defined
: CV = MRV +E~2=IINF(-i)/12,
(N O W - ttime M R V)

(b)

v time GNP EMP INF
01/31 1.6 102 101.i
02/28 1.6 103.1 101.3

12/31 1.81 102.1 101.5

(c)

Table 10.2: Concep t U S A - E C O N - I N D @ t r a n s - t i m e x; v t ime: val id t ime, t t ime
= t r ans t i m e

202 C H A P T E R 10. A DATA MODEL FOR TIME-SERIES A N A L Y S I S

GNP
t rans t ime valid t ime

1 0

4 3

7 6

10 9

val.ue

d
&

b

C

Revised G N P

t rans t ime valid t ime

1 0

11 3

11 6

10 9

(a)

value

d
a I

(

C

INF 1 ~t Revision 2 "a Revision
t time v time value t time v time value t time v time value

2 1 p 7 1 p' 10 1 p"
t t

3 2 q 7 2 q 10 2 q
4 3 r 7 3 r 7 3 r

5 4 t 7 4 t ' 10 4 t"

(b)

Concept @ t rans - t ime

valid t ime G N P

1 d

2 d

3 a

4 a

Concep t @ t r ans - t ime

valid t ime G N P

1 d

2 d

3 a

4 a

5

INF

P
q

r

t

Concept @ t rans- t ime

valid t ime G N P

1 d

2 d

3 a

4 a

Concept ~ t rans- t ime
valid t ime GNP

1 d

2 d

3 a ~
4 a r

10

INF
i i

P
I t

q
t

(c)

T a b l e 10.3: C o n c e p t - H i s t o r y (does n o t s h o w E M P)

7

INF
i

p
a

q
I

r
i

t

11

INF

q
i

T
i !

t

10.5. R U L E S 203

The query language would always access the "most-recent" version in the Concept-
History by default. Versions are Step-Wise Constant, and thus the Current version is
always the same as the Most-Recent version . Additional operators to allow access to
other entries in the Concept-History are required in the query language.

10.5 R u l e s

Rules have been shown to be powerful in maintaining views, integrity constraints and
versioning in relational databases [554]. In the context of a relational database, time-
~series vectors could be thought of as relations and the Concept as a view. Rules provide
a natural way to maintain the Concept, MRV and CV. These rules can be either da ta
rules or action rules [510]. Thus, they are of the form "if Condition then Action" or "on
Update do Action". Consider the case where a Concept is to be materialized every time
a component vector is updated. To do this, when the Concept is defined, the database
system would create a rule for every component in the Concept. This rule would specify
that an update to a component time-series would update the Concept. In the context
of our example, the rules defined by the database system would ensure that whenever
a component in the Concept USA-ECON-IND is updated, e.g., new monthly figures
for EMP are recorded, the rule would modify the MRV of USA-ECON-IND with t h e
new value. Note that an appropriate strategy for the materialization of Concepts and
Concept Histories has not been discussed. This will be addressed in a later chapter.

It has been assumed for most part of the discussion that the da ta is append only.
But often, statistics are revised. For example, Base Years of indexes are changed
frequently. This may lead to changes in time-series that are dependent on the original
base year and in any conclusions drawn from these time-series. Rules can be used to
handle the semantics of a change in historical data. An extensive discussion of the
issues involved in retroactive changes to a database is provided in [183]

Rules can also be used to describe the finks between different time-series. These
finks are essentially mathematical transformations applied to one or more time-series
to genera te /update other time-series. Rules would store the finks and the conditions
under which the mathematical transformations defined by these hnks are to be apphed.
This point is i l lustrated with an example from the financial domain. The example is
shown in Figure 2.

In the foreign exchange market, currency traders quote the bid price and ask price
for spot rates and forward rates of different currencies. Concept FOREX-MRKT is
defined to capture this data. FOREX-MRKT is made up of the daily, weekly and 3-
month ask price and bid price of the currencies, US Dollar (USD), French Franc (FFr),
German Mark (DM) and Pound Sterling (Stg). Figure 2 shows only the USD Daily
(USD.DY), USD Weekly (USD.WK) and the USD 3-Month time-series (USD.3MTH).
These time-series are of type "Step-Wise Constant" and thus MRV = CV. The trans-
action time of any entry to the database is also assumed to be the same as the valid
time. The later assumption is realistic in currency markets.

Assume we also need to maintain the value of a derivative instrument, the US
Dollar currency option over time. The Concept, CURRENCY-OPTION-MRKT is
defined as a grouping of the time-series, OPT-DOLLAR-DM, OPT-DOLLAR-FR and
OPT-DOLLAR-STG. These time-series record the value of options on the mark/dollar ,
franc/dollar and dol lar /pound exchange rate respectively. Thus, CURRENCY-
O P T I O N - M R K T will contain the historical and current values of the above options.
One of the determinants of the value of an option at any point in time is the current

204 C H A P T E R 10. A DATA M O D E L FOR TIME-SERIES A N A L Y S I S

price of the underlying asset, in this case, the US Dollar as quoted on the foreign
exchange market, e.g., USD.DY, USD.WK, USD-3MTH. Thus, the time-series OPT-
DOLLAR-DM, OPT-DOLLAR-FR and OPT-DOLLAR-STG are updated:

1. when the option is traded over the counter or on the market. In this case the
value is just the price at which the option changed hands.

2. when there is a change in the value (price) of the underlying asset. When the
price of the US Dollar changes, the option must be revalued by an appropriate
valuation scheme [399] [263]. The value obtained from the computation is then
stored in the time-series. This in turn will update the MRV of CURRENCY-
OPTION-MRKT.

Thus, a change in one time series (e.g., USD.DY) causes a non-trivial series of
updates in other time-series. Rules provide a way to implement this schema. The
following rule system will accomplish the series of updates described above.

On update to USD.DY.ASKPRICE do update OPT-DOLLAR-DM.MRV
= proc-for-valuing-options (other parameters, USD.DY.ASKPRICE)

0n update to 0PT-DOLLAR-DM.MRV do update CURRENCY-OPTION-MARKET.MRV
= proc-for-maintaining-MRV(0PT-DOLLAR-DM.MRV, 0PT-DOLLAR-FR.MRV,

OPT-DOLLAR-STG.MRV)

This example shows that even a simple dependence between time-series can involve
many computations. A more realistic model of the financial trading market would have
more relationships and links between different time-series. Modeling these interactions
and implementing the rule wake-up and update scheme without seriously impairing
performance are implementation issues to be dealt with in the future.

10.6 Calendar

A calendar can be thought of as a set of time points. A built-in calendar is provided
by the system and users can define their own calendars. When a time-series is defined,
the user must specify the calendar and frequency of update. By default, the frequency
will be on event. On-event means that the frequency is not fixed by a function on the
calendar. Instead, the update is a random event with a certain distribution (which is
not necessarily known). Updates are captured by the database in a predictable (deter-
ministic) amount of time, T where T is small enough for any element of an on-event
time-series to have its transaction time approximately equal to its valid time. When a
frequency is specified, the database implicitly knows the dates and times of all elements
in the time-series. These dates needn' t be specified by the user. In sAdition, once a cal-
endar has been established as the frame of reference for a particular time-series, other
calendars can be defined on this base calendar. For example, suppose the calendar
associated with time-series IBM-STOCK is "American-business-days". Calendars like
"Holidays" and "Business-Hours" can be defined as a function of ':American-business-
days". Given the additional calendars, rules can be used to specify constraints for
real-world facts, e.g., IBM-STOCK will only have values in "Business-Hours" during
"American-Business-Days" excluding "Holidays".

10.7. TEMPORAL QUERY LANGUAGE 205

10.7 Temporal Query Language
The query language must be able to support temporal representation and reasoning.
It must also be able to recognize natural language expressions referring to collections
of t ime intervals. The following section discusses the m~in features of the temporal
query language.

1. Support for Calendar operations: As described in the previous section, a Calen-
dar is a collection of an infinite sequence of intervals that span the timellne. The
query language allows definition of a calendar based on primitive time units and
also on previously defined calendars. The first interval in the calendar (the first
time we recognize) should be specified but there is no theoretical last interval in
the calendar because the timeline is an infinite set.

2. Support for operations on the time-line, e.g., Overlaps, When, Meets, Between,
Contains [528] [427] [488].

3. Support for New Operators : Two new operators are defined on the calendar
(based on [350]).

(a) Division: This operator provides a way of dividing a time interval into
smaller intervals. The operator takes time intervals as arguments and gen-
erates a collection of time intervals. It is always used in conjunction with
the temporal operators discussed above. For example, if we wanted to
find the Weeks that overlapped with the month of December in 1991, the
division operator (:), could be used as:

(WEEKS : overlaps : Dec-91) =

Collection of weeks that overlap Dec-91.

In the above example, WEEKS is the collection of weeks in 1991 and Dec-91
is the collection of days in the month of December in 1991.

We note that the division operator has a strict and relaxed interpretation.
In tile strict interpretation (:), the above query would generate only those
weeks or parts of weeks that strictly overlapped with December in 1991.
On the other hand, the relaxed interpretation (.), would generate all weeks
which had some overlap with December 1991. Thus, in the relaxed inter-
pretation, we could get parts of weeks that overlapped with Jan'92 and
Nov'91.

(b) Selection : This operator selects a time interval from a collection of time
intervals. For example, 1 /WEEKS selects the first Week from the collection
of WEEKS.

The query language, allows the construction of computer understandable expressions
corresponding to natural language expressions used in reasoning about time. A few
examples are given below.

1. First Day of every month ~ 1/DAYS:during:MONTHS

Assume the reference year is 1992. Then, DAYS and MONTHS are two self-
explanatory collections of time points. Each month in the collection MONTHS
is divided into days by the division operator, in conjunction with the during
operator. The select operator then selects the first day from this collection of
days.

206 CHAPTER i0. A DATA MODEL FOR TIME-SERIES ANALYSIS

2. First Week of the month = 1/WEEKS.overlaps.MONTHS
In the above expression, WEEKS refers to the collection of weeks in the year
1992. Each month in the collection MONTHS, is divided into weeks based on
the divis ion operator in conjunction with the overlaps operator. From this
collection of weeks, the select operator chooses the first.

10.8 Special Operators for Time-Series Data-
base

1. Moving-Average Operator: MA(X,n). This operator performs the operation

i+n--1

M A (X , n) = {Uilyi = E x j / n }
j=i

where X is the time-series and n is the number of time-periods for which the
moving-average is required.

2. Autoregression Operator : AR(X, n), The regression of time-series X against its
lags u p t o n periods.

3. LAG operator: This operator does the following operation on the vector X:

Yi = X i + l - X i , Vi = 1, n - 1

where X is the time series, X i indicates the i th element of X, Y is the one-lag
time-series derived from X and n is the size of X. The lag operator also takes
a parameter(h) of type integer and of size (< n). This lag parameter indicates
the number of lags required. With the lag parameter, the lagged formula is:

L A G (X ,) 0 = X~+a - X~, Vi = 1, n - A

The operators LAG and AR are used for Vector Autoregression. Vector Au-
toregression has proven to be a successful technique for forecasting systems of
interrelated time series variables. Vector Autoregression is also used for analyz-
ing the dynamic impact of different types of random disturbances and controls
on systems of variables. It involves a system of equations that make each endoge-
nous variable a function of its own past (LAGS) and the past of other endogenous
variables in the system.

4. Aggregation Operators fike MAX, MIN, AVG, MED, frequency distribution cal-
culation. Extensions to TQUEL to incorporate aggregates and their semantics
have been proposed by [531]. Aggregates in time-series databases must incorpo-
rate three distinct semantic interpretations:

�9 aggregate on time-series, e.g., average stock price over the time period
[0, T].

�9 aggregate on cross-sectional data, e.g., the average salary of all employees
now.

�9 aggregate on the time-series of aggregations on the cross-section, e.g., av-
erage stock price of computer industry stocks over the time period [0, T].
This would involve computing the average stock price of the computer in-
dustry at each time point between 0 and T and then averaging over these
va lues .

10.8. SPECIAL OPERATORS FOR TIME-SERIES DATABASE 207

5. Matrix Manipulation Operators: These operators include

(a) Matrix Addition, Subtraction, Multiplication: useful in constructing time-
series vectors from other ~ime-series vectors.

(b) Matrix Inversion: Used in computing regression coefficients.

(c) Computat ion of Eigen Values.

(d) Special Algorithms to deal with Sparse Matrices: Useful in recording time-
series that are irregular.

(e) Solving a system of linear and non-linear equations or generically if f :
R ~ ~-* R n, we would want an efficient algorithm to solve the system of
equations f(x) = 0. These algorithms are useful for regression analysis
especially when performance is an issue.

6. Transformation

This operator is used to convert from one time frequency to another. Conversions
from a lower frequency to a higher frequency are allowed only if the semantics
of the transformation are clear. For example, conversion of a time series with
weekly frequency to a time series with a monthly frequency is permitted, but
conversion of the same time-series to a daily frequency is not permitted since the
semantics are not clear. The transformation operator must be able to interact
with the calendar and transform data, accounting for the calendar associated
with the time-series.

7. Event Construction This operation is used to construct cross-sectional and
pooled da ta from the underlying time-series data in the database. Semanti-
cally, event construction is similar to the event join described in [507]. One
could think of this operator as similar to a join in a relational database (with
the join performed over dates). Problems arise when joining over dates because
of the different frequencies of time-series data. Even when the frequency of two
time-series is the same, they could be based on different calendars. For example,
if the application required the weekly closing prices of IBM-Japan and IBM-
USA, joining the prices on Friday for each week may not necessarily give the
correct result. I t is possible that in some weeks Fridays are holidays in Japan
and working days in the US and vice versa. In these weeks the closing price
on Thursday defines the weekly closing price for IBM-Japan while the weekly
closing price for IBM-USA is the closing price on Friday. Equi-Join over dates
would give incorrect results because matches may never be found.

Event Construction has two interpretations:

(a) perform an event-join over the t ime-attribute.

(b) transform all the da ta to a common frequency and then perform the event
join.

Users must be able to choose the relevant interpretation. Event-join processing
strategies have been outlined in [507] but they must be modified to account for
the proposed da ta model. One area of difference is that they assume t ime-start
and time-end at tr ibutes exist for the data, while we store only the t ime-start
at t r ibute.

Addit ional problems that the Event Construction operator must be able to solve
a r e :

208 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

If time-series have different calendars, the time values must be converted to
a common base. This assumes that the relation between different calendars
a r e k n o w n .

Handling of missing values.

If the lifespans of time-series are different, the operator must know how to
handle the Event Construction tuples that have missing values.

Forecasts and revisions are not used in the Event Construction unless spec-
ified in the query. When revision is specified the operator must reconstruct
the Concept and if necessary the Concept-History. When forecasts are nec-
essary, the operator must use the forecasts when joining and also know
what to do when different time-series have forecasts for different horizons
in the future.

Event construction is an extremely important part of data analysis because
it must always be done before any meaningful regression analysis. We
emphasize that event construction is only meaningful within a Concept.
Query optimization of the Event construction operator is to be discussed
in a later chapter.

10.9 Handling of Missing Values
There are several reasons why users often encounter missing values in observational
cross-sectional and time-series data. We attach four different interpretations to missing
va lues :

1. indeterminate

2. not applicable

3. not available

4. actually zero but not explicitly mentioned in the database

The latter case is the easiest to handle and the indeterminate case can be clubbed with
the interpretation of "not available at this time". The problem of handling missing
data has been researched extensively in the database literature. [125] describes an
algebra for handling null values while [599] and [365] have a detailed treatment of
the "not applicable" and "not available" interpretations. The database will assign
a value of "NA" in cases where the value is not applicable. In a time-series with
the calendar "American-Business-Days', Saturdays, Sundays and specific holidays will
have the value "NA". Thus, once a calendar has been specified for a time-series, the
database will assign "NA" at appropriate time points. Users may define the value of
the time-series to be "NULL" or "0". "NULL" has the interpretation of indeterminate
or not available.

10.10 User Environment
The underlying data in this kind of database is rarely (if ever) updated by users. Data
is obtained through real-time data feeds (e.g., Reuters) or batch loading of the data.
In any case, users aren't expected to enter data on their own or modify and delete
tuples from the database. A typical user session is an interactive and iterative process

10.11. CONCLUSION 209

of model selection, parameter estimation and error analysis.
envisaged as one in which:

1.

2.

3.

A typical user session is

Users copy relevant time-periods of data into their own "work area". The work
area is a private sub-directory which is maintained by the database.

Users "refine" the data, by removing outliers, transforming the data using oper-
ators like lags, mathematical transformations (logs) or event-constructions.

Users construct scripts which are essentially strategies for data analysis. These
scripts would typically be composed of declarative statements in the query lan-
guage aa-ld would contain the logic and methodology for data analysis. For ex-
ample, these scripts would normally contain commands for regressions, error
analysis or diagnostics.

4. Since this is an interactive session, users will store temporary files. These files
would normally contain results of the data analysis and temporary data files. In
addition to the data files, users are expected to store the sequence of commands
that they used to get the results.

5. Users interface with graphical software in order to see diagrams like histograms,
residual plots or boxplots.

6. Users construct their own data analysis procedures using existing primitive build-
ing blocks or through the use of an external language.

7. Users interface with sophisticated mathematical and statistical libraries available
on the computer system.

Given the sophisticated environment required for data analysis, the database must
provide the following features:

1. A transaction management scheme that allows users to work on the same dataset
at the same time in private work areas, check-in and check-out datasets from the
main database and save and recover the temporary data files they create as well
as the scripts used for analyzing the data files.

2. Support for statistical, temporal and the operators outlined in this chapter.

3. Support for creation of scripts using the query language which can be augmented
by an interface to external mathematical libraries and graphical routines.

4. Support for the creation of complex operators in the query language based on
the primitive database operators, as described in [417].

10.11 Conclus ion

In this chapter, we have defined the requirements of a database model meant for the
analysis of time-series data. We treat time-series as n-ary vectors and introduce Con-
cepts to logically group these vectors together. Different time-lines, transaction time
and valid time are supported in the model and different notions of time, e.g., versions,
time points on different calendars, are treated uniformly. The importance of Rules
have been discussed to maintain semantic integrity, derive time-series based on other
time-series or database transactions, for implementation of operators like Transforma-
tion and Event Construction and for uniform management of the different notions of
time. We provide an interactive environment that helps users perform data analysis.
The environment accounts for the fact that data is never updated by users and that

210 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

users keep copies of parts of the da ta in their private workspaces along with da ta ma-
nipulation routines. A query language that incorporates frequently used statistical and
temporal operators is provided. This includes the capability of creating new operators
based on the primitive ones and an interface to mathematical and statistical routines.

An extremely important issue that we do not raise in this chapter is : How far
should we go in building in extra functionality in the database to accommodate different
da ta environments ? Building in extra functionality means bulkier database code and
high overhead. Also, the data model is not independent of the application. On the
other hand, not building in functionality, forces users to couple database systems with
external programs. This can be highly inefficient because optimizers aren' t able to
optimize the external code. Also, users tend to be impatient with systems that must
be customized before use.

Our future research plans are briefly outlined below.

�9 Materialization : We briefly described an immediate update strategy for Con-
cepts and Concept Histories. The cost analysis for different materialization
strategies is important for performance. A cost analysis of the strategies of im-
mediate update, deferred update, random update and hybrids, would determine
the appropriate strategy given the characteristics of the database. By character-
istics, we refer to the number and size of time-series vectors, the rate of update of
vectors and the frequency of queries on Concepts and their component vectors.

�9 Query Optimizer : We have briefly discussed the optimizer in the context of
da ta analysis procedures. But we have not specified the exact scope and role of
the optimizer with respect to the database environment proposed in the chapter.
Efficient Sampling of data, indexes for temporal da ta to facilitate efficient search
and retrieval and stochastic modeling of the temporal data process to obtain
selectivity estimates are problems that must be addressed.

�9 Indexing and Access Methods: Conventional access methods (B-trees) aren' t of
much help because the da ta is sequential. Also, unlike other database applica-
tions, sequential "browsing" is not a major issue. We believe the access methods
must reflect operations that are frequent and important in statistical data anal-
ysis. A more thorough analysis of da ta analysis procedures will give us a better
idea of what access methods are appropriate.

10.11. CONCLUSION 211

ECONOMIC-ACTIVITY

US--INSTRUMENTS
USA-ECON-IND

DE RIVATIVES~) I QNPI I INF I

OCKB

Figure 1 : "Con~pt" ECONOMIC-ACTIVITY

212 CHAPTER 10. A DATA MODEL FOR TIME-SERIES ANALYSIS

' ~ '
I /

I

~)PT-DOLL~R-D M~~OPT-DOLLAR- FR] OPT-DOLLAR-STG

-OPTION

Rgure 2: Simplis~c view of Rnandal Trading Market

Chapter 11

A Relational Model and SQL-like Query Language for
Spatial Databases

Shashi K. Gadia*, Vimal Chopra t

11.1 Introduct ion
Spatial databases have experienced enormous growth in application environments, such
as agriculture, environmental studies, geography, geology, city-planning, aero-
space industry etc. More recently spatial databases have attracted attention in the
database community. A considerable research has been done in physical implementa-
tion of spatial databases. This is particularly true of access methods for spatial data
[238, 483, 512, 230, 231, 39, 506]. On the other hand, abstract modeling and query-
ing of spatial data have received relatively less attention. The need for such a study
becomes even more important because of diverse techniques proposed for representing
spatial regions.

Like [440] we favor that the logical view and the physical implementation of spatial
data should be considered orthogonal issues. The users should be given a simple view
of data and freed of the worry of how it is physically represented. This is even more
important because physical implementation will continue to be a topic of study for
quite some time to come. Conventional database techniques are inadequate in spatial
databases because of the spatial structure implicit in spatial querying. We present
a model and an SQL-like query language called SpaSQL (read space-Q-L) for spatial
data. Without tying ourselves down to a choice of representation of spatial regions, we
propose certain desirable closure properties for them to make SpaSQL seamless.

11.1.1 Related Works

Several techniques of physical representation spatial regions have emerged. One way to
represent a region is to lay it on a fine grid, and approximate the region by the set of grid
elements covered by the region. Another technique is to describe a region by a chain of
arcs, and associating a biLt with each arc to encode whether the region being specified
is on the right or left of the arc. A third way is to view a region as a hyper plane in an n-
dimensional space, and use techniques of computational geometry to manipulate them.

*Department of Computer Science, Iowa State University, Ames, IA 50011-1040, U.S.A.
tThis work was done while the second author was at Iowa State University. His current

address is: Geoquest, Data Management Division, 5725 Paradise Drive, 100, Corte Madera,
CA 94925

214 C H A P T E R 11. A R E L A T I O N A L M O D E L A N D S Q L - L I K E Q U E R Y

The representation of spatial regions is a challenging and enormous problem by itself,
and we feel it will be investigated for several years before it is completely understood.
It is quite possible that different problem domains would require different techniques.
[232, 441,230,231,562] detail several techniques for physical representation of spatial
regions.

At the user interface level, Scholl and Voisard [499] define elementary regions as
lines, polygons etc. A region is defined either as an elementary region or as a set of
elementary regions. They treat maps as relations and introduce operations like projec-
tion, cover, map overlay, superimposition, selection windowing and clipping over the
relation (map). Guting [237] identifies several different types of spatial domains e.g.
point type, line type (curves), polygon type etc. He also introduces some basic oper-
ations like inside, outside, intersection, diameter, length etc. over these domains. He
uses strong da ta typing. Orenstein and Manola [441] view spatial regions as mathemat-
ical abstractions called point sets. They introduce interesting algorithms to implement
spatial overlay, union, intersection, difference and joins. [20] covers SQL-type querying,
but their main focus is on architecture for spatial data. Additional papers on relational
approach relevant to our work include [98, 99, 100, 473, 299,438]. There is also a trend
in spatial databases toward object orientation [439, 411,388,567, 5].

An important objective of a query language is to provide a natural interface to
a user. As stated above, in this chapter we present a model and an SQL-like query
language SpaSQL to achieve this objective. Now we discuss features of our approach.

11.1.2 Our Concept of A Spatial Region
We assume that we are given some universal region 7r A user views 7~ as a set of points.
Every region that the user or the system encounters will be some subset of TO. It is not
possible to have a tractable or finite description of all possible subsets of 7~. However, all
possible subsets of ~ are not of interest to us either~ We postulate that the set of subsets
of Tr that the user is interested in, is denoted REG. A particular implementation may
implement REG in any convenient way so long as the following closure properties
are satisfied: if reg, regland reg2 are regions in REG, then regl tA reg,, regl N reg2,
regl - reg2 and ~reg (complement of reg) are regions in REG.

There are important potential advantages of our concept of a region as introduced
above. At the model level, the closure properties make it possible to store a single
object in a single tuple. At the query language level, one may use U, N and -- to
capture the booleans or, and and not of English in a seamless way. Our model and
SpaSQL incorporate these ideas and eliminate the boolean seams. Justification for
these claims will be given in Section 11.4. In that section we will compare PSQL of
[440] with SpaSQL. Even though [440] assume the closure properties for spatial regions,
PSQL is not as seamless as SpaSQL. This is because in PSQL the at tr ibute values are
not modeled as functions of time, but rather region is used as an at tr ibute at the
tuple level. The boolean seams in their model stem from the fact that they split the
description of a single object in several tuples.

Note that Scholl and Voisard [499] define a region to be a set of (elementary)
subregions, whereas we view a region as a union of subregions. We feel a union is a
bet ter abstraction, because a given region can have many different representations as
a set of subregions, whereas a union has a canonical representation. A user can view
our region as a flat object, a set of points having no seams, rather than as a set of
set of points as in [499]. Our regions simplify the semantics of algebraic operators in
spatial databases. Also, unlike [499], we do not have any inherent distinction between

11.1. INTRODUCTION 215

elementary regions and regions. We suggest only regions of type REG as an abstraction
of all spatial regions. We emphasize that at the implementation level, a region may be
a mixture of finitely many elementary types, such as points, fines, curves, polygons.
The idea is to free the user from seams arising from strong data typing of regions.
At the same time, to facilitate navigation, we favor that the user be supplied with
functions to determine the type of a region, e.g. IsPoint(reg).

11.1.3 Weak Data T y p i n g

Unlike [237] discussed above, we favor weak data typing of operations on regions. The
reason for this is to avoid unnecessary run time errors. For example consider the
construct Interior(regl n reg2), where regt and reg2 are regions (of type REG). The
construct Interior(reg) returns the interior of reg, after removing its boundary. For
most tuples regl N reg2 may be a region but for some it may degenerate into a curve or
a point if regl and reg2 are merely touching each other. In such degenerate cases we
want Interior to return an empty region (denoted r rather than an error. In relational
systems such constructs are mainly used in selection; the problem becomes more serious
when such a selection is nested inside another query and an error at the inner level
could abort a computation unnecessarily.

11.1.4 Uniformity of Attribute Values

Roussopoulos et al [440] add region as an attribute to a relation in order to deal with
spatial information. In our model the spatial aspect is incorporated at the level of an
attribute value which is defined as a function of time. For example consider the data
value taken by the attribute cRoP in Figure 11.1. The semantics of this data is "the
value of cRoP is wheat in the region cregl and it is CORN in the region creg2.

CROP
cregl wheat
creg2 corn

Figure 11.1: A data value

11.1.5 Experience From Temporal Databases

[203] introduced a temporal element as a finite union of intervals. Temporal elements are
closed under U, f3 and complementation, and their use as timestamps hides the seams
arising from and, or and not appearing in English queries. In temporal databases the
issue of interval v/s temporal elements as timestamps has been debated for sometime.
The basis for this debate is that interval timestamps make it possible to have fixed
length tuples, and this brings temporal databases within the realm of first normal
form. On the other hand use of intervals alone causes history of an object to split over
several tuples, leading to query languages which are complex from the point of view of
users [205].

Like spatial databases a temporal database can have more than one dimension.
However, even in higher dimensions unions of rectangles suffice. The reason for this
is perhaps that the time changes linearly along every axis giving rise to a rectangular

216 C H A P T E R 11. A R E L A T I O N A L MODEL A N D SQL-LIKE Q U E R Y

granule. This is not the s i tuat ion in spatial databases where the whole space is there,
all at once.

The remainder of this chapter is organized as follow. Our model for the spatial
database is presented in Section 11.2. In Section 11.3 we present our query language
SpaSQL and some exaznple queries. We have taken [440, 499] as samples of works
on querying in spatial databases. In Section 11.4 we discuss [440] in detail; we show
how our queries remove boolean seams arising from and, or and not, mentioned above.
The operators from [499] are expressed in SpaSQL in Section 11.5. We are able to
express all the queries given in [440, 499] with some minor exceptions. The chapter is
concluded in Section 11.6.

11.2 Our M o d e l

In this section we informally introduce our model for spatial da ta along the lines
discussed in the introduct ion. Querying in our model is covered in the next section.

11.2.1 Spatial Regions
As stated in Section 11.1, we assume an underlying universal region ~ . The user views
it as a set of points. We have also postulated a set REG consisting of subsets of
which are of interest to users, and that REG is closed under union (U), intersection
(N), subtract ion (-) and complementat ion (-1). Throughout this chapter by the term
region S we mean an element of REG.

Note that we do not make specific assumptions about the const i tut ion of 7~. ~ can
be an n-dimensional Euclidean space, surface of a sphere, portion of a plane, a curve
and so on. We do not assume that Tr is discrete or continuous. Our main hypothesis
is tha t the regions in REG should have some reasonable description. Note that a set
may be infinite, but its description may be finite. For example suppose ~ is the 2-
dimensional Euclidean plane {(x, y) : x and y are real numbers}. We may describe the
upper half plane simply as y > 0, and the right half plane as x > 0. Although the two
half planes are infinite, their intersection is easily computed as x _> 0 A y > 0. The
union of the two half planes is described as x _> 0 V y > 0. Complement of this union
may simply be described a s - - (x > 0 V y > 0), or x < 0 A y < 0. (We do not imply
that the system should reduce such a description immediately when it is encountered;
we consider this as an implementa t ion issue.) In the above notat ion there is no need
to describe ~ itself in a complicated manner; it is described by the constant predicate
TRUE.

11.2.2 Attribute Values
As stated in Section 11.1, to capture the value of an at tr ibute, we introduce the notion
of a spatial assignment which would be a function from a spatial region into dom(A), the
domain of A. We are not interested in allowing an arbitrary function to be considered
a spatial assignment. The following example illustrates this point and motivates the
formal definition of a spatial assignment.

E x a m p l e 11.2 .1 Suppose Tr is the interval [0, 1] = {x : 0 < x < 1, x is a real number}.
We define a function X on ~Z as follows. X(x) = 0 if x is a rational real number (a

Sin our more recent papers [109, 204] we use the term spatial eIemenl for a region in REG

11.2. OUR MODEL 217

fraction), and X(x) = 1 if x is an irrational real number. Although X takes only two
values, its description is very complex. This may be because the set of rational points
in [0,1] is difficult to describe and we may not want to consider it a region in REG. Note
that in functional notation X - l (a) denotes the inverse image of a under the function
X. Thus X -~ (0) is the set of rationals in [0,1] and X -1 (1) is the set of irrational in [0,1].
We want all inverse images to be regions in REG. Thus we may not wish to consider
X to be an spatial assignment.

The above example motivates the following definition of a spatial assignment. A
spatial assignment (or simply assignment) ~ to an attribute A is a function from some
region reg in R E G into domain of A, such that (i) ~ takes only finitely many values,
and (ii) inverse image of every value taken by ~ is a region in REG. This allows us to
represent a spatial assignment as (regl al, reg2 a2, . . . , reg,~ am), where regl, reg2, . . . ,
regm are regions in REG, and for each i~ 1 < i < m, ai is the value of the assignment at
every point in regi. Figure 11.1 is an example of a spatial assignment to the attribute
cRoP, which can also be represented as (regl wheat, reg~ corn).

The domain of an assignment is called its spatial domain. The operator [.~ denotes
the spatial domain of a spatial assignment. Thus ~(rega wheat, reg2 corn)] = reg~ U
regz. The restriction of a spatial assignment ~ as a function to the spatial region reg
is denoted ~[reg.

11.2.3 Value Navigation
We assume that certain binary operators such as =, < etc. are available. In classical
databases these operators allow us to make comparisons, such as 2 < 4, which evaluates
to TRUE, and 5 < 3 which evaluates to FALSE. Syntactically, this leads to boolean
expressions of the form AOB where A and B are attributes. Such boolean expressions
are used in selection operators. In the spatial context we need a way of comparing
spatial assignments, i.e., compare functions of space. Clearly, such a comparison does
not make sense at points where one or both of the assignments are not defined. Also
it may happen that at some points the comparison returns TRUE and at other points
it returns FALSE. Thus it is not useful to view the overall result of AOB as a TRUE or
FALSE value. In fact it should yield the set of points where the comparison of their
values returns TRUE

More formally if ~1 and ~2 are spatial assignments then we define [~10~2~ = {x :
~1 and ~2 are defined at x and ~l(x)O~2(x) is TRUE}. The construct ~10~2~ is of
fundamental importance in spatial databases. As stated above, it evaluates to the set
of points where ~ is in 0 relationship with ~2 and its value lies between r and [~]N[~2~.
The value is r if the spatial assignments are never related.

It is natural to expect [~10~2] to be a region. To see this suppose ~1 is (regl al,
reg2 a s , . . . , regm am) and 52 is (reg~ bl, reg~ b2, . . . , reg~ b~), where reg~ and reg~
are regions in REG. Clearly, [~0~2] = U{reg~ fq reg'j : 1 < i < m, 1 <_ j <<_ n and aiObj
holds}, which is a region in R E G because R E G is closed under t_J and n.

11.2.4 Spatial Tuples
A tuple is a concatenation of spatial assignments whose spatial domains are the same.
The spatial domain of a tuple r, denoted lit]I, is simply the spatial domain of any of
its spatial assignments. The assumption that all spatial assignments in a tuple have
the same domain is called the homogenei ty assumption [203]. The restriction of a tuple

218 CHAPTER 11. A RELATIONAL MODEL AND SQL-LIKE QUERY

r to a spatial region reg, denoted r[reg, is the tuple obtained by restricting every
assignment in r to reg.

A literal implementation of a tuple may have substantial redundancy, as the un-
derlying region is repeated from one attribute to another. We assume that a clever
implementation attempts to minimize such redundancy. Note that in spatial databases
inconsistency between different data layers (attribute values) is a common place due to
complexity of mapping spatial regions [227]. It is a nontrivial problem, and introduces
errors in spatial data. We feel that expert techniques for reconciling different attribute
values should be incorporated at the implementation level. When several techniques
for reconciling are available the choices should be made available to the user at a high
interface level.

11.2.5 Spatial Relations

A spatial relation r over R, with k C R as its key, is a finite set of non-empty tuples,
such that no key attribute value of a tuple changes from one spatial point to another,
and no two tuples agree on all their key attributes. Figure 11.2 shows a county relation
with the schema CNA1VIE CROP. We designate CNAME as its key; this satisfies both the
requirements of a key: within the same county the CNAME of a county does not change
from one place (point) to another, and no two counties have the same CNAME. The
figure also shows a state relation with the schema SNAME CNAME, with SNAME aS its
key. Note that the key attributes are underscored.

CNAME CROP
eregl U creg2 story cregl wheat

creg~ corn
creg3 (3 creg4 U creg5 orange creg3 wheat

creg4 barley
creg5 rice

cregs polk creg6 wheat

The county relation with CNAME as its key

SNAME CNAME
cregl U creg2 U creg6 IA cregl U creg2 story

creg6 polk
creg3 U creg4 U creg5 C A cregz U creg4 O creg5 orange

The state relation with SNAME a~ its key

Figure 11.2: An example database

If r is a spatial relation over R, then the spatial domain of r, denoted [[r]], is the
union of the spatial domains of all its tuples. From closure properties of REG, [r]] is
clearly seen to be a region. For example, for the state of the county relation shown in
Figure 11.2, [[county]] = cregl U creg2 U creg3 U creg4 U creg5 U cregs. The restriction of a
relation r to a spatial region reg, denoted r [reg, is the relation obtained by restricting
every tuple of r to the spatial region reg.

11.3. Q U E R Y I N G I N T H E M O D E L 219

11.2.6 Weak E q u a l i t y a n d R e s t r u c t u r i n g

Suppose r and s are relations over the same scheme and have the same key. Then we
say that r is weakly equal to s, provided at every point p in the spatial universe, the
restrictions of r and s to {p} are the same (i.e. for every point p, r[{p} - s[{p}).
Two weakly equal relations differ in structure, but in some sense they have the same
information content. Sometimes in forming a query, it is necessary to view the relation
to have a different key. This is achieved by computing a weakly equal relation with
the desired key. The following theorem tells us when this is possible.

T h e o r e m 1 Suppose r is a relation with K as its key, and K ' is such that K ' is a key
of r[{p} for every point p in the spatial universe. Then there exists a unique relation
s, such that r and s are weakly equal, and K ~ is the key of s.

Example 11.2.2 Suppose for the county relation, instead of CNAME we want to use
CRoP as the key. This is achieved by restructuring the county relation to obtain the
county ~ relation as shown in Figure 11.3.

CNAME CROP
cregl story cregl kJ creg3 U creg6 wheat
creg3 orange
creg6 polk
cregz story creg2 corn
creg4 orange creg4 barley
creg5 orange creg5 rice

Figure 11.3: The county ~ relation with CROP aS key

11.3 Querying in The Mode l
In this section we introduce the SQL-like query language SpaSQL. At the end of this
section we will give several interesting example of queries.

We assume that a database consisting of spatial relations is given. The set of
all SpaSQL expressions can be divided into three mutually exclusive groups: spatial
expressions, boolean expressions and relational expressions. Note that we want to allow
constructs like SNAME = C A in the queries. This causes a technical problem: SNAME
evaluates to a spatial assignment during query evaluation, but CA is a constant. This
difficulty is easily removed by identifying a constant c with the spatial assignment
which is a constant function over the universe ~ of space.

11.3.1 Spatial E x p r e s s i o n s

Spatial expressions, the syntactic counterpart of spatial regions, are formed from ~A~,
~r]], [AOB], [AOb~, U, N, and -,. Additional spatial expressions axe formed using built-
in functions such as Point(x,y), Circle(center,radius), Window(x • a, y • b), Bound-
ary(reg), Interior(reg) and Exterior(reg).

If # is a spatial expression, and 7- is a tuple, then /~(r), the result of substituting
r in /~, is defined in a natural manner. Instead of giving a formal definition of tuple
substitution, we illustrate it by an example.

220 C H A P T E R 11. A R E L A T I O N A L M O D E L A N D S Q L - L I K E Q U E R Y

Example 11.3.1 Let us consider the county relation of Figure 11.2. [cRoP -~ wheat]]
is a spatial expression. Suppose v denotes story county's tuple. Then [cRoP --
whea t , (r) is cre91. The result of substituting r in the spatial expression [CNAME~
is cregl U creg2.

11.3.2 Boolean Expressions
Boolean expressions are formed from TRUE, FALSE, regl C_ reg2, A, V and -~. Additional
boolean expressions are formed using built-in functions such as IsPoint(reg), IsLine(reg)
IsPolygon(reg), regl Equal reg,, regl Inside reg2, regl Outside r eg2 and regl Intersects
reg2.

11.3.3 Relational Expressions
Relational expressions in SpaSQL are the syntactic counterparts of spatial relations.
Now we introduce relational expressions.

U n i o n a n d D i f f e r e n c e

Suppose r and s are spatial relations with the same schema and key. To arrive at r
union s we first compute the union of r and s treating them as sets, and then collapse
each pair of tuples of r and s which agree on all key attributes, into a single tuple.
Computat ion of r difference s is similar; in union non-overlapping part is added while
in difference overlapping part is removed from a tuple of r.

The Select Statement

The select s tatement of SQL is important and it is the counterpart of SPJ-expressions
of an algebra. (SPJ stands for select project join). In SpaSQL, the select statement is
of the form

select at tr ibute-l ist
restricted_to spatial:expression
from relation-list
where boolean-expression

The semantics of the above select statement is as follows. A tuple r is formed
by selecting tuples from each relation in the relation-list. For this tuple r , boolean-
expression is verified. If r does not satisfy boolean-expression, it is rejected. If r
satisfies boolean-expression, then spatial-expression is evaluated for this tuple. This
gives us the portion of domain of r, which is of interest to us. The tuple r is now
restricted to this domain. The tuple r is made homogeneous, if necessary. If its domain
becomes empty, it is rejected; otherwise its at tr ibute values specified by attribute-list
are retrieved.

Like the classical SQL, the where clause is optional; when omitted, it defaults to
TRUE. This amounts to qualifying aJ1 tuples for retrieval. The restricted_to clause is
also optional. When omitted, it defaults to 7~, meaning no part of a qualifying tuple is
removed. A detailed discussion of key is omitted. It is clear that the boolean-expression
and spatial-expression are both recursive as they can involve relational expressions.
This makes the select statement of SpaSQL is very powerful.

11.3. QUERYING IN THE MODEL 221

11.3.4 Examples
We assume that our database consists of the relations as shown in Figure 11.4. Al-
though the spatial domain of each of the relations is of type REG, underlying assump-
tion is that in the implementation city is represented as point, highway as a curve, and
county and state as polygons.

counties (COUNTY, STATE, CROP)
cities (CITY, COUNTY, POP)
hwys (HWY)
states (STATE, TIME-ZONE)

Figure 11.4: An example database

E x a m p l e 11.3.2 The query for the highways which pass thru L4, find the portion
which is inside MN is expressed in SpaSQL as follows.

select *
restricted-to [select * from states where STATE ~- MN~
from hwys
where ~HWY] Intersect ~select * from states where STATE = IA]

E x a m p l e 11.3.3 The query find all states whose boundary length is more than 2000
miles is expressed in SpaSQL as follows.

select STATE

from states

where Boundary([[STATE]) > 2000

E x a m p l e 11.3.4 The query find all the cities along with their population (POP), which
are within 200 miles of Chicago is expressed in SpaSQL as follows.

select CITY, POP

from cities
where [ClTY~ Inside Circle([select * from cities where CITY = Chiago~, 200)

E x a m p l e 11.3.5 The query find all the counties in IA which grow wheat in a total of
more than 1000 square miles is expressed in SpaSQL as follows.

select COUNTY

from counties
where Area([select * restricted_to [cRoP = wheat~ where STATE = IA]) > 100

E x a m p l e 11.3.6 The query find all the counties in central time zone is expressed as
follows. (Note that a state can be in more than one time zone.)

222 C H A P T E R 11. A R E L A T I O N A L M O D E L A N D S Q L - L I K E Q U E R Y

select COUNTY
from counties
where [COUNTY] Inside [select *

restricted_to [TIME-ZONE = central~
from states]

E x a m p l e 11.3.7 The query find the cities which are in the central time zone and
within 50 miles from the intersection of two highways and rice is grown in that area
can be expressed as follows. (Note that "from hwys H1 H2" is meant to create two
aliases H1 and H2 of hwys.)

select CITY
restricted_to [[select * restricted_to [[cRoP = rice~ from counties]
from cities
where [CITY] __ [select * restricted_to [TIME-ZONE = central] from states

and (Distance(IclTY],
[select * restricted_to [H1] N [H2] from hwys H1 tt2]]) _< 50)

11.4 Seamlessness of SpaSQL

tn this section we justify our claims of boolean seamlessness of SpaSQL. We say that
a query system does not have a boolean seam if it handles and, or and not of natural
languages symmetrically. Instead of formalizing this idea into a more precise notion, we
illustrate it through examples. We consider the above constructs of natural languages
and show how they are handled in PSQL of [440] and SpaSQL.

CNAME CROP CREGION
story wheat cregl
story corn creg2
orange whealt creg3

orange barley creg4
orange rice creg5
polk wheat creg6

Figure 11.5: The county re la t ion of F igure in P S Q L f ramework

We consider the county(CNAME,CROP) relation of Figure 11.2. In the PSQL frame-
work, this relation would be represented as county(CNAME,CROP,CREGION), and it is
shown in Figure 11.5. Note that the tuple of story county in Figure 11.2 has now split
into two tuples. In general a tuple for SpaSQL would split into an unbounded num-
ber of tuples for PSQL. We explain the adverse implications of phenomenon through
severa] examples.

E x a m p l e 11.4.1 First we consider the query retrieve complete information about
counties which grow wheat or corn. In SpaSQL this query is expressed as follows.

11.4. S E A M L E S S N E S S O F S P A S Q L 223

SpaSQL: select *
from county
where IcrtoP = wheat~ # r or ~cRoP = corn] r ~.

To express this query in PSQL we need two variables x and y. The variable x
is needed to make sure that the crop is wheat, and y is needed to make sure that
the county is same as that in x. Note that the from clause "from county x y" in the
following expression is meant to create two aliases of the county relation. The PSQL
expression is as follows.

PSQL: select x. ,
from county x y
wher~ (x . C R O P = wheat or x . C R O P ~--- c o r n)

and x . C N A M E = y . C N A M E

E x a m p l e 11.4.2 As our next example, we change or to and in the English query of
Example 11.4.1. The resulting query is retrieve complete information about counties
which grow wheat and corn. This is expressed in SpaSQL simply by replacing or in
~cRoP = wheat~ ~ ~ or]cRoP = corn] r r by and. Thus the SpaSQL expression is as
follows.

SpaSQL: select *
from county
where] C R O P = wheat] # r and]CROP = corn~ # r

The corresponding transformation does not work in PSQL. To express the new
query in PSQL, we need three independent variables, and it is expressed as follows.

PSQL: select z.*
from county x y z
where (x.CROP -~ wheat and y.CROP = corn)

and x . C N A M E -~- y . C N A M E a n d x . C N A M E = z . C N A M E

Note that for every occurrence of and in an English query of the form given above,
we need an additional variable in the PSQL query. Thus if there axe n properties to be
checked for a given county, we need n ~ 1 variables in PSQL leading to an (n + 1)-way
join; in SpaSQL simply one variable suffices.

E x a m p l e 11.4.3 Now we consider not of natural languages. First consider the query
retrieve information about counties that grow wheat. In SpaSQL and PSQL it is ex-
pressed as follows.

SpaSQL: select *
from county
where]CROP = wheat] 5~ r

PSQL: select x.*
from county x y
where x . C R O P = wheat and X.NAME = y . C N A M E

Now we insert a not in the English query. The new query is retrieve information
about counties that do not grow wheat. In SpaSQL it is simply expressed by replacing

224 C H A P T E R 11. A R E L A T I O N A L MODEL AND SQL-LIKE Q U E R Y

[cRoP ---- wheat~ • r by --[CROP ---- wheat~ # r or equivalently, by [CROP : wheat]] ----
r But it is more complex in PSQL. It needs the difference operator to express it.

SpaSQL: select *
from county
where [CROP -~- wheat~ ---- r

PSQL: (select *
from county)
difference
(select x.*
from county x y
where x.CROP -~ wheat and x.CNAME = y.CNAME)

Thus we see that the complexity of a PSQL expression increases with every occur-
rence of and and not in the given natural language query.

11.5 Algebraic Nature of SpaSQL
SpaSQL is algebraic in nature. In this section we show how the counterparts of usual
operators of the classical relational model can be captured as additional operators in
SpaSQL. Then we show how operators in [499] can be expressed in our model.

We note that we have already introduced (i) union and (ii) difference operators.
(iii) Projection] Ix(r) is equivalent to the select statement "select X from r." (iv) Our
selection is of the form ~r(r; f ; reg) and it is equivalent to the select statement "select.
* from r restricted_to reg where f." (v) The join r(AB)>~s(BC) is equivalent to the
select statement "select ABC from r, s restricted to [r.B = s.B]]."

Scholl and Voisard [499] introduce some interesting operators for handling spatial
data. Without going into considerable details we show how these operators may be
expressed i n SpaSQL.

1. Projection. is the usual projection operator, and it is covered above.

2. Cover. Their cover(r) is our It]], where r is a spatial relation.

3. Map overlay. Their r x a s is a homogeneous cross product. Assuming that the
schemes of r and s are R and S, respectively, and that R and S are disjoint, this
operator is expressed in SpaSQL as "select R, S from r, s."

4. Selection, clipping and window. Their selection, clipping, and window operators
are incorporated in our selection operator given above.

5. Superimposition. The effect of r superimpose s is similar to our (r - s) U s, if
r and s have the same scheme. However, the superimpose operator of [499] can
be used in more complex ways. For example, superimposition can be used to
caption a relation (map) r with a set of labels s.

11.6 Conclus ion
In this chapter we have presented a model and a query language for spatial data. The
query language is perhaps as seamless as possible. SpaSQL can serve as a powerful
query language for retrieval of spatial data. In our model we used some ideas from

11.6. CONCLUSION 225

temporal databases. We feel that the work presented here only serves as a starting
point, because spatial databases are far more complex than temporal databases. This
complexity basically arises from the underlying spatial domains. The implementation
of spatial databases is truly a challenging problem. It should be noted that the im-
plementation of a spatial relation can be different from its logical representation. It is
possible, for example to implement our logical spatial relations as the spatial relations
used by PSQL. We hope that this model will serve as a basis for further research.
There is considerable similarity between spatial and temporal data. Perhaps a more
appropr ia te term for all these forms of data is parametric data. Parametric da ta have
the notion of an underlying parameter space. In case of spatial and temporal data, the
parametric spaces consist of spatial points, and time instants, respectively. The model
and SpaSQL presented in this chapter have been generafized to parametric databases
in [204]. We have also given an object oriented model for parametric databases in [109].

Chapter 12

Parallel Query Processing

P. S. Yu*, M.-S. Chen t, J. L.Wolf $, J. Turek ~

12.1 I n t r o d u c t i o n

With the advent of inexpensive microprocessors and high bandwidth interconnects,
coupling a large number of processors to form a highly parallel system has become
an increasingly popular method for improving the cost-performance ratio of computer
systems [129, 130, 353, 380, 577]. Recent work has shown that this method is also
applicable to database systems with increasing benefits as the queries become larger
and more complex. The objective of this chapter is to examine the various issues
encountered in parallel query processing as well as the techniques that are available for
addressing these issues.

Research on parallel processing over the last two decades has mainly focused on
scientific applications. In the past few years, there has been a growing interest in
applying general purpose parallel machines to database applications [94, 104, 260,
360, 361, 469]. Several research systems have also been developed to explore this
trend, including GAMMA [155], XPRS [555], DBS3 [46], and BUBBA [72]. Relational
databases have a certain natural affinity to parallelism. Relational operations are
set oriented and this provides the query optimizer lots of flexibility in selecting the
parallelizable access path. (This is in contrast to navigational type databases such
as those using the hierarchical and network paradigm.) Also, the parallelism tends
to be coarse grained, i.e., each task will involve a lot of I /O and processing, with
a well-defined and, in general, infrequent communication pat tern between the tasks.
The difficulties associated with query parallelism arise because of the less than perfect
predictabil i ty of task times (primarily due to a dependency on the da ta itself) and the
enormous search space that the query optimizer needs to consider in order to make its
access plan selection.

As pointed out in [498], the methods for exploiting parallelism in a database en-
vironment can be divided into three categories: namely intra-operator, inter-operator,

*IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598,
U.S.A.

t IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598,
U.S.A.

$ IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598,
U.S.A.

w Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598,
U.S.A.

230 C H A P T E R 12. P A R A L L E L Q U E R Y PROCESSING

and inter-query parallelism. First of all, parallehsm can occur in each operator within
a query in such a way that multiple processors work concurrently on a single database
operation. Here we will be concentrating on the join operations, as they are the most
expensive operations to execute, and also the most difficult to parallehze properly. In
intra-operator parallelism the major issue is task creation, and the objective is to split
an operation into tasks in a manner such that the load can be spread evenly across a
given number of processors. The second form of parallehsm is termed inter-operator
parallelism, meaning that several operators within a query can be executed in paral-
lel. This can be achieved either through parallel execution of independent operations
or through pipehnlng, �82 where multiple joins are pipehned so that the early resulting
tuples from a join can be sent to the next join for processing simultaneously. In ei-
ther case, the major issues are the join sequence selection and processor allocation for
each operation. Join sequence selection, which is also called query plan generation,
determines the precedence relations among the operations. Thirdly, parallehsm can be
achieved by executing multiple queries simultaneously within a multiprocessor system.
This is termed inter-query parallelism. For inter-query parallelism, the issue again is
processor allocation, but among the multiple queries.

Various techniques to address each of these issues have been proposed in the lit-
erature, albeit under different assumptions and generally with a focus on only one of
the issues. In this chapter, we explore the query parallelism based on a hierarchical
approach and a unified framework, so that the potential integration of the techniques
used to address each type of parallehsm can be illustrated. Both sort-merge joins and
hash joins are considered.

Due to the complexity of the problem, join sequence selection is still mainly based
on heuristics [105, 107], and there is generally no formal analysis (such as worst case
bounds) on the suboptimali ty of these heuristics. However, given a join sequence, the
processor allocation problem can generally be formulated as an optimization problem
[376,628], which can often be solved by the use of resource allocation problem methods
[270] (which we note in passing also have a wide range of apphcability to various prob-
lems in computer science [284, 549, 574, 626]). Generating the optimal join sequence
and processor allocation together through exhaustive search can be prohibitively ex-
pensive for complex queries, due to the enormously large design space. This is generally
not a t tempted in the l i terature even for the sake of validating the optimality of the
heuristics.

Preliminaries are given in Section 12.2. The various issues encountered in paral-
lehzing query processing are presented in Section 12.3. In Section 12.4, we discuss the
implication of the different parallel processing architectures. The various techniques
to address intra-operator, inter-operator, and inter-query parallelism are then consid-
ered. Section 12.5 addresses the issue of da ta skew on intra-operator parallelism. We
then consider parallelism for multi-join queries in Section 12.6. Parallelism in a mul-
tiple query environment is explored in Section 12.7. Finally, Section 12.8 provides a
summary.

12.2 P r e l i m i n a r i e s

In this chapter, we assume that a query takes the form of conjunctions of equi-join
predicates. A join query graph can be denoted by a graph G = (V, E), where V is the

�82 is also referred to as data-flow scheduling [614].

12.3. ISSUES 231

�9 final resulting relations

| outer relations

0 inner relations

4R.R5

(a) left-deep tree

R3 R 4 a2.
1

(c) bushy tree
(b) right-deep tree

Figure 12.1: Illustration of different query trees.

set of vertices and E is the set of edges. Each vertex in a join query graph represents a
relation. Two vertices axe connected by an edge if there exists a join predicate on some
at t r ibute of the two corresponding relations. We use IRil to denote the cardinality of a
relation Ri and I.AI to denote the cardinality of the underlying domain of an at t r ibute
.4.

The execution of a query can be denoted by a query execution tree, which is
determined by the join sequence selected by the query optimizer. Three forms of query
execution trees are explored in the literatures: left-deep trees, right-deep trees, and
bushy trees. We note that left-deep trees and right-deep trees are sometimes referred
to as linear trees as they can be represented by a permutation of the vertices. In a
query tree, a leaf vertex represents an input relation, an internal vertex represents the
relation resulting from joining the two relations representing its child vertices, and the
query tree is executed in a bot tom up manner. Conventionally, the left and right child
vertices of an internal vertex denote, respectively, the inner and outer relations of a join
[497]. In the context of hash joins (as explained in Section 12.2), the inner relation is
the relation used to build the hash table and the outer relation is the one whose tuples
are applied to probe the hash table. Examples of the three forms of query trees are
shown in Figure 12.1, where the inner and outer relations are indicated for illustration.

12.3 I s sues

We next examine the issues encountered in applying the three types of parallelism. In
later sections, some techniques to address these issues are presented.

232 CHAPTER 12. PARALLEL QUERY PROCESSING

12.3.1 Intra-operator Parallelism

Exploiting intra-operator parallelism requires that the join operations be divided into
multiple subtasks that can be run simultaneously on the various processors. The ef-
fectiveness of such an approach depends upon the ability to equally divide the load
among the processors while simultaneously minimizing the coordination and synchro-
nization overhead. A factor which can impair the ability to parallelize join operations
successfully is the amount of skew present in the data to be joined.

In real databases it is Often found that certain values for a given at tr ibute occur
more frequently than other values [63, 111,259, 415]. [63] notes, for example, that for
many textual databases the da ta distribution follows a variant of Zipf's Law [646], and
can thus be characterized as Zip]-like [329]. This nonuniformity is referred to as data
skew [344]. It is inherent in the data itself and does not depend on the access pattern.
Since identical values always are hashed to the same hash bucket, this problem cannot
be remedied by an appropriate choice of hash function. Similarly, although they are
important concepts, neither bucket tuning [324] nor bit filters [596] will help with this
part icular problem.

The problem is exacerbated for join operations as opposed to sorts because corre-
lation in the da ta skew of each relation results in a join output that is quadratic in
nature. Previous studies on join performance have largely ignored this phenomenon
and assumed uniform distribution of data, thus overestimating the potential benefit
of parallel query processing using conventional join algorithms. Lakshmi and Yu [344]
were the first to observe that in the presence of da ta skew the speedup from conven-
tional join algorithms can be very limited. This is because the data skew can result
in some processors being overutilized while others are underutilized. Even one fre-
quently occurring (or large skew) value can cause the processor to which it is assigned
to become overloaded. In [498] some aspects of da ta skew on parallel join methods are
considered. However, in their study the case where both relations to be joined have
da ta skew (double skew) was explicitly not examined. Some examples of skew in the
distribution of join column values from real workloads can ~lso be found in [624].

12.3.2 Inter-operator Parallelism

Effective exploitation of inter-operator parMlelism for the execution of a multi-join
query depends primarily on the following two major issues: (i) join sequence selection,
i.e., schedufing the execution sequence of joins in the query, and (ii) processor alloca-
tion, i.e., determining the number of processors for each join obtained in (i) so that the
execution time required for the query can be minimized. Note that different execution
sequences of joins in a query will result in different execution costs [511], and some
sequences may be more parallelizable than others. Also, in a multiprocessor system
the execution time of each join strongly depends on the number of processors allocated
and the way intra-operator parMlelism is handled.

Note that in the study of intra-operator parallelism, the objective is usually to
determine the processor allocation which achieves the minimum execution time of a
single join operation. Such a selection is referred to as operationalpoint selection. In
exploiting inter-operator parallelism, we are, in contrast, dealing with the execution of
a complex query consisting of multiple joins, where different joins are allowed to be exe-
cuted in parallel in different clusters of processors. To minimize the execution time of a
multi-join query, one needs to take into consideration not only the operational point se-
lection (as in the study of intra-operator parallelism), but also factors such as execution

12.3. ISSUES 233

dependency and system fragmentation. Execution dependency means that some joins
cannot be performed until their operands generated by prior joins are available. Also,
after a sequence of processor allocations and releases, there might be a few processors
left idle since they do not form a cluster large enough to execute any remaining join
efficiently. This phenomenon is termed system fragmentation [106]. Clearly, execution
dependency and system fragmentation as well as the operational point selection have
to be taken into account for a better processor allocation efficiency, thus complicating
the minimization procedure for the query execution time.

Depending upon the join methods selected, different types of inter-operator paral-
lelism can be explored. With hash joins, an additional form of inter-operator paral-
lelism, pipelining, can be used, while with sort-merge joins, only parallelism of inde-
pendent join operations can be employed.

The execution of a hash join consists of two phases: the table-building phase and
the tuple-probing phase. In the table-building phase the hash table of the inner relation
is built according to the hash function of the join attribute, and in the tuple-probing
phase the hash function is applied to each tuple of the outer relation and the resulting
hash value is used to probe the hash table of the inner relation for matches. Recall that
in the context of hash joins, the left and right child vertices of an internal vertex in a
query execution tree denote, respectively, the inner and outer relations of a join. It can
be seen that in a left-deep tree, the result of a join is used to build the hash table for
the next join, and all hash joins thus need to be executed sequentially. In contrast, in
a right deep tree all the hash tables are built from the original input relations, and the
resulting relation of a join is input into the next join as an outer relation. The tuples of
the outer relation can thus be pipelined through the entire right-deep tree. Clearly to
maximize the throughput of the pipeline execution, we need to allocate the processors
so that all stages in the pipeline can proceed at the same pace: There should be no
bottleneck stages.

The bushy tree, on the other hand, is not restricted to a linear form, meaning that
the resulting relation of a join in the bushy tree does not need to be immediately used
in the next join. The resulting relation of a join can in fact be used as either an inner
or an outer relation for subsequent joins. This further complicates the problem and is
explored in Section 12.6.

12.3.3 Inter-query Parallelism
The basic issue is how to schedule the multiple queries. Each query can involve multi-
ple joins and take any number of processors to execute. There has been very little work
done on this subject. An exception is [628], where various approaches to inter-query
parallelism are studied. One of the suggested approaches is to first allocate the pro-
cessors at the query level and then devise a sub-schedule for inter-operator parallelism
to allocate these processors among the different operations within the query. This is
essentially a hierarchical approach. Since each operation, and hence each query, has
different operating effieiencies depending on the number of processors allocated, the
operational point selection and system fragmentation have to be taken into account in
processor allocation at the query level. This is similar to inter-operator parallelism.
However, in contrast to the case of inter-operator parallelism, there is no execution
dependency or precedence relations among the queries. This type of processor allo-
cation algorithms corresponds to a malleable task scheduling problem [588, 589], an
extension to the classical multiple processor scheduling problem [27, 127] with the ad-
ditional twist that the number of processor allocated to each task is now a variable to

234 CHAPTER 12. PARALLEL QUERY PROCESSING

be optimized. We will discuss this in Section 12.7 together with other variations on
hierarchical approaches to inter-query parallelism.

12.3 .4 R e m a r k s

We take a hierarchical approach on addressing the various issues on query parallelism.
The inter-operator parallelism needs to address the join sequence selection and pro-
cessor allocation issues. This can be built on top of the algorithm for intra-operator
parallelism, which focuses on balancing the load across the multiple processors allo-
cated to each join operation. As discussed in the previous subsection on inter-query
parallelism, alternative ways can be devised to exploit the algorithms on inter-operator
para/lelism and decide the processor allocation among the queries.

Finally, we comment on the CPU vs. IO requirements for parallelism. So far we
have used the term load in a loosely defined fashion so that it can either mean CPU
load or IO load. Most prior work assumes that the complex queries are CPU-bound
and the focus is on balancing the CPU load. However, this can be regarded essentially
as an issue of objective function selection. By properly defining the objective function
to be IO load for IO-bound cases and CPU load for CPU-bound cases, the algorithms
described in this chapter will work in either situation. For the case where some of the
queries are CPU-bound and some are IO-bound, a composite objective function can
also be devised [254, 255].

12.4 Sys tem Architectures
Here we examine different processor coupling architectures. In database environments,
it is customary to classify the architectures according to the level of tile memory hier-
archy being shared.

In the shared everything (SE) architecture [62], which is also referred to as the
tightly coupled processor architecture, all processors share a common main memory
under a single copy of the operating system.

In the data sharing architecture, each node runs an independent operating system
and all the processing nodes have direct access to all granules in the database. There
are two variations. One is the shared disk (SD) architecture [410, 559, 641], where all
disks are shared. The other vaxiation is to have a shared intermediate level of memory
between the main memory and disks. This is referred to as the shared intermediate
memory (SIM) architecture [158, 323, 462, 639, 640]. The basic structure of SIM is
otherwise the same as the SD architecture.

Finally, there is a shared nothing (SN) architecture [551]. Under this approach, the
database is partitioned among multiple nodes, and can only be accessed directly by
the owning node. This is in sharp contrast to the data sharing approach. A high speed
interconnect is generally provided to facilitate message and data exchanges between
the nodes.

In the rest of the chapter, we will assume an SD architecture when presenting the
various parallel join algorithms. We briefly comment the general implications if other
architectures are used and some additional comments are given in the later sections
where appropriate. In the SN environment, there is an additional issue of data to pro-
cessor affinity. If a task is not scheduled on the processor where the input data resides,
an additional data transfer phase is required. This is in contrast to the SD architecture,
where all disks are equally accessible by any processors, and hence there is no data to

12.5. DATA S K E W AND INTRA-OPERATOR PARALLELISM 235

processor affinity. This affinity issue is generally not pursued in the literature, even
when assuming an SN architecture. Ignoring this issue, parallel join algorithms based
on SD architectures are directly applicable to SN. The SE architecture offers more flex-
ibility for dynamic load balancing or task scheduling than the SD architecture, since
all processors share a common task queue. The SIM architecture, to a lesser extent,
also provides flexibility in task scheduling. Aside from this additional flexibility, the
parallel join algorithms for SD architectures are again applicable.

There is an additional issue involving the structure of inter-processor connections.
In a symmetric structure, the communication delays between the various pairs of pro-
cessors are roughly the same, as is the overhead. In an asymmetric structure, these
delays and overheads can be different for different pairs. For example, in a hypercube
like structure, it may be preferable to schedule the tasks related to the same database
operation or the same query in the same low dimensional sub-cube so that the commu-
nication penalty is minimized [37, 197, 437]. However, with the advent of high speed
interconnects and the communication processors to route data blocks, the difference
between single hop and multiple hop communication becomes less significant. In this
chapter, we will assume a symmetric structure.

12.5 D a t a Skew and Intra-operator Paral le l i sm

Examples of relational database operations include joins of two relations, and scans or
sorts of a single relation. Typically such operations are performed in several phases,
even in uniprocessor environments. For example, a sort merge join might consist of
a sort phase, in which sorted runs of each of the relations are generated, followed by
a join phase in which the sorted runs are merged and joined. Similarly, a hash join
might consist of hash and join phases. A sort might consist of sort and merge phases.
Of these operations, only a scan can generally be performed in a single phase.

Effectively, all phases associated with a database operation must be performed in
sequence, since one phase has precedence over the next. In a parallel environment,
therefore, a reasonable goal is to parti t ion the total work associated with each of
the phases into subtasks in such a way that the processors complete their respective
subtasks in approximately the same amount of time. This is called load balancing. For
all practical purposes, balancing the load is equivalent to minimizing the makespan
of the phase, namely the total processing time of the last processor to complete its
assigned subtasks.

In this section we shall discuss several approaches to handling the problem of load
balancing in the join phase of a single parallel join of two relations. These approaches
span the spectrum in terms of sophistication, and in terms of their ability to handle
the da ta skew problem. We focus on joins in general, and the join phase in particular,
because this phase is the most difficult one as far as the load balancing in the presence of
da ta skew is concerned. However, the algorithms presented have natural (and simpler)
analogues to other phases of joins and other operations, and we shall point these out
where they are interesting. Similarly, we shall concentrate on sort merge joins rather
than hash joins: Again, analogous algorithms exist for hash joins, and we will point
them out where appropriate. Finally, different architectures can also be handled within
the general context of these algorithms. Much of the work in the literature has focused
on the SN rather than the SD architecture. In an SN architecture, tuples may need to
be physically moved from the disks of one processor to those of another, in order to be
in the proper place for the next phase. Thus, for SN environments, a so-called transfer

236 C H A P T E R 12. P A R A L L E L Q U E R Y PROCESSING

phase may also be required. In an SD environment, however, which we are assuming
in this chapter, this is obviously not necessary.

Suppose we wish to perform an equijoin two relations R1 and R2, and suppose the
join column attributes are from some common underlying domain. The first approach,
which we will call a conventional join, ignores the data skew problem completely. This
algorithm partitions the join phase work into subtasks based on the underlying domain
only, and the number of subtasks is equal to the number P of processors employed.
The second approach, which we will call dynamic, is a bit more sophisticated. It
also partitions the join phase work based on underlying domain considerations, but
more than P subtasks are created in an attempt to balance the load. Finally, the
most sophisticated algorithms employ an additional phase of some kind, in an attempt
to gather statistical information about the relations themselves. Said differently, these
algorithms are therefore capable of partitioning the join phase work based on estimates
of the number of tuples rather than just the number of distinct values in the underlying
domain. Accordingly, they are able to achieve consistently better load balancing in the
presence of data skew.

In order to be as concrete as possible, we shall now introduce a simple example
of the join of two relations. The same example will be used throughout this section
in order to illustrate the approach and performance of the various join algorithms.
Consider Table 12.1. There are 12 distinct values in the underlying domain of the join
columns of the two relations R1 and R2. These values are labeled A through L. Table
12.1 shows the tuple count for each value and each relation. Notice, for example, that
value G occurs 10 times in R1 and 2 times in R2. Similarly, the value B occurs 0 times
in R1 and 1 time in R2. Again, the nonuniform distribution of tuple cardinalities is
known as data skew. (Since this nonuniformity occurs in both relations, we call this
an instance of double data skew.) For simplicity , we shall assume that there are no
predicates involved in this join. Table 12.1 also shows the tuple count for each value
in the joined relation R1 ~ R2. Notice that the values G and B occur 20 and 0 times,
respectively. In [623, 624] a formula is given which accurately measures the amount
of join phase work (time) associated with each distinct value in either a CPU- or IO-
bound environment, but for the sake of exposition here we shall content ourselves with
a very elementary approximation: Specifically, let us assume that the amount of work
associated with a value v is given by TIME~ = cv,1 + c~,2 + cv,lev,2, where cv,1 is
the number of tuples taking on value v in R] and c~,2 is the number of tuples taking
on value v in R2. (The first two summands provide a simple measure of work done
on input, while the last summand provides a measure of work done on output.) Thus
TIMEG = 10 + 2 + 1 0 . 2 = 32, while TIMEB = 0 + 1 + 0* 1 = 1, as is indicated
in Table 12.1. (Ordering the values by this measure of work, we wilt call G the largest
skew value in this example, and B the smallest.)

In our example, the sort merge join of R1 and R2 will be performed by P = 4
processors. In the sort phase, each processor will generate sorted runs of portions of
both relations. Load balancing of this phase will ensure that the processors complete
at roughly the same time. (In an SD environment, effective load balancing of the sort
phase is quite easy to achieve: We will comment a bit more on this issue shortly.)
Figure 12.2 shows a possible outcome of the sort phase. There are 4 sorted runs for
R1, each created by one of the processors, each of approximately the same size. A
similar statement holds for R2.

Our example gives an indication of just how serious the data skew problem is for
joins: Notice from Table 12.1 that the join phase work associated with value G is
more than a quarter of the total amount of join phase work. Given P = 4 processors,

o
~

~
~

b,
~

~

g:
~

b
~

b

~

~
-~

b

~

~
--

~
 b

,~

~-
~

~,
-~

~,

-~

~

o.

N

c~

o.

c~

238

CONVENTIONAL

CHAPTER 12. PARALLEL QUERY PROCESSING

WORK PER PROCESSOR
DYN/~IC SOPHISTICATED

50, 50

4 0 �84

3 0

0 (Z

I

I
I

G.H d.~

40

t0

K,L G1 G2

0

Figure 12.3: Join Phase Load Balancing

[0EI
S,I

effective load balancing will not be easy. Obviously, the problem grows with the number
of processors and the degree of data skew. The problem is particularly exacerbated for
joins, because of the quadratic nature of the join output size.

12.5 .1 C o n v e n t i o n a l Algorithm
A conventional sort merge join algorithm attempts to balance the load across the
processors for the join phase by an elementary range partitioning algorithm. For this
example, since there are 12 distinct values and 4 processors, the algorithm might simply
assign the first three values (A,B,C) to processor 1, the next three (D,E,F) to processor
2, the next three (G,H,I) to processor 3, and the final three (J,K,L) to processor 4.
Unfortunately, though the number of distinct values is precisely balanced, that number
is not a good measure of the join phase work. This is shown in the left third of Figure
12.3. We note that the makespan for the join phase is 32§ corresponding
to processor 3. Note how unbalanced the processors are: While processor 3 is heavily
overutilized, processor 2 (with 11 units of work) is heavily underutilized. Processor
1 (23 units) is also somewhat underutilizcd, since a properly load balanced processor
would perform (23+11+49+28)/4=27.75 units of work. Only processor-4 (28 units) is
more or less properly utilized. The poor load balancing is directly due to the data skew
in the relations. In fact, as previously indicated, any processor handling the value G
would automatically become overloaded.

There exists a corresponding conventional parallel hash algorithm, and it suffers
from exactly the same problem. See [624] for details.

12.5. DATA S K E W AND INTRA-OPERATOR PARALLELISM 239

12.5.2 Dynamic Algorithms
Notice that the assignment of a single subta~k to each processor in the conventional
algorithm is highly inflexible, in that each processor is staticaUycommitted to perform
a fixed unit of work. This observation suggests a relatively simple fix: Namely, create
more than P subtasks, and assign new subtasks to processors dynamically as they
complete their previously assigned subtask. This idea is originally due to [323, 325]
in the context of a parallel hash join, and it obviously works especially well in an SD
environment.

In its simplest variant, the underlying concept of the dynamic algorithm is to
part i t ion the join phase work into N > P subtasks, each with the same number of
values in the underlying domain. (In [325] the choice is based on the expectation that
the tuples associated with each subtask should fit in processor memory, obviously a
good idea.) The subtasks are then placed in an ordered list. The ordering of this list
is not important , since the expected amount of work associated with each subtask will
be the same. The first P subtasks on the list are initially assigned to each of the P
processors. Subsequently, as each processor completes a subtask, it is assigned the
next subtask on the list. Eventually, the list becomes empty, and the join phase is
completed.

A refinement of this approach appears in [627]. The idea is to parti t ion the join
phase work into KP subtasks having purposely non-equal subtask work estimates.
(Here K is some relatively small integer greater than 1.) For example, a reasonable
approach would be to s tar t with the range partitioning described in the conventional
join algorithm, and further partit ion each of the original ranges into K new ranges
with the property that the kth such range has approximately half the number of un-
derlying domain values as the (k - 1)st such range. The list of KP subtasks is now
ordered according to the number of values in the underlying domain, from largest to
smallest, and the algorithm proceeds as before. Effectively, this algorithm is a dynamic
version of the standard longest processing time first algorithm [228]. We therefore call
it DLPT. (LPT is itself an algorithm for heuristically solving the optimization problem
known as the minimum makespan or multiproeessor schedulingproblem, so its use here
should not be surprising.) Although the subtask times have not been estimated with
perfect precision, the ordering of the subtasks and the flexibility inherent in a dynamic
algorithm help to limit the join phase load imbalance.

We illustrate the DLPT sort merge join algorithm via our running example. Here,
we choose K = 2, and we create 4 subtasks with two values each, and 4 more with 1
value each. The ordered list is ({A,B},{D,E},{G,H},{J,K},{C},{F}, {I},{L}). See the
middle third of Figure 12.3. The first 4 of these are assigned to processors 1 through 4.
Processor 2 is the earliest to complete, and it is therefore assigned the subtask associ-
ated with~value C. Processor 1 completes next, and is assigned the subtask associated
with value F. Processor 1 completes next again, and is assigned the subtask associated
with value I. Finally, processor 4 completes, and is assigned the subtask associated
with value L. The join phase makespan using this dynamic algorithm is 32+3=35, as-
sociated with processor 3. This processor has worked only on the subtask associated
with values G and H, one of which, not surprisingly, is the largest skew value. Still this
makespan compares favorably with that (49) using the conventionM algorithm, and the
load balancing is also correspondingly more uniform.

Obviously, the same underlying problem remains: The subtask associated with
the value G will automatically cause the processor to which it is assigned to become
overutilized. Fixing this problem requires more sophistication, and that is the subject

240 C H A P T E R 12. P A R A L L E L Q U E R Y PROCESSING

of the next subsection.
We should point out that the dynamic algorithm described above is really a special

case of a very generic algorithm: The reader can easily imagine how such an algo-
ri thm could be applied to load balance the first phase of a join, sort or scan. In fact,
[268] recently described the same basic algorithm for an entirely different application,
scientific as opposed to database. They call their algorithm factoring.

12.5.3 Sophisticated Algorithms
We shall now give an overview of an algorithm we call SMJ* [623]. In an SD en-
vironment this algorithm adds a scheduling phase between the sort and join phases.
The scheduling phase creates an ordered list of join phase subtasks, in an a t tempt to
balance the load for that phase.

In order to do a good jo b of load balancing, R1 and R2 are partitioned into some
number of regions, typically larger than P. Each region will correspond either to a
contiguous multiple range of values (which we will call a type 1 region), or a single
value (which we will call a type P region). We have already commented that even a
single large skew value can cause a processor to become overloaded. If we can identify
and isolate such a type 2 region, we can give it special treatment: Specifically, we can
assign it to an optima] number of processors. (One approach to joining a single value
across M processors would be to parti t ion the tuples with this value in R] into M equal
size pieces, shipping each such piece to one of the M processors. The tuples with this
value in R2 would then be shipped to allof the M processors, this redundancy incurring
some additional overhead, and the join would be completed correctly. Alternatively,
we could swap the roles of -R1 and R2.) Thus, associated with any type 2 region will
be some currently optimal number of subtasks. This number, called the multiplicity of
the type 2 region, will be less than or equal to P, but possibly greater than 1. Type 1
regions will always be assigned to a single processor, will correspond to a single subtask,
and will be said to have multiplicity 1. The total number of subtasks N created over
all the regions will be the sum across all of the regions of their associated multiplicities.

SMJ* will perform something of a juggling act. The initial step is the creation of
a single region, corresponding to all possible values in the range of both relations, and
presumably of type 1. From then on, the algorithm consists of the iterative application
of the following 3 step process:

�9 computing good subtask time estimates and determining optimal multiplicities
for the type 2 regions,

�9 generating an assignment of subtasks to processors in a way which achieves
satisfactory join phase load balancing, if possible, and

�9 if the load balancing is unsatisfactory, partitioning the type 1 region with the
largest subtask time estimate into (2 to 3) new regions, at least one of which will
be of type 2, and repeating the 3 steps. (We hope to identify the largest type 2
regions during the repeated execution of this last step.)

It is the last two steps which form the mathematical foundation of SMJ*. In particular,
step 2 is accomplished using LPT [228]. Step 3 is accomplished using a variant of a
somewhat less well-known algorithm, which we will dub GM in honor of Galil and
Megiddo [206]. The original version of this algorithm was designed by these authors
to solve a special case of the so-called selection problem.

The selection problem solved by GM finds the j t h smallest element in a matrix
whose columns are monotone non-decreasing. What is the connection between our

12.5. DATA S K E W AND I N T R A - O P E R A T O R P A R A L L E L I S M 241

1 2 3 4 1 2 3 4

C A A C

F C E

G G G G

"I H
J I J K

A A E B

A E F C

I K K ~ G
I K L

L K L

L L

F igure 12.4: Snapsho t Af ter F i r s t G M I t e ra t ion

problem and this selection problem? The idea is simply this: We wish, in step 3 of
SMJ*, to spilt the largest remaining type 1 region up into smMler pieces, hopefully
identifying a large type 2 region in the process, t t would also be a good idea to make
this split as even as possible with respect to estimated subtask times. Our approach
is to determine the median value of the 2P sets of tuples in the largest type 1 region.
(There is one set of tuples for each processor and each relation.) But, because the tuples
are sorted, a selection problem algorithm applies, with a few minor modifications. The
GM Mgorithm has two very nice properties: First, GM automatically identifies, by
binary searches in the algorithm itself, the set of all tuples whose value equals the
median value. This set becomes the new type 2 region. Secondly, GM paralleilzes
quite naturally, each processor handling 2 sets of tuples. Now the tuples in the original
type 1 region have values which are either...

�9 Less than the median value,

�9 Equal to the median value (the new type 2 region), or

�9 Greater than the median value.

The original type 1 region is partit ioned into 3 sets according to the above alternatives.
The first of these sets may or may not exist. If it does, it will most likely correspond
to a type 1 region. The same comments apply to the last of these sets. However, since
the original region was of type 1, either one or the other of these regions must exist.
Probably, both exist, and are of roughly equal size. Figure 12.4 presents a 'snapshot ' of
the GM algorithm of SMJ* at work. (Figure 12.2 can be thought of as representing the
initial type 1 region.) In Figure 12.4, GM has determined the type 2 region (associated
with the value G) corresponding to the median element. The area above the Gs is
a type 1 region, as is the area below. The lat ter is the larger of the two. Hence, in
the next i teration (not shown), GM will subdivide it and identify the type 2 region
associated with the value J, and two new type 1 regions ({H,I}, {K,L}). One more
i teration (also not shown) will partition the other original type 1 region, identifying the
type 2 region associated with value C, and two new type 2 regions ({A,B}, {E,F}). At
this i teration there are 7 regions in all, 3 of which are of type 2. In general the process
will continue, identifying the largest skew values (among others) with high probability
as it goes.

242 CHAPTER 12. PARALLEL QUERY PROCESSING

The right third of Figure 12.3 shows the performance of the SMJ* algorithm, under
the assumption of three GM iterations and the creation of a single multiplicity 2 region
(associated with the largest skew value G). In this case it is better to split the 10 tuples
in R1 with value G into two sets of 5 tuples each, shipping the 2 tuples in R2 with
value G to both processors. The cost for each subtask will then be 5+2+5"2=17, not
quite as efficient as performing a single subtask of cost 30, b u t better than performing
two subtasks of cost 10+1+10"1=21, as would be the case if the roles of R1 and R2
were swapped. The two subtasks are labeled G1 and G2 in Figure 12.3. Note that
the makespan is 17+12=29, associated with subtasks {G1} and {A,B} on processor 2.
Also note how close to perfect the load balancing has become.

For further details on SMJ*, including various technical improvements to the base
algorithm, see [623]. A hash join variant (called H J*) also exists [624], and both
algorithms are compared in [625].

Recently, [157] has introduced yet another hash join algorithm of comparable so-
phistication for dealing with da ta skew. The basic approach is to introduce an initial
sampling phase to the hash join. This sampling phase estimates the degree of skew in
the two relations, and thus serves the same role as the scheduling phase in the SMJ* or
H J* algorithm. [623] contains a few remarks on the relative merits of these two basic
approaches.

There also exist algorithms to handle load balancing in the merge phase of a sort
on a single relation. For example, [284] is philosophically similar to SMJ*, employing
a variant of a selection problem algorithm. (In general, the load balancing problem
is technically easier for sorts than for joins, and the consequences of imperfect load
balancing less severe.) Similarly, [156] employs a sampling phase for sorts comparable
to that of [157] for joins. Each of these algorithms is quite effective at balancing the
load.

12.6 Complex Multi-join Query
Recall that inter-operator parallelism means that different operators within a query
can be executed in parallel by different clusters of processors. This implies that two
opportunit ies for parallelism exist in executing a multi-join query: Not only can each
join be implemented by many processors, but also several joins can be executed con-
currently. Note that different execution sequences of joins in a query will result in
different execution costs in terms of the amount of CPU and IO processing. Also, the
execution time of a join closely depends on the number of processors allocated for the
execution of that join. Thus, the subject of exploiting inter-operator parallelism for
the execution of a multi-join query consists of the two major issues: (i) join sequence
scheduling (or query plan generation), i.e., scheduling the execution sequence of joins
in the query, and (ii) processor allocation, i.e., determining the number of processors
to execute each join obtained in (i) so that the execution time required for the query
can be minimized.

The join method can affect the optimization procedure to exploit parallelism. Un-
der hash joins, we have the opportunity of using pipelining to improve the performance
[154, 219]. On the other hand, the pipelining approach is not applicable when a join
method like sort-merge is used. Note that pipelining causes the effects on join sequence
scheduling and processor allocation to be entangled. As a result, join methods without
and with pipelining will be discussed separately in this section.

12.6. COMPLEX MULTI-JOIN QUERY 243

12.6.1 Join Methods without Pipelining
Here we consider join methods without pipelining. The emphasis is to exploit inter-
operator parallelism. We first present some heuristics for generating join sequences,
including those for linear join sequences and for bushy trees. The issue of processor
allocation will then be discussed. The results on join sequence scheduling and processor
allocation caz~ be combined to form a final schedule to perform a multi-join query.

J o i n S e q u e n c e S c h e d u l i n g

L i n e a r j o i n s e q u e n c e

We first consider linear join sequence which does not allow for the exploitation of inter-
operator parallelism. In this case, the join operations must be executed in sequential
order, although intra-operator parallelism can be applied to speedup each join opera-
tion. A significant amount of research effort has been spent in developing linear join
sequences to improve the query execution time, with the focus mainly on uniprocessor
environments. The work reported in [511] was among the first to explore linear join
sequences for left-deep trees, and sparked many subsequent studies. Generally speak-
ing, the linear join sequences can be obtained by the following two methods: (1) the
greedy method, denoted by SGD, and (2) the optimal permutation, denoted by SOpT.
(Here, the subscripts correspond to the methods used.) The greedy scheme SG• can
be outlined as follows. First, the scheme finds the join which requires the minimal
execution cost. It then tries to join the composite with the relation which has the
minimal-cost join with the existing composite. The above step is repeated until all
joins are finished. It can be seen that the complexity of Saz) is O(IV[2). Heuristics
other than minimal-cost can also be used in Saz~ to derive linear join sequences. A
sophisticated scheme (referred to as the KBZ heuristic) to optimize multi-join queries
with an enlarged search space was proposed in [334]. The KBZ scheme can be viewed
as consisting of a 3-level hierarchy, where the top level picks a spanning tree from the
join graph, the next level selects an optimal root for a given tree through iteration and
the bot tom level generates the join sequence for a given rooted tree with the root as
the first relation in the sequence. The resulting query plan is derived by employing the
three respective algorithms. Furthermore, the benefit of using optimization techniques
such simulated annealing and iterative improvement (by moving to a better performing
neighboring state or join sequence iteratively until no improvement can be made) to
tackle large search space for query optimization was studied in [570]. The work in [570]
was further extended in [569], where three heuristic methods, namely the augmenta-
tion heuristic, the KBZ heuristic and local improvement, were evaluated comparatively.
The augmentation heuristic is mainly a general version of SaD with various alternative
heuristics to choose the next join. Local improvement means that a solution sequence
is improved by an exhaustive search in a small solution space, e.g. permutation of
a subset or a smM1 cluster of the relations in the linear join sequence. It was found
in [569] that a simple method such as the augmentation heuristic can perform very
effectively, whereas more elaborate techniques such as simulated annealing do not fare
well. It was then speculated that until significant new insights into the characteristics
of the search space are obtained, it will not be profitable to experiment with com-
plex methods for optimization. Stonebraker et. al. proposed a two-step approach in
[255] to optimize sequential or linear join plans, with the emphasis on exploiting intra-
operator parallelism in each operator. In [255] a collection of good sequential plans
was first obtained based on buffer space considerations, and then parallelization of this

244 CHAPTER 12. PARALLEL QUERY PROCESSING

collection of plans was explored. In [107] the optimal linear join sequence, SOPT, was
implemented by a dynamic programming technique for comparison purposes. It was
reported that simple heuristics for linear join sequences have performance fairly close
to SOPT, agreeing with the remark made in [569].

B u s h y t r e e j o i n s e q u e n c e

Bushy tree join sequences have not at t racted as much attention as the hnear ones in
the last decade. This can be explained in part by the observation that in the past
the power and size of a multiprocessor system was limited, and that the query struc-
tures were too simple. It is noted, however, that these two limiting factors have been
largely negated by the rapid increase in the capacity of multiprocessors and the trend
for queries to become more complicated [638]. This justifies the necessity of exploiting
bushy trees.

Recently, the use of bushy trees for parallel query processing has at tracted increas-
ing attention. For illustrative purposes, a heuristic implemented in [107] based on
executing the minimal-resulting-relatio n join to form a bushy tree is outlined below.

Scheme GMt~: /* A scheme to execute the join with the minimal resulting relation. */
b e g i n
1.
2.
3.

4.
5.
6.
e n d

r e p e a t u n t i l IV[= 1
b e g i n

Choose the join Ri ~ Rj from G=(V,E) such that
IRi >~ Rj] = minvR,,,nq~v{[Rp ~ Rq[}.
Perform Ri ~ Rj.
Merge Ri and Rj to R,nm(i,)). Update the profile accordingly.

e n d

(In the GMR scheme, the subscript MR stands for a cost function selecting "the
join with minimal resulting relation".) Clearly this heuristic is greedy in that only
"local optimality" is considered, and thus need not lead to the minimal cost join se-
quence. Note that GMR is of complexity O(]V[]E[) < O(]V]3), rather close to O([V[2)
required by SOD. From the simulation in [107], GMR, despite its simplicity, performs
significantly bet ter than SOD and SOPT, and results in join sequences whose execution
costs are reasonably close to that of the optimal one.

As in the case for linear join sequences, there are many possible heuristics which
can be used to generate bushy trees. Another approach dealing with inter-operator
parallefism was presented in [381], where a greedy scheme taking various join methods
(without pipelining) and their corresponding costs into consideration was proposed.
The scheme in [381] is similar to GMR above in that it has the nature of "query graph
reduction", i.e., working in a cycle of selecting relations, joining and updating query
graph, until all joins are completed. But it is different from the lat ter in that it tries
to build a bushy tree level by level from a given query graph, where the level of an
internal (join) vertex is computed a.s the longest path from a leaf vertex. At each step,
the algorithm picks the maximum number of pairs of relations to fill up a level so that
the cost function considered is minimized. Several relation selection heuristics based
on different cost functions were proposed and evaluated in [381]. In addition, various
query plans in processing multi-join queries in an SN architecture were investigated in

12.6. COMPLEX MULTI-JOIN QUERY 245

[497]. A combination of analytical and experimental results was given in [280] to shed
some light on the complexity of choosing left-deep and bushy trees.

P r o c e s s o r A l l o c a t i o n f o r T h e E x e c u t i o n o f E a c h J o i n

As pointed out earlier, to minimize the execution time of a multi-join query it is nec-
essary to address the following three issues: operational point selection, execution
dependency and system fragmentation. Note that the execution time required for a
join operation within a multiprocessor system depends on the number of processors
allocated to perform the join, and their relationship can be modeled by an opera-
tional curve, as evidenced in results on intra-operator parallelism [344, 622]. Basically,
increasing the number of processors will reduce the execution time of a join until a sat-
uration point is reached, above which point adding more processors to execute the join
will, on the contrary, increase its execution time. This is mainly due to the combining
effects of limited parallelism exploitable and excessive communication and coordination
overhead over too many processors. An example of an operational curve for this phe-
nomenon is shown in the solid curve in Figure 12.5, where a dotted (hyperbolic) curve
xy = 30 is given for reference. (Note that the curve is determined by the algorithm
for intra-operator parallelism.) In such a curve, the operational point chosen from the
curve is generally between the point which minimizes the execution time of the join,
referred to as the minimum time point, denoted by p•, and the one which optimizes
execution efficiency, i.e., minimizes the work which is the product of the number of
processors and the execution time, referred to as the best efficiency point, PB. For
example, pB-=5 and pM=16 for the operational curve in Figure 12.5. To improve the
processor allocation efficiency, we not only have to utilize the information provided in
the operational curve for the operational point selection, but are also required to com-
ply with execution dependency and avoid system fragmentation as much as possible.

To determine the number of processors allocated for the execution of each join, the
heuristics proposed in the l i terature can be divided into two categories: (1) processor-
allocation first (PAF) approaches, where the processor allocation at each join operation
is determined prior to the join sequence selection, and (2) join-sequence-scheduling
first (JSSF) approaches, which generates the bushy tree first and then determines the
processor allocation based on a given bushy tree.

T h e P A F A p p r o a c h

The three heuristics described below were introduced in [107] to determine the processor
allocation for each join operation belonging to this category. A join selection heuristic,
such as the minimal-resulting-relation GMR, is used together to determine the next
join when building a bushy tree.

(a). Sequential execution (SE): This heuristic allocates all processors in the system
to execute each join in the query sequentially. It can be seen that inter-operator
parallelism is absent when this heuristic is used, and the join sequence is the key factor
in the performance in such a case. A variation of SE is to allocate a fixed number of
processors for the execution of each join, to avoid system fragmentation.

(b). Minimum time point (MT): This heuristic is based on the minimum time point in
the operational curve, i.e., the number of processors used to execute the corresponding
join operation is p ~ .

(c). Time-efficiency point (TE): As can be seen in Figure 12.5, a scheme based on the

246 C H A P T E R 12. P A R A L L E L Q U E R Y PROCESSING

15

E
. m

t -
O 10

r~
Q)
X

5

0 1 ~

PB PM
3 6 8 9 lo 181 18 2o x

the number of processors

y 20

Figure 12.5: An Ope ra t i ona l Curve of a Jo in

best efficiency point might suffer from execution dependency. This is because some
join operating at its best efficiency point might take a long time to complete due to a
small number of processors used to execute the operation, thus causing long waiting
time for subsequent joins. On the other hand, a scheme based on MT may not use
processors efficiently since it may require too many processors to reach the minimum
time point. In view of this, a combination of the minimum time point and the best
efficiency point, termed the time-efficiency point, is employed as a heuristic. In other
words the number of processors a �9 PM + (1 -- o~) * pB is used to execute each join
operation, where 0 < a < 1.

Examples of SE and TE can be found in Figure 12.6a and Figure 12.6b, respectively.
It can be seen that when an execution tree is built using the above approaches, the
following two constraints have to be followed: (1) execution dependency is observed,
i.e., the operands of the join selected to be performed next do not depend on the
resulting relation of any ongoing join, and (2) the processor requirement is satisfied
according to the processor allocation heuristic employed, i.e., the number of processors
required by that join is not larger than the number of processors available then. Also,
idleness of processors should be avoided.

T h e J S S F A p p r o a c h

Several schemes, categorized as the JSSF approaches, were proposed to alleviate the
above two constraints [107, 254, 381,628]. In [381] a query tree is obtained first by the
greedy method described earlier in Section 12.6.1. Then, processor allocation is done
level by level via i terative refinements. Specifically, each join gets an initial processor

12.6. COMPLEX MULTI-JOIN QUERY 247

2)

)

R3

(b) TE

Rs ~2)

R1 Ra R 1 ~ 2)
(a)SE R2p~-~o) " ~ (22)

Fh 93
(c) STsE

Figure 12.6: Processor Allocat ion

assignment. This assignment is then repeatedly adjusted by moving processors from
less costly joins to more expensive ones to average the workload, until no further
improvements can be made.

In [107] the number of processors allocated to each join in a bushy tree is determined
top down based on the concept of synchronous execution time. Clearly, all processors
are allocated to the join associated with the root in the bushy tree since it is the
last join to be performed. Then, the processors allocated to the join on the root are
partitioned into two clusters which are assigned to execute the joins associated with
the two child vertices of the root in the bushy tree in such a way that the two joins
can be completed approximately the same time. (Note that this is in contrast to [381]
which is synchronized at each level of the join tree.) The above step for partitioning the
processors for the root is then applied to all internal vertices in the tree in a top down
manner until each internal (join) vertex is allocated a number of processors. Note that
when the number of processors passed to an internal vertex in a lower level of the tree
is too few to be further partitioned for efficient execution of joins, sequential execution
for the joins in its child vertices is employed for better performance. There are many
different bushy execution trees for a query, and the concept of synchronous execution
time can in fact be applied to the bushy trees obtained by different heuristics. In [107],
the numbers of processors allocated under SE, TE and STsE are compared under
the same query and relation specifications. Figure 12.6 shows an example allocation
considered in [107]. The bushy tree and processor allocation using STsE that applies
synchronous execution time to SE is shown in Figure 12.6c. In spite of the fact that the
bushy tree in Figure 12.6c is the same as that in Figure 12.6a, the resulting execution

248 CHAPTER 12. PARALLEL QUERY PROCESSING

times differ due to the variation in processor allocation. It can be seen that under
STsE, processors are allocated to the execution of each join in such a way that two
joins generating the two operands for a later join can be completed approximately
the same time, thus alleviating execution dependency. Moreover, since the processors
allocated to a vertex in a bushy tree are partitioned for the allocation to its child
vertices, system fragmentation is eased. Among all the schemes evaluated in [107],
the approach by STsE, which (1) first applies the join sequence heuristic to build a
bushy tree to minimize the total amount of work required as if under a single processor
system, and then, (2) in light of the concept of synchronous execution time, allocates
processors to the internal vertices of the bushy tree in a top down manner, is shown to
be the best solution to minimize the query execution time. A variation of STsE based
on dynamic programming is considered in [628].

In [628], several iterative processor allocation schemes are considered for a given
bushy tree. Basically each join operation is first given an allocation corresponding
to the best efficiency point. After the query tree is generated, some criterion is used
to identify the join operation which is most likely to be the bottleneck stage and to
allocate that stage with more processors. Then the whole process repeats. Different
criteria, dealing with the operation with the longest processing time and the one with
the largest number of concurrent idle processors during its life time, are considered.
This i terative approach is based on the algorithms studied in [589] for extending the
scheduling algorithms for non-malleable tasks to those for malleable ones. Also, given
the processor allocation, various scheduling heuristics with precedence constraints are
explored in [628] to follow the precedence relations imposed by the bushy tree.

As an extension to [255], where only optimizing the parallelization of sequential
plans was addressed, an algorithm dealing with processor scheduling for a bushy tree
was proposed in [254]. The inter-operator parallelism is achieved by properly select-
ing the IO-bound and CPU-bound task mix to be executed concurrently and making
processor allocation to reach the IO-CPU balance points. The algorithm matches up
IO-bound and CPU-bound tasks with an appropriate degree of intra-operator paral-
lelism so that both processors and disks can operate as close to their full utilization as
possible, thereby minimizing the elapsed time. In order to ensure an efficient solution,
[254] only explored schemes that execute at most two tasks at a time. The question of
how to reach the IO-CPU balance point among more than two tasks appears to be a
challenging problem.

12.6.2 Join Methods with Pipel ining

A pipeline of hash joins is composed of several stages, each of which is associated
with one join operation that can be executed, in parallel, by several processors. For
illustrative purposes, the execution of a pipeline segment is shown in Figure 12.7. Recall
that the hash join execution consists of two phases: the table-building phase and the
tuple-probing phase. In the pipeline execution of a hash join, it is generally assumed
that these two phases are disjoint across stages in the sense that all processing nodes
will need to finish the table-building phase before the tuple-probing phase begins.

It is known that pipelining has the following two advantages. First, the IO cost is
significantly reduced since the intermediate relations between stages in a segment need
not be written back to disks, or even exist as whole tables in the memory. Second,
the first tuples of the resulting relation of a pipeline segment can be produced earlier,
not only reducing the perceived response time by an end user, but also enabling an
application program to s tar t processing the result earlier. To further improve the

12.6. COMPLEX MULTI-JOIN QUERY 249

n3 =4

o ~ n 2=2 k=3 h 1 =2
R 3 / \ _ _ N=9 h2=1

R 1 d o W n 1 =3 h 3 =3

R2
a 2 S ~ R1

i

] ,,"

,,On',"--"
�9 I stage 2

S , '
"4

stage 1

O processing nodes

r-I packets

R3

0

0

OD
OD

r -] -~

"~disks
~

stage 3

Figure 12.7: Execution of One Pipeline Segment

performance of pipelining, an algorithm using 2-way semijoins to pipeline multiple
joins was proposed in [475]. In [614], an innovative approach based on using double
hash tables was proposed to handle execution dependency. These methods are in fact
applicable to both linear and bushy trees. (However, the focus of those works is not on
join sequence selection or processor allocation.) In the following, we shall first discuss
join sequence scheduling and then processor allocation for pipelined hash joins.

J o i n S e q u e n c e S c h e d u l i n g

R i g h t - d e e p t r ee

It can be seen that both right-deep and bushy trees allow the implementation of pipelin-
ing. Schneider and DeWitt were among the first to study the effect of pipelining for
hash joins [497, 498]. Their focus is on the use of right-deep trees, due mainly to sim-
plicity and the uncertainty of the improvement achievable by using bushy trees. Clearly,
for a given query~ the number of right-deep trees to be considered is significantly less
than that of bushy trees, and simple heuristics can be applied with little overhead to
generate a right-deep query plan. For example, a right-deep tree can be obtained by
first constructing a left-deep tree by greedy methods and then taking a mirror image of
the resulting left-deep tree [497]. However, right-deep trees suffer from the drawback
of less flexibility in structure, which in turn implies a limitation on performance.

Since the amount of memory is usually not enough to accommodate hash tables of
all inner relations, provisions such as static right-deep scheduling and dynamic bottom-
up scheduling [498] are needed. The static right-deep scheduling decomposes the right-

250 CHAPTER 12. PARALLEL QUERY PROCESSING

r m m 1
L _ _ J

!

J 8 �9 -

/a s ',,

(~ J3 -.

i A / 7 - - ' - ~ - - - - d]
pipeline stage ,u~ ,%J1 j :l

pipeline segment L _~_ _ o. j
(a)

O

/_%_;,_,.
~ ',/cv, F':

i _ A ' ,

i / k _ l ,
L o _ _

(b)

Figure 12.8: (a) a convent iona l r igh t -deep tree, and (b) a segmented r igh t -deep
tree.

deep tree into segments off-line and loads hash tables of a segment into memory in
parallel. The dynamic bottom-up scheduling, in contrast, loads one hash table into
memory at a time and determines the break points of segments dynamically according
to the memory constraint. In both scheduling methods, however, the execution of the
whole query is implemented in one pipeline and is thus restricted to the structure of a
right-deep tree. An example right-deep tree which is decomposed into three segments
is shown in Figure 12.8a. Those joins whose resulting relations need to be written back
to disks are marked black in Figure 12.8a.

S e g m e n t e d R i g h t - d e e p t r e e

The bushy tree, on the other hand, offers more flexibility in query plan generation
at the cost of searching a larger design space. However, as far as the hash join is
concerned, the scheduling for an execution plan of a bushy tree structure is much more
complicated than that of a right-deep tree structure. In particular, it is very difficult to
achieve the synchronization required for the execution of bushy trees in such a way that
the effect of pipelining can be fully utilized. To generate effective query plans that fully
exploit the advantage of pipelining while avoiding the above mentioned deficiencies of
the bushy and right-deep trees, an approach based on segmented right-deep trees for
the execution of pipelined hash joins was proposed in [105]. A segmented right-deep
tree is a bushy tree which is composed of a set of right-deep subtrees. FormaJly, a
segmented right-deep tree is defined recursively to be either (a) a right-deep tree, or
(b) a right-deep tree with some of its leaf vertices replaced by segmented right-deep

12.6. " C O M P L E X MULTI-JOIN Q U E R Y 251

trees. An example of a segmented right-deep tree of 3 pipeline segments can be found
in Figure 12.8b. Some greedy schemes to deal with the relation selection for building a
segmented right-deep tree were also proposed in [105]. As evaluated by the simulation
in [105], the approach on segmented right-deep trees possesses more flexibility in query
plan generation without incurring additional overhead on plan execution, and compares
favorably with not only the right-deep trees generated by greedy methods but also the
optimal right-deep tree that has the shortest execution time among all right-deep trees.
This suggests that to efficiently execute pipelined hash joins in today's environment,
one should exploit methods utilizing the bushy trees instead of improving the heuristics
on generating right-deep trees.

P r o c e s s o r A l l o c a t i o n

While most prior work focused on query plan generation, there is relatively little lit-
erature regarding optimizing processor allocation among the pipehne stages. One ap-
proach to deal with processor allocation to explicitly avoid pipeline bottleneck while
taking memory constraints into account is taken in [376]. As shown there, the character-
istics of pipelined hash joins allow the processor allocation problem to be formulated as
a two-phase mini-max optimization problem. Specifically, for a pipeline with k stages,
the execution time of the pipeline, TS, can be expressed as

W B~ W P,
TS = max - - + max - - , (12.1)

0_<i<k--I ni O~i~k--1 n i

where WBi and WPi are, respectively, the workloads for the table-building and tuple-
probing phases in stage i. Note that the processing time of each phase is determined
by the maximal execution time among all stages, and that the same allocation of
processors to a stage is retained across the table-building and tuple-probing phases.
The execution time of a pipeline is thus the sum of two correlated maxima. Con-
sequently, the processor allocation problem for pipelined hash joins can be stated as
follows: Given WBi and WPi, 0 < i < k - 1, determine the processor allocation
(ni) = (no, n l , . . . , nk-a) which minimizes TS in Eq.(12.1), where n, is the number of
processors allocated to stage i.

For example, consider the workloads shown in Table 12.2 for a pipehne of five
stages. First, it is observed that the workloads of stage 2 are less than those of stage
3, suggesting that stage 3 should be assigned more processors than stage 2. However,
stage 3 has a heavier load in the table-building phase than stage 4, while the lat ter
has a heavier load in the tuple-probing phase. In such a configuration, there is no
obvious way to allocate processors to minimize the pipeline execution time specified in
Eq.(12.1). For illustrative purposes, suppose the total number of processors available
to execute the pipeline in Table 12.2 is 20. I t can be seen that the allocation (n l)= (4,

wPi wj___~,_ 1.5, maxvi - - - 1.2, and TS = 2.7, whereas the one 4, 4, 4, 4) leads t o m a x v i nl - n~ -

(n~)= (6, 3, 3, 6, 2), which is based on the workloads of the table-building phase, leads
WP, to maxvi wB------x~--=i -- 1.0, maxvi ~ - - n i -- 2.5, and TS = 3.5. Clearly, to develop an optimal

processor allocation to minimize TS in Eq.(12.1) is in general a very difficult and
important problem. Since the table-building and tuple-probing phases are executed
one after the other, we minimize the sum of two correlated maxima in Eq.(12.1). In
view of this, the optimaJ processor allocation problem in Eq.(12.1) is termed the two-
phase mini-max optimization problem.

To develop the optima] processor allocation scheme for the two-phase mini-max
optimization, the following three constraints were considered in [376]: (1) the total

252 C H A P T E R 12. P A R A L L E L Q U E R Y P R O C E S S I N G

H stage 0 1 2 3 4 II

W B i 6 3 3 6 2 H
WP~ 4 4 2 3 5

Table 12.2: The Workloads in Two Phases of Each Stage

number of processors available for allocation is fixed, (2) a lower bound is imposed on
the number of processors required for each stage to meet the corresponding memory
requirement, and (3) processors are available only in discrete units. By incrementally
adding constraints to the optimization problem, solution schemes were derived. The
effectiveness of the problem formulation and solution procedure was verified through a
detailed simulation of pipelined hash joins. Simulation results show that these alloca-
tion schemes lead to much shorter query execution times than conventional approaches.

12.7 Scheduling Multiple Complex Queries
So far our study of query parallelism has focused on optimizing the execution of a
single query. While it is important to understand how to schedule a single query across
several processors, one should keep in mind that queries are not always executed in
isolation. Thus, in order to fully exploit the available parallelism from a system, one
must consider the interactions among different queries submitted to the same machine.
This section discusses some of the issues associated with optimizing the combined
execution of multiple queries.

In order to further motivate our discussion, consider the execution of two different
queries, Q1 and Q2, submitted to the same parallel system consisting of P -= 6 proces-
sors. Many of the systems that have been designed to date assume either that a fixed
number of processors are available to a given query or that the query is subdivided into
a fixed number of subtasks which are then distributed among the available processors.
However, in practice the execution time of each of these queries can be optimized based
on the number of available processors. As shown in Figure 12.9, the execution time of
a particular query is actually a function of the number of processors allocated to that
query. We say that such a query is malleable [588]: This means that as the number of
processors allocated to a query increases, the execution time of the query decreases.

The problem occurs when one does not take advantage of the parallelizable nature
of the queries. In particular, consider what happens if we statically assign m processors
to any query in the system. Recall that the number of processors in the system is P -- 6.
If m -- 6, then if both Q1 and Q2 in Figure 12.9 are submitted concurrently the total
completion time of both queries will be 14. The optimal assignment in this case would
have been to give Q1 4 processors and Q2 2 processors, resulting in a completion time
of 10. Assume now, in an attempt to alleviate the problem described above, that we
change m to 3. Then, if Q1 is the only query submitted to the system the completion
time of the query will be 10. The optimal assignment in this case would have been to
give Q1 6 processors, resulting in a completion time of 4.

In the event that a larger number of tasks are submitted concurrently to the system,
the above problem would be exacerbated. In general, we wish to allocate enough
processors to each query so as to minimize the completion time of that query. On the

12.7. SCHEDULING MULTIPLE COMPLEX QUERIES 253

20

I RUNNING TIME FOR QUERY 1 RUNNING TIME FOR QUERY 2

u.,I

I--
Z 1 5
_o
I.--

W
X 10
u3

I-- 5

. i ...

0 ' I I I I , , I
1 2 3 4 5 6

NUMBER OF PROCESSORS

Figure 12.9: Query Execution Time as a Function of the Number of Processors

other hand, we do not want to allocate so many processors to any single query so as
to negatively impact the overall efficiency of the system.

12 .7 .1 A H i e r a r c h i c a l A p p r o a c h t o I n t e r - Q u e r y P a r a l -
l e l i s m

Formally, the malleable scheduling problem can be defined as follows. Consider a mul-
tiprocessor system consisting of P processors, and a set of N tasks which we wish to
schedule on this system. We assume that each task j E {1,. . . ,N} can be allocated
an arbitrary number of processors 3j E {1,.. . ,P}, and that its task execution time
tj(~j) > 0 is a nonincreasing function of the number of allocated processors. All of the
processors allocated to a task are required to execute that task in unison. That is, these
3j processors are all required to start task j at some starting time, say rj. They will
then complete task j at some later completion time U § The tasks are partially
ordered by a precedence relation -~. A schedule will consist, for each task j E {1, ..., N},
of a processor allocation flj, and a starting time rj. A schedule is required to be legal
in the following two senses:

�9 For any time r, the number of active processors does not exceed the total number
of processors. In other words,

E 3s ~ P .

�9 If one task j l has precedence over another task j2, then the second task cannot
begin until the first task completes. In other words, if j l -~ j~, then Ux +

254 CHAPTER 12. PARALLEL QUERY PROCESSING

We seek an optimal schedule, one for which the overall makespan given by

max {r: I_<,_<N + tJ(~')}

is minimized. In other words, we wish to minimize the latest task completion time. II
One reason this inter-query problem has not been extensively studied has to do

with its inherent difficulty: As shown in [165], the malleable scheduling problem is
NP-hard in the strong sense, even in the special case when there is no precedence. One
is thus more or less forced to consider heuristic solutions. Typically, one would like to
find algorithms having provable bounds on the suboptimality of a given schedule. That
is, we would like to say that the makespan w, of the schedule given by our heuristic,
is iv < k * w* where k is some known constant and w* is the makespan of the optimal
schedule.

Later we will present algorithms having suboptimality bounds for the special case
where there are no precedence constraints between the tasks. (In practice, these al-
gorithms usually find a schedule having a makespan that is very close to that of the
optimal schedule.) Unfortunately, there has been relatively little success with estab-
lishing such bounds for the general case of scheduling malleable tasks in the presence
of precedence constraints. We know of only one result that addresses this issue [601].
This chapter deals only with the special case where the task execution time function is
constrained to be inversely proportional to the number of processors allocated to the
task up to some specified maximum degree of parallelism 0 < 6j < m for the task, and
constant thereafter.** Formally,

y_ flj < ~:
ts(flj) = ~] - (12.2)

~-7 flJ> ~'

Here tj denotes the task execution time on a single processor. The suboptimality bound
given by the algorithms in both these papers is shown to be (3 - 2 , N)w . Of course, in
practice, speedup curves of operators in a query are unlikely to be completely linear
and the bounds given by these papers will fail to hold.

Although there is a lack of heuristics with provable suboptimality bounds for prece-
dence based scheduling, we have already seen that many heuristics for the scheduling
of intra-query parallelism are in fact quite effective under varying system assumptions
[107, 255, 334, 511, 569, 570]. One natural way, considered in [62S], of extending any
of these heuristics to deal with inter-query parallelism is to add one or more dummy
nodes, representing operators with 0 execution time, so as to combine all the queries
into one large query. This approach is shown in Figure 12.10. Unfortunately, as shown
in [628], this approach does not seem to work very well. Relationships that hold among
the operators in a single query do not always hold across different queries, and thus
heuristics that are effective in optimizing the performance of a single query do not
easily extend to several queries.

I1 The condition requiring that the task times t7 (/3j) be nouincreasing is not, in fact, restric-
tive. One can always set t'j(flj) = minl<_Z<_& {tj(fl)}. The task times t '(flj) are nonlncreasing,
and any extra, useless processors in the optimal solution can be left idle.

�9 *In the absence of a specified maximum degree of parallelism for eac h task the problem
with linear speedups becomes triviM. One merely needs to allocate m processors to each task
and then schedule them in a batch fashion.

12.7. SCHEDULING MULTIPLE COMPLEX QUERIES 255

Query 1 Query 2
Query 3

Dummy Node

. |

Figure 12.10: Combining Multiple Queries into One Query

What [628] did show, however, was that a hierarchical approach to scheduling the
queries was effective. The hierarchical approach proceeds in two phases: In phase 1 one
of the single query optimization techniques is applied to each of the individual queries
to be executed, generating composite task execution time functions for the queries
themselves. Thus, one generates a query time execution curve based on the different
potential number of processors a/located to the query. In phase 2 a different scheduling
algorithm is applied to the composite query tasks, which have no precedence. In the
remainder of this chapter we will refer to the problem of malleable task scheduling
when there are no precedence constraints as problem MS. This approach is outlined
in Figure 12.11. Heuristics for handling the problem M S is the topic of the rest of this
section.

12 .7 .2 Scheduling Independen t Tasks

Krishnamurti and Ma [336] posed the problem M S and solve what amounts to the
special case of packing parallelizable tasks onto a single shelf. (This is, of course,
feasible only when the number of tasks does not exceed the number of processors.)
The solution proposed turns out to be optimal over all solutions requiring that the
all the tasks begin at time 0. Worst-case bounds on the makespan (with respect
to the makespan of the optimM schedule) are given under the condition that the work
performed by task T~, given by fljtj (flj), is a nondecreasing as a function of flj. Limiting
the tasks to a single shelf, however, can be shown to yield arbitrarily bad schedules
when the number of tasks approaches the number of processors. Furthermore, the
algorithm does not address the question of how to handle the case where the number

256 CHAPTER 12. PARALLEL QUERY PROCESSING

Query 1 Query 2
Query 3

Intra-Query Scheduler

0 | 1 7 4
Query 1 Query 2 Query 3

Independent Task Scheduler

Figure 12.11: A Hierarchical Approach to Inter-Query Scheduling

12.7. SCHEDULING MULTIPLE COMPLEX QUERIES 257

of tasks is greater than the number of processors.

Turek, Wolf, Pattipati and Yu [588] relaxed the constraint that the parallelizable
tasks all start at the same time as well as the Condition that the work performed is a
nondecreasing function, showing how to get an optimal K-shelf solution for any fixed
number of shelves K. By varying K over all values from 1 to n one can show that
the makespan of the schedule created using the algorithm in [588] will be no worse
than 2.7 times the makespan of the optimal schedule. Unfortunately, the algorithm is
exponential in K and, therefore, is not necessarily practical when large values of K need
to be considered. (On the other hand, the algorithm /s polynomial for each specific
value of K, and an effective bounding argument given in [588] fimits the number of
values of K that need to be considered for many examples.)

Belkhale and Banerjee [41] gave an approximate algorithm with polynomial run-
ning time for the problem MS (again) under the additional constraint that the work
done by the tasks is nondecreasing in the number of processors. Under the stated con-
dition, the suboptimality bounds on the makespan of the schedule produced by their
algorithm will be no worse than 2. Turek, Wolf, and Yu [589] presented a technique
does not constrain the execution time of the tasks in any way and in addition allows
the additional constraint that cooperating processors may need to be physically adja-
cent. The main contribution of their paper was a family of approximate solutions to
the problem MS, using an extension of a technique frequently used to solve resource
allocation problems [270]. In particular, they give an algorithm that selects candidate

�9 numbers of processors to be allocated to each of the parallelizable tasks, so that one
can then use as a subroutine any algorithm A that "solves" the easier multiprocessor
scheduling problem in which the number of processors allocated to a task is known a
priori. (This problem has been extensively studied in the literature. See [27, 68,127].)
The algorithm has the property that for a large class of known algorithms their exten-
sion will guarantee the same worst case suboptimality bounds as A while increasing tlie
running time of A by at most an additive factor of O(nm). Applying their technique
yields:

�9 Assuming that processor addresses assigned to a task need not be contiguous
one can use the algorithm specified in [211] to get an algorithm that generates
a schedule with makespan w < 2w*, where w* is the makespan of the optimal
schedule.

�9 Assuming that processor addresses assigned to a task need to be contiguous one
can use the algorithm specified in [526] to get an algorithm that generates a
schedule with makespan w < 2.5w*.

While our discussion has focused primarily on the execution of a set of known
queries, we should not forget that the problem of scheduling the online arrival of tasks
is an important component of any scheduling algorithm. One approach to this problem
has been proposed by [520]. It consists effectively of scheduling all the tasks that have
been submitted to the system at time r. Any new tasks that arrive will have to wait
until the time when the last task scheduled at time r has staxted execution. This
approach has the desirable qualities that (1) no task gets starved, and (2) it can be
proven to affect the suboptimality bounds of batch scheduling algorithms by at most
a factor of 2.

258 CHAPTER 12. PARALLEL QUERY PROCESSING

12.8 Summary
In this chapter, we have examined the various issues and techniques encountered in par-
allel query processing. The methods used to exploit query parallehsm are divided into
three categories: namely intra-operator, inter-operator, and inter-query parallelism.
We have concentrated on join operations because they are the most expensive opera-
tions to execute, especially with the increases in database size and query complexity.
In intra-operator parallehsm, the major issue is task creation, where the objective is to
split a operation into tasks so that the load can be spread evenly across a given number
of processors. In the presence of da ta skew in the join attribute, naive range splitting or
hashing does not suffice to balance the load. Inter-operator parallelism can be achieved
either through parallel execution of independent operations or through pipelining. In
either case, the major issues are the join sequence selection and processor allocation
for each operation. Join sequence selection determines the precedence relations among
the operations. For inter-query parallelism, the issue again is processor allocation, but
now among the multiple queries. We explored query parallelism based on a hierarchi-
cal approach under a unified framework, so that potential integration of the techniques
used to address each type of parallelism could be illustrated.

Chapter 13

Towards Flexible Dis tr ibuted Information Retrieval

David W. Flater*, Yelena Yesha *t

13.1 I n t r o d u c t i o n

Information Retrieval is the process of locating the data which are the best answer to a
user's query. In the case of text retrieval, it is "leading the user to those documents that
will best enable him/her to satisfy his/her need for information [42, 471]." Information
Retrieval is part of every database, every catalog, and every file system. It is such an
integral part of all of these things that it is seldom thought of as an independent
process.

This could soon change, however. The sharp increase in the amount of information
available to the average user in recent years has drawn attention to the shortcomings of
commonly used information retrieval systems. For years, very restrictive and inferior
methods have been used to retrieve information. These methods often force the user
to know the exact name or other identifier of the data to be retrieved. Sometimes
one is lucky enough to be able to use regular expressions or keywords to locate data
which cannot immediately be identified. Nevertheless, locating the desired information
is often a frustrating, time-consuming, and even futile task.

Fortunately, information retrieval techniques have been under investigation for
years, and a vast improvement could be realized in current information systems merely
by implementing known algorithms. Most established techniques are designed for han-
dling textual data, which is in fact where the greatest amount of difficulty is being
experienced, but encouraging results for non-textual data are already being reported.
In theory, the task of easing the general burden of information retrieval on the user
has been well undertaken. In practice, the systems which are widely used every day
are still relatively primitive.

If all information retrieval systems were upgraded overnight to use the best tech-
niques available, finding information would be easier - but it would still not be trivial.
There is another layer to the problem, which could humorously be called the network
layer, but whose accepted name is the Resource Discovery Problem[503]. Proliferation
of information is not the only difficulty. There is also a proliferation of information

*Computer Science Depm'tment, University of Maryland Baltimore County, Baltimore, MD
21228.

? Supported in part by the Information Systems Engineering Division of the NationM Insti-
tute of Standards and Technology, Gaithersburg, MD 20899.

260 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

bases. In an information retrieval system, one may start a serial search through the
entire information base for a particular piece of information. One does not, however,
have the option of starting a serial search over the entire Internet for a particular kind
of database. In fact, even if one could connect to every site on the network, one would
probably only be able to figure out how to access the available databases in the case
of well-known archives and public catalogs.

At first glance, it would appear that the problem of finding the information base
which would contain the desired information is just another form of information re-
trieval. One could establish a directory of information bases and use information
retrieval techniques to find the correct information base. Later in this chapter, the
reasons why this approach is inadequate will be presented.

This chapter is organized as follows. Section 13.2 provides a classification of infor-
mation retrieval techniques. Section 13.3 describes the construction and use of thesauri
and dictionaries for information retrieval. Section 13.4 discusses existing IR techniques
and the use of these techniques to achieve fuzzy retrieval. Section 13.5 investigates the
difficulties of extending IR into the distributed domain, and Section 13.6 describes an
information system architecture which handles some of those problems.

13.2 In format ion Retr ieval Techniques

IR techniques can be divided into three classes: tag-based retrieval, partial content-
based retrieval, and full content-based retrieval. In tag-based retrieval, indices are
painstakingly built by human beings, and the system uses more or less clever algorithms
to search the index for relevant entries. (The term "index" is used loosely here to
indicate any form of data keying, whether by means of inversion or signatures.) In
partial content-based retrieval, indices are built automatically based on the content of
data objects. In full content-based retrieval, queries are executed directly upon the
data objects, and no index is required.

13.2.1 Tag-Based Retrieval

One of the simplest forms of IR is tag-based retrieval. When data objects are added
to the information base, a human being has to provide meta-information, such as a
subject classification or a set of keywords, for each data object. The information system
then uses this meta-information as an index when it is called upon to retrieve data.
The data objects themselves are never inspected by the information system; they are
merely reproduced verbatim when their meta-information satisfies a user's query.

This form of information retrieval is used today in many applications. In cases
where qualified personnel are available to perform the indexing for an information
base of limited scope, such as a library of legal documents, these systems can provide
extremely efficient information retrieval. However, consider the case of a public library
where information of all kinds needs to be indexed. The library workers have the
task of maintaining an internally consistent general classification system in the face of
a constant influx of new documents. As a result, they will probably not distinguish
between, say, distributed databases and distributed information systems, causing a
degradation of retrieval precision. The library would require a staff of experts from
every field to properly maintain their subject hierarchy.

13.3. THESAURI AND DICTIONARIES 261

13.2.2 Partial Content-Based Retrieval

Consider how much be t te r the si tuation would be if the process of indexing an infor-
mat ion base were automated. In place of the staff of experts needed to maintain a
generalized subject hierarchy for a public library would be a library of software. Each
program in the l ibrary would be maintained with assistance f rom field experts to per-
form accurate classification within one particular field of interest. In the best case one
would also have a master program which could automatical ly determine the field of
interest a document belongs to and pass it on to the "expert" in tha t field. The same
software could then be distr ibuted to all libraries, and the library workers would have
a much simpler job.

It is on exactly this kind of technology that most current research into Informat ion
Retrieval focuses. Unfortunately, while there has been some success in the localized
indexing problem for l imited domains[163,461], no one has yet succeeded in integrat ing
many "experts" with a main program capable of solving the higher-level classification

problem.

13.2.3 Full Content-Based Retrieval

An index must contain all the information which is required by the retrieval algorithm,
including keyword frequencies or whatever else the algorithm might use. There is thus
a conflict between the desire for thorough information retrieval and the desire for tight,
efficient access structures. The more one restricts oneself to a fixed set of at tr ibutes,
the more one is able to use opt imized methods such as signature files[629]. The less
brute-force searching is done or the less overhead is accepted, the less effective is the

informat ion retrieval.
The l imits of information retrieval are at ta ined by full content-based methods.

These methods use no access s t ructures whatsoever. The entirety of every da ta object
in the informat ion base is subject to scrutiny. No information whatsoever is omi t ted
from the search. The benefits in terms of the system's ability to handle queries on
obscure topics are phenomenal - but so are the costs. To perform such a thorough
search on a large l ibrary in a reasonable amount of t ime would likely be beyond the
ability of even the most powerful parallel processing engines. However, it is possible
tha t these techniques could be used on small databases of l imited scope, provided tha t
there is still a global classifier capable of determining the appropriate domain for a

da t a object or query.

13.3 T h e s a u r i and D i c t i onar i e s

One of the most common problems with text retrieval systems is that the user must
often express the same query in many different ways until he / she stumbles onto some
keywords tha t are in the index. The information systems are not sophisticated enough
to map an arbi t rary natura l language t e rm onto the set of terms in their indices which
have approximately the same semantics, even if the natural language term is an exact
synonym of an index term. Since users do not know the set of index terms, they are
forced to use trial and error to f ind keywords that trigger the retrieval of relevant
documents . The usefulness of such a system will vary drastically from one user to the
next, depending on how close tha t user 's vocabulary is to the index vocabulary. To
solve this problem, work is being done to find ways to build thesauri and dictionaries
which will enable efficient retr ieval of text from natural language queries.

262 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

13.3.1 Thesauri

A thesaurus is a mapping from terms to terms which are semantically close. It may be
viewed as a graph where each node contains a term and has links to all of its synonyms.
A text retrieval system which is faced with a query term which does not appear in its
index should be able to use a thesaurus to try alternate terms in the order of decreasing
semantic similarity. If a user specifies a synonym of an index term, the system should
be able to determine the index term. On the other hand, if the information base has
been indexed inconsistently, a thesaurus should help alleviate the problem by making
some terms nearly equivalent.

The popular information retrieval technique of indexing by word stems or
trigrams[398] can be thought of as a heuristic for detecting synonyms in English text.
The thesaurus which it implicitly generates is neither complete nor accurate. A com-
plete and accurate thesaurus would be sufficient to maximize the efficiency of simple
keyword-based retrieval systems. Where more complex retrieval methods are used, a
dictionary may be needed to provide semantic information to the retrieval or query-
parsing algorithms.

The degree of closeness for each mapping from a term to a synonym must somehow
be expressed by a thesaurus. To avoid the scenario where every possible combination
of terms is assigned a similarity weight, thesauri should be built with the idea in mind
that one may navigate more than one link away from the term one is examining if none
of its immediate synonyms is satisfactory. To find the synonyms of a word in order of
decreasing similarity, a breadth-first search of the graph is performed. If weights are
assigned to the links, a more expensive best-first search must be used to insure perfect
sorting~ but this may be more trouble than it is worth.

Thesauri can be extended to convey more semantic information on how terms are
related to each other[444]. For example, there can be a distinguished, directional link
type which indicates that one term is a generalization of another. This link type
allows an information system to generalize the terms of an overly specific query until
some documents can be retrieved. However, it may be undecidable whether or not
overspecification was responsible for a null response.

Early attempts at building thesauri automatically using purely statistical meth-
ods met with limited success. However, a recent attempt to improve the quality of
automatic term association by using linguistic knowledge was successful[478]. Linguis-
tic analysis could be used to improve the signal-to-noise ratio of statistical methods
by transforming those sentence structures which cause unrelated terms to co-occur.
While reliable parsing of English grammar is exceedingly difficult, a surprisingly high
success rate can be achieved using simple methods if one only wishes to recognize a
limited subset of the possible sentence structures[251]. It should therefore be possible
to build sufficiently accurate thesauri using a combination of statistical methods and
limited parsing. Another novel approach to automatic thesaurus construction uses the
complete link clustering algorithm to cluster the document collection prior to the con-
struction of the thesaurus[133]. This two-stage statistical approach, which has a strong
theoretical basis, has also yielded promising results.

The uncertain accuracy of the resulting thesauri is not the only disadvantage of
automatic thesaurus construction. While several different kinds of relations between
terms can be distinguished by automatic methods[478], it is usually the case that sta-
tistical methods point out the existence of relationships without classifying them[444].

13.4. FUZZY RETRIEVAL 263

This places a restriction on the kinds of retrieval algorithms that can be used with
automatically generated thesauri. However, for the retrieval methods which are most
commonly used, automatic thesaurus generation provides a way to rapidly create many
domain-specific thesauri until more accurate thesauri become available.

If one continues to build more and more semantic information into a thesaurus,
at some point it ceases to be a thesaurus and becomes a dictionary. The essence of
the distinction is that the possibilities for defining relationships between terms are
exhausted and information related to the terms themselves, i.e. "definitions," begin to
appear.

13.3.2 Dictionaries

When one crosses the line from text processing into text understanding, one also needs
to trade in one's thesaurus for a dictionary. Any term-related information which would
be useful during the retrieval process can be kept in a dictionary. This includes internal
semantic representations that can be retrieved from the dictionary and used as building
blocks for larger expressions.

As of now, dictionaries are primarily being used in expert systems and knowledge
bases. However, for years it has been asserted that large amounts of "world knowledge"
are needed for effective natural language understanding. Dictionaries might therefore
be needed when thesauri become inadequate to support natural language information
retrieval.

13.4 Fuzzy Retrieval
Thesauri are one of the tools that are being used to enable fuzzy retrieval, the prob-
abilistic retrieval of data objects based on an estimate of their relevance to a query.
Fuzzy retrieval is made necessary by the inherent fimitations of non-fuzzy methods
such as Boolean querying[482, 73]. Non-fuzzy methods are inflexible and require the
user to have prior knowledge of the indexing scheme of the information base if efficient
retrieval is to occur.

Most fuzzy retrieval is built upon the notion of a relevance or similarity function.
Given a query which is not satisfied by any object in the information base, the similarity
function provides an estimate of how similar each object is to the hypothetical object
described by the query. The program can then select a small number of objects which
are considered to be most similar and list them for the user, along with their similarity
(or relevance) estimates.

Consider for example the case of retrieving abstracts with keyword queries. A
direct keyword system returns only those abstracts in which every keyword appears
at least once. In effect, a Boolean value is assigned (zero or one) to each term to
indicate whether or not it appears in the abstract, and then the values are multiplied
to determine the relevance of the abstract to the query. This system can be made
nominally fuzzy by accumulating, rather than multiplying, the term values, so that the
most relevant abstract is the one containing the largest number of query terms. While
this nominally fuzzy approach is currently used in many on-line library catalogs, much
better techniques are available.

Given a thesaurus, one can immediately improve on the above similarity function
by assigning a relevance value which is less than one but greater than zero for any
term with a synonym in the document, but which does not appear itself. The value

264 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

assigned will depend on the thesaurai similarity of the term and its synonym. The
relevance function will then be fuzzy along the semantic axis as well as the syntactic
one, with the result that retrieval will be much more consistent across different query
vocabularies.

Even this similarity function is crude compared to many which appear in the lit-
erature. For example, it makes no attempt to weight query terms based on how often
they appear in a given document, or how often they appear in the document collec-
tion as a whole. The best index terms are those which do not appear in so many
documents as to be useless for retrieval, yet are not so infrequent that many relevant
documents do not contain them. The tf-idf (term frequency - inverse document fre-
quency) term weighting scheme is one way of biasing the search towards those terms
which are most useful for retrievai[133, 482, 481]. Furthermore, accumulation is only
one possible way of combining term coefficients into a document coefficient. It is com-
mon practice to arrange term coefficients for queries and documents into vectors (the
"vector space model" [482]) and use vector operations such as cosine to determine their
similarity[133].

Similarity functions do not exist only for text retrieval. A great deal of work is
currently being done to allow information retrieval using images. One recent work de-
termines the similarity of images which are comprised of iconic objects[96]. Specialized
techniques have also been developed for retrieving documented software[385]. However,
it is the case that text retrieval has received vastly more attention than other kinds
of retrieval, and until sufficient work has been done in this area, textual descriptions
must be used to index non-textual data.

One class of fuzzy retrieval algorithms which does not depend exclusively on a
similarity function (but which nevertheless may use one) is based on the inference net
model of information retrieval[42, 590]. Information retrieval systems which use these
algorithms can look like a combination of hypertext and expert systems. They use
Bayesian logic to reason about the properties of data objects and then decide which
of them are most likely to satisfy the query. A Bayesian inference network[42, 450]
is built for the object collection and for the query. The two are then connected so
that the probability that each object satisfies the query can be computed. When
feedback from the user causes changes in the subnet representing the user's query, the
probabilities are recomputed and a new set of pertinent objects is returned. Instead of
simply accumulating values, the inference net model deals in detail with the case where
the probability that a given object is relevant to a query depends on multiple factors.
However, the benefits of such a thorough analysis of relevance may not outweigh the
additional complexity for many information retrieval applications.

13.4.1 Part ia l C o n t e n t - B a s e d M e t h o d s

The most direct way to adapt existing information retrieval systems to be partially
content-based is to automate the process of indexing the data. Using this approach,
the same old fuzzy retrieval mechanisms can be used to search the same kind of index.
The only difference is that nobody had to go through the effort to build the index
manually.

Automatic indexing is most frequently done using methods such as tf-idf to de-
cide which of the terms in a document or document collection would make the best
index terms. An index can then be generated which contains only those terms, along
with their frequencies in each document. Additional lexical association metrics are the
signal-to-noise (concentration), the variance (concentration/diffusion), and the discrim-

13.5. DISTRIBUTED APPROACHES TO INFO RETRIEVAL 265

ination values of terms[261]. The discrimination value of a term reflects the amount of
difference it makes to the document similarity function if that term is removed from
consideration.

If an information retrieval system uses summaries or abstracts to index data, all is
not lost. Some researchers hope to find ways of piecing together entirely nonanaphoric
sentences to form a reasonably informative "abstract" of a document using sophis-
t icated linguistic analysis. An easier approach can be used if something is known
about the structure of the documents, as is the case with an information system of
limited scope. For example, if all the documents describe analytical experiments, one
can search for phrases such as "we conclude" or "we have shown" which often co-occur
with important bits of summarized information. However, the problem in general is in-
sidiously difficult, and simple-minded heuristics are unlikely to provide a solution[443].
One approach to automatic keyword indexing[163] employs techniques which have been
used for automatic abstracting, but suggests that the extracted phrases simply be used
for keyword searches and not regarded as full summaries.

Automatic indexing of images[461] is also an immense challenge for researchers,
but it is receiving more attention and is likely to reach maturi ty before automatic
abstracting. The cited work points out that "image retrieval by content cannot be
a t tempted in general," but explains that , given a sufficient body of domain-specific
pat terns and rules for image analysis, one can identify the different objects in an image
and build a representation of the image in terms of its objects, their number, their
compositions, and their positions. The images themselves can then be indexed using
these representations, and retrieval can be achieved by specifying the qualities to look
for in the representations.

Lastly, some similar techniques are being used in the realm of hypertext. Attention
is now being given to the use of text processing techniques to automatically build
semantic network representations of input texts to facilitate hypertext browsing[394]. It
is more difficult to automatically build a semantic network than to automatically index
a da ta set. For indexing, all the program has to do is extract the most significant terms
from a da ta object, or, depending on what sort of indexing is being used, determine
which of a pre-selected list of index terms are descriptive of the datum. To build a
semantic net, the program also has to add links connecting the important components
of the da tum to related concepts. The possible uses of semantic networks to enhance
information retrieval capabilities are worthy of investigation.

13.5 D i s t r ibuted Approaches to Info Retr ieval

There have as of yet been few at tempts to expand information retrieval into the world of
networked and distributed computing. This is puzzling, considering the vast amount of
attention that has been given to distributed databases and client-server architectures in
recent years. Somewhat more frequent are applications of parallel processing hardware
to cut down on the amount of real time needed to perform searches[132]. While brute
force can no doubt do wonders for the effectiveness of information retrieval algorithms,
this is only really helpful when the information base is homogeneous. The larger
problem of networked information retrieval remains.

The most notable incursion of information retrieval into the networked computing
domain is WAIS[305]. WAIS (Wide-Area Information Server) is technically a client-
server system. However, it is the first a t tempt to connect autonomous information
bases over a wide-area network which has achieved a significant following.

266 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

server system. However, it is the first attempt to connect autonomous information
bases over a wide-area network which has achieved a significant following.

When performing a seaxch in WAIS, a user must select one or more servers from
a list of servers which is provided. The user then enters a keyword query which is
executed on the selected servers. A ranked list of matching data is shown when the
search completes. The user may then select individual data to retrieve. WAIS has the
ability to handle non-textual data, but this capacity is currently being used to a very
limited extent. For example, some images can only be retrieved by providing the name
of the file in which the image is stored as the search criteria[225].

Other distributed approaches to information retrieval[241] preserve the single ho-
mogeneous information base flavor of existing information retrieval methods. This is
in conflict with the rising trend of heterogeneous computing which is evident in the
database community.

13.5.1 Current Research Issues

The first problem which must be solved to acquire information using FTP is finding
the address of an archive site which has the right type of data. Similarly, the first
problem which presents itself to a new user of WAIS is that he/she must scroll through
a long fist of servers to locate a server which contains the desired kind of information.
These are just two different manifestations of the Resource Discovery Problem[503],
the fundamental problem which must be solved to truly achieve a global integration of
information sources.

T h e R e s o u r c e D i s c o v e r y P r o b l e m

The problem of locating information on a large network is known as the Resource
Discovery Problem. Before a user can interact with a database or archive to retrieve
Imeded information, the user must find out where such a database or archive exists.

One approach to solving this problem is to accumulate information to help users
find what they need. For this purpose, there currently are a number of on and off-line
Internet directory services[149] which let skilled users perform keyword searches to find
out which Internet sites have the information they want. Unfortunately, the off-line
directories cannot remain up-to-date, and the on-line services have limited effectiveness
since they can only handle so much information. They cannot keep track of enough
attributes of the data being archived to support generai resource discovery. In many
cases, one needs the name of the file which contains the desired information to find
out the name of the site which owns it. There are also a variety of browsing and
information-gathering tools[505, 467] which try to help the inexperienced user, but a
browser also can only go so far to make a fragmented and heterogeneous set of resources
appear to be unified.

The University of Colorado's Networked Resource Discovery Project has concen-
trated mainly on developing better directory services for the Internet; however, an
early technical report describes their attempt to design a networked resource discov-
ery system based on probabilistic multicasts and resource brokers[504]. More recently,
Matsushita Information Technology Laboratory has begun working on an informa-
tion system as part of the Gold project[35]. Its main improvement over [504] is that
the functionality of the resource directories has been specified in greater detM1. T h e
brokers, which are the maintainers of the resource directories, now use information
retrieval techniques to classify queries and data in order to determine the location of

13.6. ARCHITECTURE 267

the database capable of answering a query. The system discussed in Section 13.6 is
unique in its brokerless approach to query routing and resource discovery and in its
use of cooperative caching.

Large I n f o r m a t i o n N e t w o r k s

The proliferation of databases in government and industry has focused attention on
the problem of integrating these databases. I t is no longer practical for data to be
disseminated by manually exporting it from one database and importing it into another;
neither is it practical to call someone at a remote site each time a piece of information
is needed. Since experience has shown that a large, tightly-knit system is too inert
and unmaintalnable to be a permanent solution[610], work is currently being done to
find ways of solving the integration problem by building a system on top of the many
databases which are already established. The terms heterogeneous database, federated
database, and mediated database all describe this kind of system. Different authors
will assign different connotations to these terms, and precise definitions are difficult to
achieve. As a group, however, they describe a particular class of systems whose goal
is to unify existing databases.

The techniques which are being suggested to allow integration of heterogeneous da-
tabases may help to build an integrated information system. The notion of mediators,
distinguished pieces of software whose job it is to allow a graceful interface between the
outside world and an information base (or other mediators), can help solve the general
heterogeneity problem in a modular fashion[610].

13.6 Arch i t ec ture for an Integrated Informa-
t ion S y s t e m

13.6.1 Prel iminaries

T h e authors have been working on an information system architecture which will elim-
inate the need for directories of archives, servers, and databases and provide a truly
general-purpose information retrieval service[191, 193, 194, 195, 192]. They assume
that individual sites will host information bases of limited scope - the sorts of archives
that existing information retrieval techniques can handle or will be able to handle with
sufficient refinement. They then build a distributed information system architecture
on top of these information bases to route general queries to the sites which can answer
them and to cache replicas of frequently-used data objects.

A da ta object is a document, an image, a piece of software, or any other self-
contained unit which can serve as the answer to a query. For most types of da ta it
wilt be possible to assign a name, a summary, a list of keywords, or some other textual
identifier which can be used by term similarity algorithms to determine whether cached
objects are appropriate answers to queries which are received. Particularly strange
types of da ta might require a specialized descriptor which only certain "specialist"
sites can interpret; the generic textual descriptor of such data would merely indicate
that the da ta required special processing. For classes of data which cannot be assigned
any kind of identifier, all queries will have to be forwarded to the sites which host those
classes of data, and replicas will not be created.

The information system is constructed by forming a virtual network of sites. The
links in the virtual network are given time-varying costs which reflect the observed delay

268 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

on the underlying wide-area network, or any other costs which must be minimized. The
sites in the virtual network do not all have to own archives; many of them can simply
cache replicas of data whose authoritative copies are elsewhere. Each network site will:

�9 Answer queries on data which are in its cache by sending a copy back towards
the querying site;

�9 Forward queries on other data over the link which is believed to lead to the
nearest copy of the desired data;

�9 Forward response messages along the least costly path to the querying site;

�9 Cache replicas of data contained in response messages;

�9 Replace older versions of data with newer versions when a response message is
forwarded which contains a newer version of a datum in cache, or vice-versa;

�9 Process queries on data for which this site owns an archive (if applicable).

13.6.2 Query Routing
In order to know where to send a query, the information system must be able to
determine the class of data which would satisfy a query. For example, a query asking
for PC software should be sent to a site which archives PC software, and a query asking
about the Civil War should be sent to a site hosting historical documents. Thus, it
is expected that the queries received will contain sufficient information to allow this
classification. Having to type "US history Civil War" instead of just "Civil War" is
the price of general-purpose information retrieval. "Civil War" is only really sufficient
if the information base is already restricted to historical documents. Of course, one
can always type "encyclopedia Civil War" to find out that the Civil War falls under
the category of US history. This last command would access a site which contains the
"encyclopedic" class of data, i.e. superficial text on a wide variety of topics.

Queries are routed in a point-to-data fashion, rather than a point-to-point one.
Instead of maintaining a routing table which tells which way to send a message bound
for a particular site, a table is kept which is indexed by classes of data. Each row
represents one class of data; each column represents one outbound link which could be
used to forward the query. The entries themselves are values indicating the be]ieved
usefulness of each link for locating the class of data in question. When a response
message passes through which contains a particular class of data, the row in the routing
table for that class of data is usually updated to reflect the fact that a source of
that data class can be reached in the direction from which the message arrived. In
some cases, the row will be updated to point in the direction in which the message
is forwarded with the belief that a cached replica of the data may be found in that
direction.

Each time a row in the routing table is updated, the existing values are "aged" so
that the newer information takes precedence. However, if a query which is forwarded
comes back "empty handed," the older information will be used as the next most likely
alternative is tried. The old information also comes in handy if a query arrives over the
link which was thought to lead to the desired information. Sites avoid sending queries
back to sites which have already seen them.

13.6.3 Cooperative Caching
Cooperative caching is distinguished from "selfish" caching by the fact that sites will
cache data which do not directly benefit those sites. If one particular site is generating

13.6. ARCHITECTURE 269

a huge volume of queries, the surrounding sites through which that site's queries are
forwarded will accumulate copies of the data which that site is using. Idle sites donate
their cache space to further the common good.

It is not easy to arrange this kind of behavior in a fully distributed manner with-
out resorting to expensive measures. However, it can be done inexpensively using a
heuristic decision function that determines whether or not a site will cache a copy of
a datum which it receives. By maintaining counters in response messages, the number
of hops taken and the amount of link cost incurred by a response message between the
last site which had a replica of the datum in the response and the current site can be
determined. Similarly, it is possible to keep track of the amount of cache space owned
by the intervening sites. Using this information along with the information available
locally, i.e. the costs of the links attached to this site, the following decision function
can be implemented:

rnd < Hops so far • Running link cost • Running cache sum
Hops so far + tcf tcf ~ neighboring link costs tcf

"Rnd" represents a random number in the interval [0,1). Nondeterminism is used
to prevent anomalies such as global looping behavior from persisting if they ever arise.
"Tcf" is the Turnover Control Factor for the current site. Each site maintains its
own tcf in an attempt to maintain a constant level of cache turnover. Turnover can
be estimated as an incrementally smoothed function of the difference between the
current time and the hint-adjusted timestamps of the items being relflaced in cache.
If necessary, a different tcf can be used in each of the three factors in the decision
function to provide more control.

The first factor, hops over hops plus tcf, discourages the creating of replicas when
the last observed replica is very close. The second factor, running link cost over tcf
times the sum of the neighboring link costs, encourages replicas to be created when the
cost of reaching existing replicas becomes great. The neighboring link costs are used
to get an idea of how large the costs incurred by the response message are relative to
an average link cost for the local area. The last factor, running cache sum over tcf,
keeps a site from being stingy with its cache space when it has plenty of it.

Cache replacement is done using a modified Least Recently Used scheme which
allows cached replicas to have hint values[222] which are added to their last access
times to bias the replacement. This feature is used to make it less likely that a replica
of a datum which is expensive to requery will be replaced than a replica whose source
is nearby.

If the decision function is not triggered by a response message, all is not lost. If the
site happens to have enough idle cache space to create a replica without replacing any
existing replicas, it can create a replica with a low hint value. That way, all available
cache space can be utilized without jeopardizing replicas which are more important.
Naturally, if the new replica is reused, its hint value is upgraded. Note that idle cache
space results from fragmentation since data objects are cached as atomic units.

13.6 .4 S imula t ion R e s u l t s

The query routing and caching methods have been studied and developed with the aid
of a simulation. The simulation has gone through several generations as the methods
have been revised and assumptions have been generalized. Overall, the results indicate
that an efficient distributed information system is feasible and could achieve a level of

270 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

Query pa th from 16 (3.091741): 16 25 24 1 6 18 2
Shor t e s t from 2 to 16 (1.286241): 2 18 20 15 16
Actual from 2 to 16 (1.350579): 2 18 20 4 12 26 5 7 16
Time is now 615

Figure 13.1: Early Algorithm Development

performance which averages around 40% of that which could be achieved optimally,
where the distribution of data replicas would be perfect and every query would be
routed directly to the nearest available replica.

To give meaning to the results which follow, several terms must be defined. The
term "link delay" will indicate the time consumed by transmitting a single message
from one site to another over a link. The term "response delay" will indicate the total
time consumed in the transmittal of a query and its response through any number of
links. The "connectivity" of a sub-network, or cluster, is defined as the number of links
between nodes in the cluster divided by the number of links required for the cluster to
be fully connected.

First Generation

In the first generation, a cluster of identical sites in which all links had costs in the same
order of magnitude was simulated. A simple replica placement strategy was Used which
depended only on the accumulated link cost since the last observed replica on the return
path. All sites had the same size cache, and the set of primary copies did not grow
once it was created. Data were classified statically based on the sites at which their
primary copies lay. As was the case with all the simulations, the system was started
with empty caches and empty routing tables, allowing them to self-stabilize over time.
Network topologies were generated at random, testing everything from lines and trees
to fully connected clusters. What happened was that the caching and routing heuristics
interacted in such a way that a stable arrangement of data replicas was created, and
correspondingly stable routing tables guaranteed that queries were routed to nearby
replicas. As link cost were perturbed, the system made minor adaptations to continue
using the minimal cost paths.

The main focus of the first generation was to establish that routing and caching
heuristics could be found which would achieve the authors' goals. Most of the data
collected in this early simulation study consisted of traces of the routes taken by mes-
sages and descriptions of the topologies through which the messages were being routed.
A representative excerpt from such a trace is shown in Figure 13.1. The failure of the
point-to-point router to use the shortest path (the path of least delay, to be precise) is
a "feature" which was added later to generate more realistic results; an implemented
router is only likely to approximate the shortest path since the actual delays will be
constantly changing.

S e c o n d G e n e r a t i o n

In the second generation the study began to concentrate on networks in which there
were two classes of links, namely intereluster and intracluster links. A number of clus-
ters connected by low-cost links were generated, then pairs of clusters were connected

13.6. ARCHITECTURE 271

by choosing random sites within each cluster to host the high-cost links. This topology
has been investigated in detail firstly because it simulates the structure of real-world
networks, and secondly because the first generation algorithms had the weakness of
making too much use of expensive intercluster links. The second generation algo-
ri thms made exceptions to deal with radically expensive links, and the result was that
sites within a cluster succeeded in cooperatively caching all the information which was
needed rather than repeatedly fetching it from overseas, as it were.

The second generation simulation took the number of da ta (primary copies), the
minimum datum size, the maximum datum size, the mean datum size, the number of
sites, the number of clusters, and the connectivity as inputs. The set of authoritative
primary copies would be generated randomly at the start of each run, but remain fixed
thereafter. The network topology was created in a similar manner, but intracluster
link delays were perturbed during the run to simulate changing network conditions.
Later simulations would perturb all link delays.

As has been the case with all the simulations, the sizes of da ta were generated
using a Poisson distribution. The actual average datum size is usually higher than the
specified average due to the removal of da ta of size 0 from the dist~ribution. Since the
simulation does not t ry to estimate the overhead involved in caching data, each site
could cache all the null da ta without incurring any cost; it is therefore pointless to
include them in the simulation.

Figure 13.2 shows the results of increasing the number of da ta in the system while
keeping the number of nodes constant. The simulation reported periodically on the
mean of the response delays taken over just those queries which were issued since the
previous report. The curve labeled "Bound" is an optimistic lower bound on response
delay. The authors were encouraged by the resemblance between the curves formed by
the observed da ta and the optimal bound. The response delays shown in the graph
are the means of all the values which were reported after steady state was reached. A
minimum connectivity of 0.4, an average datum size of 2, and a cache size of 10 were
used. Intracluster links ranged in cost from 0 to 2; intercluster links ranged from 50 to
2001191].

T h i r d G e n e r a t i o n

The third generation algorithms improved on the second generation algorithms to the
extent that most special case exceptions were removed. The simulation began growing
the database dynamically over time and placing the primary copies of data at random
sites within the cluster designated as the home cluster for that class of data. The
static classification scheme induced by this arrangement is "lazier" than the previous
scheme, which assigned a different class to data with different primary sites, since it is
coarser and provides less precise information to the query router. Furthermore, sites
were allowed to have arbitrary sized caches, including null caches. The realization that
it is necessary maintain a consistent level of cache turnover across sites for cooperative
algorithms to be at their best was the main inspiration for this generation and is
primarily responsible for the generalization of the model. A series of tests was run to
t ry to determine the best level of turnover to maintain, only to discover that the effect
of varying turnover on efficiency is partially periodic, making it difficult to analyze
numerically. A theoretical analysis of this effect is on the agenda for future work.

Using the new caching heuristic and the new "lazy" classification scheme, a study
similar to the second generation study was performed. This time, the sizes of sites'
caches were randomized as well. Data were Collected for a series of scenarios in which

272 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

R
e
s
p
O
n
S
e

D
e

1
a
y

Figure 13.2: Response Delay vs. Database Size

280.0

260.0

240.0

220.0

200.0

180.0

160.0

140.0

120.0

100.0

80.0

60.0

40.0

20.0

0.0
4'o

Observed

/ " t -" ~ I ~ Bound

. I

- - - - ~ . J

I0 I I I i I I i I
8 120 160 200 240 280 320 360 400

Size of Database

an ever increasing number of sites was arranged into ten clusters. Ten basic data classes
were used, but their home cluster assignments were allowed to overlap. A minimum
connectivity of 0.8, an average datum size of 5, and an average cache size of 25 (varying
uniformly from 0 to 50) were used throughout. Intracluster finks ranged in cost from 0
to 2; intercluster finks ranged from 50 to 200. All sites were configured to attempt to
maintain turnover close to 600, meaning that the sites adjusted their caching to keep
the average hint-adjusted age of data objects being uncached around 600 time units.

Figure 13.3 shows that response delay decreases as nodes are added. The delays
used were those experienced with a constant influx of new data. Figure 13.4 shows
the progress of response delay as the database is created, the system stabilizes, and
then the long onslaught of new data begins. Note how delay is initially high since
routing tables and caches start out empty, rapidly attains its steady state minimum,
then as new data are constantly introduced, again begins to level off. The noise on the
right side of the graph results from there being less simulation runs which took that
long to complete. Finally, Figure 13.5 shows that the performance remains constant
as the network becomes larger[193]. Performance is the quotient of the calculated op-
timal bound on response delay and the observed response delay; constant performance
indicates that response delay changed at the same rate as the optimal bound.

13.6.5 Implementation

Using the methods developed during the simulation study, implementation of a net-
worked information system will soon begin. The "prototype" will be constructed so
that an incremental growth of the prototype will yield a fully implemented system for
public use.

13.6. ARCHITECTURE 273

R
e
s
p
O
n
S
e

D
e

I
&
y

Figure 13.3: Sites vs. Response Delay

600.0

575.0

550.0

525.0

500.0

475.0

450.0

425.0

400.0
3'o 5'0 7'o 9'0 ' ' ' 110 150 130

Number of Sites

F igure 13.4: T i m e (DB Growth) vs. Response Delay

R
e
s
p
0
n
S
e

D
e
1
&
y

650.0 -

600.0

550.0

500.0

450.0

400.0 - / /
350.0 -1 /

200.01 ~
150.0 1
100.0 [/

Time ==~

274 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

P
e
r

f
o
r
m
a
n
c
e

0.45

0.40

0.35

Figure 13.5: Sites vs. Performance

J

I I I I I I I

30 50 70 90 110 130 150

Number of Sites

Although it will no9 take long to explain, the implementation of the system will
require a significant ardount of work. The heterogeneity of the information bases will
necessitate the construction of several mediators, not the least of which will be a
package capable of automatically utilizing anonymous FTP to access known Internet
archives. Until such archives "join" the information system themselves, a member site
must act as surrogate owner of each archive.

The information system will be built in two layers. The top layer will handle the
routing of queries and the caching of data in a distributed manner. It will contain coarse
grained classification software to determine the best way to route a query and general
descriptor matching heuristics to decide when to try to answer a query with cached
data. The bottom layer will consist of mediators and the local archive managers at
each site owning an archive. It may be formed by an existing DBMS or by a specialized
archive manager. Each will contain some combination of fine grained data classification,
query processing, automatic indexing, and archive maintenance software. The bottom
layer will be characterized more precisely in the following section.

D a t a T y p e s a n d C l a s s i f i c a t i o n H e u r i s t i c s

When the prototype comes on line, it should include at least the following in order to
provide a demonstration of its capacity to handle heterogeneity:

1. A corpus of ASCII text documents;

2. a collection of source code in several different programming languages;

3. a database of relational tables or other objects which is indirectly accessed
through a DBMS;

4. a collection of bitmapped images with differing formats;

5. an FTP archive containing executables and other data.

Most of the workstations in the system should at least be able to determine which
major data type a query requests. This coarse grained classification will be accom-
plished by inspection of the query for key terms. For example, source code would be
flagged by the presence of the names of one or more programming languages or the word
"source" in a favorable context. To avoid repetition of coarse grained classification,
the general data type required by a query will be coded by the client at the querying
site whenever possible. The most common data types will be assigned special codes.

13.6. ARCHITECTURE 275

Queries which cannot be parsed in this way will be forwarded without the special type
coding.

Finer grMned classification for each major da ta type will be accomplished as follows:

1. WAIS should serve as the main textuM archive manager. Any additional text
documents will be anMyzed and indexed using an existing text processing al-
gorithm, and matches between queries and documents will be made using an
existing fuzzy retrievM method. Boolean querying may Mso be supported.

2. Source code will be classified by language and by purpose. The language is easily
determined by scanning the file for constructs unique to different languages.
The purpose of each source file will be kept in an index which is initially built
automatically from comments found in the source, but modified as necessary
by a human operator. Indexing solely by scanning comments is unreliable since
commenting styles vary drastically from programmer to programmer, some of
which may not comment at M1. Matches between queries and index entries will
be done as before.

3. When a DBMS is involved, an information system query might encapsulate a
query to be presented to the DBMS or it might contain an unstructured question
as usual. The encapsulated query case is trivial since it only needs to be identified
as such; this is on the same level as determining the language of a source code
file. However, unstructured questions must be translated into a query which is
meaningful to the DBMS. Finding ways of translating arbitrary natural language
queries into a database query language is beyond the scope of this work, as
research is still actively being done in this area. However, a simple system
may be implemented by which a user may ask how to access on line help for
the specific DBMS and for the names and attr ibutes of database objects which
contain da ta relevant to some topic. It should also be possible to create a simple
macroscopic mapping of database objects onto information system objects, such
as to consider an entire relational table to be a single object[190, 35]. This
simplifies the interface enough that the information system should be able to
reliably construct queries for the desired objects and to cache replicas of them as
usual. The drawback is that the user must accept the object in its entirety and
send an encapsulated query to the DBMS if more selectivity is desired - but the
simplified system is much more likely to succeed than an a t tempt to translate
natural language into arbitrarily complex queries.

4. The format of an image can almost always be determined by scanning the be-
ginning of the image file for signatures which are unique to different formats. As
was discussed earlier, automatic determination of the content of images is just
beginning to be actively researched and is in its extremely early stages. With
the exception of automatically generated images such as satellite weather maps,
the collections of images the system includes will almost certainly be manually
indexed.

5. Many F T P archives provide informal indices for their available files. The system
will interface with these archives by utilizing the existing textual indices and
anonymous F T P in a fully automatic manner.

While it is small, this initial set of interfaces and data managers will provide a
demonstrat ion of the capabilities of the system. The FTP interface alone will pro-
vide a much needed service, removing the need to navigate unfamiliar file systems

276 CHAPTER 13. TOWARDS FLEXIBLE DISTRIBUTED INFO.

and reducing the drain on central archive sites and the network through cooperative
caching.

13.7 Concluding Remarks
While the information retrieval field was growing, the need for good information re-
trieval techniques was growing even faster. Some good information retrieval techniques
are now available for small domains - but the current information domain is vastly
larger than any of these techniques can handle. Just as small-scale information systems
are becoming capable of dealing with natural language queries, the major information
networks h~ve grown so large that even a skilled user is sometimes unable to locate
needed information.

To find a desirable solution to the Resource Discovery Problem, it is necessary
to adapt and integrate information retrieval techniques for the large network environ-
ment. The fragmented and heterogeneous resources of the network must be used to
support distributed information retrieval in a fair and efficient manner. Specialized in-
formation retrieval techniques must be allowed to operate within limited domains while
researchers work to solve the greater problem of generaJized retrieval. In this chapter,
algorithms and architecture were presented for a distributed information system which
can solve the following problems:

�9 The Resource Discovery Problem. By automatically routing queries to the sites
which can answer them, the system removes the burden of resource discovery
from the user.

�9 The heterogeneity problem. By treating all data as objects, it supports the
integration of any information base whose data can be divided into units. By
giving access to all these information bases simultaneously, a simplified global
view is provided.

�9 The retrieval problem. Information retrieval techniques and data classification
can easily be used by the system to handle queries expressed in natural language.

Acknowledgements
Information Retrieval is indeed a very rich field which has been under investigation
for many years. The authors would like to recognize the very many researchers who
worked long and hard to bring Information Retrieval to the level it has attained. They
sincerely apologize to all those who could not be recognized due to space limitations.

Chapter 14

Efficient Parallel Recovery in Replicated Databases

Raj Tewari*

14.1 I n t r o d u c t i o n

Recovery in replicated databases is an important issues for fault-tolerant processing
and non-stop computing. Recent database servers such as Oracle7 server are shipping
with distributed and parallel options. The distributed option allows co-operative trans-
action processing by allowing selective replication of files in read-only and read-write
modes on multiple servers and transactions that can execute across multiple servers are
then co-ordinated by the two-phase commit operation. Moreover, the Oracle7 server
allows parallel processing on multiprocessor machines such as the Sequent, to execute
operations in parallel. It is of primary importance that the recovery algorithm for a
distributed and parallel database server incorporate parallel operations to allow faster
and efficient recovery. In this chapter we propose such an algorithm.

One way in which recovery can be facilitated is by using semantic knowledge of
database operations to embed intelligence in the recovery algorithm. The idea of
using semantic knowledge to increase concurrency was investigated by Garcia-Molina
[208]. In an algorithm proposed in [208], transactions are divided into a collection
of disjoint sets or classes, so that the transactions that belong to the same class are
compatible. Transactions that are compatible can be allowed to interleave arbitrarily,
whereas incompatible transactions (transactions that do not belong to the same class)
are not allowed to interleave.

Commutativity of database operations is an important property that can be uti-
lized for enhancing concurrency within transactions [24,604]. In [24], a property known
as recoverability, has been defined, which can be used to decrease the delay involved
in processing non-commuting operations while avoiding cascading aborts. When an
invoked operation is recoverable with respect to an uncommitted operation, the in-
voked operation can be executed by forcing a commit-dependency between the invoked
operation and the uncommitted operation. In this way the transaction invoking the
operation will not have to wait for the uncommitted operation to abort or commit.
To enforce the serializability of transactions, the recoverability relationship between
transactions is constrained to be acyclic.

A semantics based transaction management technique for managing replicated data
was proposed in [337]. Conventional consistency control algorithms using one-copy se-
rializability as the correctness criteria, are designed to deliver fast response times and

*Computer and Information Sciences Department, Temple University, Philadelphia, PA
19122

278 CHAPTER 14. EFFICIENT PARALLEL RECOVERY

high availability for read-only transactions while sacrificing these goals for updates.
They propose an approach that works well for both retrieval and update environ-
ments, by exploiting semantic properties of transactions. By subdividing transactions
into various categories, and utilizing a commutativity property, they demonstrate that
communication costs are minimized.

The SHARD (System for Highly Available Replicated Data) approach, described
in [489], [490], [491] and an associated protocol called the log transformations pro-
tocol [67] are designed to support continued database operations in the event of site
failures or network partitioning. To achieve this objective, SHARD sacrifices transac-
tion serializability and uses t imestamp ordering to ensure eventual mutual consistency.
New algorithms for robust update propagation and a mutual consistency mechanism
for complex update types such as increment and decrement was developed in [489].
SHARD also provides a basis for triggering application-specific compensating actions
in the event of an inconsistency, and provides mechanisms for implementing concur-
rency controls that can be used selectively to reduce the probability of inconsistency
at the expense of a controlled increase in response time. Basically, SHARD utilizes an
optimistic approach for maintaining mutual consistency of copies of database objects.

We have previously proposed an approach for distributed databases on uni-
processor machines in [580, 581], that is intermediate between the mutual exclusion
approach and the SHARD approach. Merging two partitions can be achieved by com-
paring only one copy of a da ta object in the first partition, with a copy in the second
partit ion, together with the transaction history in both partitions containing all the
transactions that performed operations on the data object. This information is suf-
ficient to reconstruct the final value of the da ta object, since the classification of the
transactions results in a sequence of operations that do not conflict with each other,
hence they can be performed in parallel.

When updates or reads are made in a partitioned state, it is possible that non-
serializable behavior may result. This can lead to inconsistent copies of the da ta
object in different partitions. One suggested way to mitigate the effects of such in-
consistency is through compensating transactions [490]. Compensating transactions
depend on application semantics and would be determined by policy decisions for each
organization.

The rest of the chapter is organized as follows. In the next section we present a
high-level overview of the proposed consistency control algorithm. Details of the basic
merge protocol are presented in the next section. We then present extensions to the
basic merge protocol to include parallelism in the operations if possible on the machine
architecture. The next section evaluates performance of the merge protocol using a
simulation model, and a comparative performance analysis is presented, comparing
the performance of the merge protocol to the previously proposed log transformation
protocol.

14.2 Consistency Control Algorithm
The algorithms proposed by us in this chapter have the objective of attaining even-
tual consistency in the final database state, while sacrificing mutual consistency in
intermediate states. We need to differentiate between consistent and correct data. A
distributed database with multiple copies of da ta objects preserves mutual consistency
by ensuring that all copies of a da ta object have the same value. If strict consistency
is to be preserved queries and updates can be allowed in only one partit ion if network

14.3. P A R A L L E L M E R G E P R O T O C O L 279

failures occur, and disallowed in other partitions. If a database sacrifices consistency,
it needs to ensure that the results of read and write operations are correct, in the sense
that they are equivalent to the results that would have been obtained had consistency
been preserved. If the results are not correct subsequent compensating mechanisms
have to be used to ensure correctness in the final state.

A fully connected and operational distributed database system (DDBS) is non-
partitioned. Due to site and/or communication link failures the system can be parti-
tioned into two or more disjoint connected components. In general, a slow site or link
is indistinguishable from a partition. A group of sites can determine autonomously
whether there is a partitioning by polling the sites in the original configuration and us-
ing timeouts to determine any non-responding site(s). This process can be repeated for
any further partitions, provided each site in every partition maintains a configuration
vector.

The configuration vector maintains the set of sites that are in the same connected
component and are reachable from the home site. The requirement of a configuration
(or connection) vector is a common one in most systems with replicated data. The
configuration vector may be updated when updates to data objects are propagated.
For more details of the operation of the connection vector, please see [290, 291].

The rules for maintaining consistency of copies of data objects in a partition are
read-one-write-all copies (ROWA). As long as all sites in the DDBS are operational and
able to communicate with each other, the ROWA rule ensures data consistency. Notice
that the ROWA rule by itself is not sufficient for maintaining seriaJizability [136]. An
underlying concurrency control mechanism has to operate to ensure serializability of
transactions within partitions. We assume that a strict two-phase (2PL) concurrency
control protocol is used within all partitions. The 2PL protocol does not operate
across partitions because there is no communication between different partitions. The
consistency of the DDBS is maintained by a merge protocol at the time of merging
partitions.

If the database system partitions into two groups, then the effects of transactions
in one partition will not be seen by the other partition. Within a partition, data ob-
jects will be synchronized by the ROWA rule, but there may be inconsistency across
partitions. The problem we are addressing is to merge all data objects in the parti-
tions optimally. Thus we seek to find a merging process that yields an optimal set of
transactions for merging utilizing semantic knowledge.

14.3 Parallel Merge Protocol
In this section we will describe an efficient merge protocol that merges two partitions
after a communication link repair has connected the two partitions. We consider the
simplest possible case of one data object and two partitions. This case can be extended
to handle the general case of many data objects and n partitions as shown later in
Section 4.

We make the following assumptions:

1. Each site maintains a local clock that tags each transaction with a unique times-
tamp.

2. Each site maintains independent backup logs that record the action of each
transaction on each data object (i.e. the backup log records each operation and
its associated time stamp). This is in contrast to the more common backup logs
that maintain before and after values of each data object.

280 C H A P T E R 14. E F F I C I E N T P A R A L L E L R E C O V E R Y

3. The logical database schema remains unchanged during a partitioning.

4. The replicated database system has a mechanism for implementing parallel op-
erations, either by using specialized paraJ]el processing database machines, or by
using software simulation of parallel operations. This assumption is easily real-
ized in practice in modern high-performance databases that utilize parallelism
for intra-query or inter-query operation speedup. For an excellent recent survey
of parallelism in databases refer to [409].

The first assumption requires local clocks at each site (processor) which is common
in distributed computing systems. A global order of transactions executed in each
partition can then be determined, even when there is no globally synchronized clock as
shown by Lamport in [348]. The second assumption says that the backup logs record
operations performed by each transaction on every data object, instead of the before
and after values of every data object. This can be accomplished without excessive
additional processing. In fact, transactions were originally defined in the context of

e n maintaining consistency by Eswaran et al. [182] as a sequence T = ((T~,ai, ~))i=1 of
n steps where T is the transaction name, a~ is the action at step i and e~ is the entity
acted upon at step i. This is just the information that we maintain in the logs.

The following terminology will be used in the description of our protocol:

Def in i t ion 14.3.1 A p a r t i t i o n log is the sequence of locally ordered transactions
that are executed site in a partition Pi.

Def in i t ion 14.3.2 An in i t ia l m e r g e log is a sequence of transactions that must be
executed in a partition Pi to bring the database to a globally consistent state.

Def in i t ion 14.3.3 A t a r g e t log is a sequence of globally ordered transactions con-
structed from the locally ordered transactions in the partition logs of each site.

Def in i t ion 14.3.4 A m e r g e _ u n d o t r a n s a c t i o n is a transaction executed at merge
time of partitions, to reverse the effects of an out of sequence transaction in the global
ordering of transactions. The merge_undo transaction of a transaction T is denoted
by T ' . Further, the log (7, T ') = log (T ' , T) = null effect on the database. An
m e r g e _ u n d o t r a n s a c t i o n log is a globally ordered sequence o] merge_undo trans-
actions.

Def in i t ion 14.3.5 A merge_ redo t r a n s a c t i o n is a transaction executed at merge
time to achieve the effects of a transaction that was rolled back for merging. Merge_redo
transactions are the same as the original transactions, but they are scheduled for execu-
tion at merge time o] partitions. A merge__redo t r a n s a c t i o n log is a globally ordered
sequence of merge_redo transactions.

Def in i t ion 14.3.6 A s e m a n t i c a l l y equ iva len t t r a n s a c t i o n is a transaction that
has the same effect on the database as a sequence of transactions. I f (T1, T2 , . . . , Tn) is
a sequence of transactions, then the semantically equivalent transaction of this sequence
is denoted by T1,2

It should be noted that our definitions of merge_undo and merge_redo transactions
and their associated transaction logs are different from the standard definitions of
undo and redo[593]. The operation intended by the new merge_undo and merge_redo

14.3. PARALLEL MERGE PROTOCOL 281

transactions is very similar to that intended by the original undo and redo defined
in[593], but has different semantics.

The initial s tate upon partitioning of the DDBS into two partitions Pi and Pj is
a consistent state. PLi and PL~ are parti t ion logs that bring the two partit ions into
inconsistent intermediate states S~ and Sj (there could be finitely many intermediate
states; however, we concentrate only on the last inconsistent states S~ and Sj, which
are the states just before the partitions are repaired).

Our objective is to find optimal merge logs ML~ and MLj, which will run in
part i t ion i and j respectively, and will result in a consistent state Sf in both partitions.
We define initial merge logs IML~ and IMLj as:

IML~ = (PL~, T)

IMLj = (PL'j, T)

where T is the target log defined by the global transaction ordering mechanism we have
assumed. T contains all the merge_redo transactions, hence it is called the merge_redo
partition log. PL~ and PL} are the merge_undo partition logs, consisting of the inverse
transactions of all transactions in PLi and PLy.

We will propose a protocol that results in greater savings through more efficient
processing than the log transformation technique [67]. The log transformation mecha-
nism seeks to classify transactions into the following types:

�9 Overwrite pairs

�9 Commutative pairs

�9 Conflicting pairs

and then proceeds to simplify an initial merge log through successive log transforma-
tions that replace a pair of overwrite transactions by the overwriting transaction. Pairs
of transactions that are inverses of each other, and occur successively are canceled.

We propose exploiting transaction semantics further to gain significant savings,
that are not possible using the log transformation technique. Properties of arithmetic
operations such as associativity, and distributive laws can be utilized to obtain further
reductions in the initial merge log.

An example of a banking database will clarify our approach, and also point out
situations where the log transformation approach will not ensure any savings, but our
approach will achieve substantial savings in transaction processing.

E x a m p l e : Assume that the database partitions into two partitions i and j. We will
follow the transaction activity related to one data object, say a checking account with
an initial balance of $200 before partitioning.

The transactions executed in the two partitions and the corresponding changes in
the balances are shown in Table 14.1. For the duration of the partit ion transaction
T1, T2, T4, T~, Ts and T10 were executed in partit ion i and transactions T3, T6, Tr, T9
were executed in parti t ion j. The global balance is known to us from the history of the
transactions but the global balance is not known to either of the two partitions. The
objective of the merge protocol is to arrive at globally consistent (correct) database
objects; in this case the account balance. Partitions i and j have inconsistent account
balances. The balance in partit ion i is $650 before the merge, and the balance in
part i t ion j is $100, whereas, the globally consistent balance that we seek to arrive
at is $545. This would be the balance if all the transactions were executed in their
t imestamp order. The global balance is shown in Table 14.1 as G(b).

282 CHAPTER 14. EFFICIENT PARALLEL RECOVERY

Table 14.1: P a r t i t i o n Logs for Pa r t i t i ons i and j
Parti t ion i Partition j G(b)

Transactions Bal(i) Transactions BalO)
T1 = deposit(200) 400 200 400

T2 = query account 400 400
T3 = withdraw(100) 100 300

5OO
4OO

T6 = withdraw(50) 50 350
T7 = deposit(100) 150 450

495
T9 = withdraw(50) 100 445

545

T4 = deposit(200) 600
T5 = withdraw(100) 500

Ts = addinterest(10%) 550

T10 = deposit(100) 650

We classify the operations of the transactions into the following types:

�9 Collapsible

- Associative

- Distributive

- Commutative

- Other non-arithmetic

�9 Non-collapsible

Associative operations are those that can be combined with each other into one
semantically equivalent operation. If X, Y, Z are operations then the notion of associa-
tivity that we are using is:

(X O (Y e Z)) = ((X e Y) e Z)

The operator | stands for any associative operation. In the simplest case this operator
could be the algebraic associative operation for arithmetic database objects. In more
complex cases this operator could stand for associative operations on non-arithmetic
database objects which could be combined using semantic information. If by the above
manipulation, we can combine the operations X and Y into one operation, then we
have achieved a reduction in the initial merge log.

Similarly, distributive operations on X, Y, Z are:

X | e Z) = (X | Y) e (X | Z)

The operators | and E3 could be algebraic in the simplest case or could be non-algebraic
but distributive by other semantic knowledge. If we have database operations as de-
picted by the right hand side of the above equation which cannot be reduced in that
form, it is possible that they could be reduced by converting them to the form of the
left hand side.

One of the key points in the above discussion is that it is possible that not all
operations involve arithmetic operations. There could be non-arithmetic operations on
the database that could be combined by looking at their semantics. Thus, the category
other non-arithmetic contains database operations that are of non-arithmetic nature,

14.3. P A R A L L E L M E R G E P R O T O C O L 283

yet can be combined knowing their semantics by one of the associative, distributive,
commutative or other semantic operators (which are application specific). An example
of a non-arithmetic operation is the location of a vehicle in a car rental system. The
car may be rented at one location and returned at another location, which may, at
some instant of time, be isolated from the originating location. To reconcile the return
of the car, and its location in the two partitions (the originating partit ion and the re-
turning partit ion), a non-arithmetic operation, namely updating the location variable,
is required.

Non-collapsible operations are those that cannot be combined with other opera-
tions based on their mathematical properties and other available semantic information
about them. The thrust of our protocol is that if by using available mathematical
and semantic information about database operations, we can collapse a sequence of
operations in the initial merge log into one equivalent operation, we can perform the
merge process more efficiently, by substituting one equivalent write on the database in
place of each individual write operation corresponding to each merge operation.

Operations of the type deposit, withdraw and query can be represented by functions
of the form

f : (x) = cl + x

where cl is a constant. Hence these are associative and any number of deposits, with-
drawal and queries appearing in the initial merge log can be collapsed into one equiv-
alent operation.

Operations of the type add interest can be represented by a function of the form

f2(x) = c2 + czx

These operations cannot be combined with other operations since they are not asso-
ciative, distributive or commutative with deposit, withdrawal and query.

The initial merge logs for the banking example will be defined for each partit ion i
and j as:

I M L, = [T~o, T~, T~, T~, T~, T~, T2 ,T10]

and
I M L j = [T~, T~, Tg, T~, T~ , T2 T10]

which reflects the brute force approach of undoing all transactions run in each partition,
and then redoing all transactions in the globally serializable order, found by the global
ordering algorithm.

We will first use the log transformation protocol to get a transformed merge log for
each partit ion, as depicted below:

P a r t i t i o n i

ML~ = [T;o,Tg,T;,T;,TLT;,T~,T~,. . . ,T~o]
= [T ~ o , T i , T ~ , T ~ , T i , T 2 ,T~0]

= [TIo,T~,T~,T~,%,... ,Tlo]

P a r t i t i o n j

M L j = [Tg, T~,Tg,T~,T1,T2 ,T10]

The log transformation technique would result in 12 transactions in parti t ion i, and
14 transactions in part i t ion j to bring both the partit ions to a consistent state, in the

284 CHAPTER 14. EFFICIENT PARALLEL RECOVERY

first pass of the reduction process. In the first pass all reductions are made using the
property of double node deletion. Further reductions are possible using the commu-
tativity property and constructing merge graphs that identify further reductions. But
this requires considerable computational effort.

Our proposed parallel merge protocol utilizes the semantic information provided
by the complete history of all transactions available to in the logs, as follows:

1. Scan merge_undo transactions in reverse order till a non-collapsible transaction is
encountered. Accumulate the effects of all the collapsible transactions (deposits
and withdrawals) till this point in one semantically equivalent transaction. Con-
tinue scanning in this manner until the next non-collapsible transaction and
repeat the process of constructing another semantically equivalent transaction.
This process is repeated until there are no more merge_undo transactions.

2. Scan merge_redo transactions in order till a non-collapsible transaction is en-
countered, and accumulate the effects in semantically equivalent transactions as
in (1) above. Repeat this process till the list of transactions in the merge_redo
log is exhausted.

Continuing our example, we obtain the following reductions using our merge pro-
tocol:

P a r t i t i o n i

ML~ = [7;0, ~A 7L 7L T3, %,. . . , T10]
[~o, T~, T;,4~ T3,4,s,~,~, Ts, T~,10]

P a r t i t i o n j

rq~l T I rpI TI ,-p ~ T10] M L 3 = LJ~9, 7 , - t6 , 3 , ~ t l l J - 2 , . - - ,

= [T9,7,6,3, T1,2,3,4,5,6,z, Ts, T9,10]

Here 7~,4 is the semantically equivalent transaction for T~ and T~, and its effect on
the database is the same as a deposit of $100. Similarly, T3,4,~,6,z is the semantically
equivalent transaction corresponding to transactions T~, T4, Ts, T6, T7, and its effect
on the database is the same as a deposit of $50. We have reduced the IML~ with
16 transactions to a semantically equivalent log with 5 transactions, whereas the log
transformation approach was able to achieve only a reduction to 12 transactions. Using
our merge protocol in partition j, we obtained an optimal merge log containing only 4
transactions, as opposed to no possible reductions using log transformations for IML i
in one pass. Note that these results are based on all reductions achieved in the first pass.
The log transformation protocol will discover all the reductions possible eventually, but
this will be at the expense of constructing merge logs and then reducing them. Each of
the merge log graphs will contain as many nodes as the number of transactions in the
merge log, and conceivably the log transformation approach will result in large graphs.

The advantage of combining several transactions into one at merge time is that the
final effect of the collapsed transactions is written and committed to the secondary
storage only once. This is a significant benefit over writing and committing each
traditional undo and redo transaction individually to the database, resulting in a large
number of secondary storage accesses, that slow down database processing. Further, a
sequence of semantically reduced transactions can be executed in parallel, since they
are independent of each other.

14.4. E X T E N S I O N OF T H E P A R A L L E L M E R G E P R O T O C O L 285

It should be noted that our technique is different from the group commit technique.
The group commit technique as described in [330] is performed at the time of regular
transaction processing and not at the time of recovery. Moreover, the group commit
technique does not take semantic knowledge of transactions into account when deciding
which transactions make up the group to be committed. In contrast, our algorithm is
executed at the time of recovery of sites or partitions, and takes semantic knowledge
that is available in the mergeAogs to decide which transactions can be grouped and
then executed in parallel.

14.4 E x t e n s i o n of the Parallel Merge Pro toco l
to the General Case

We have focused on one da ta object and two partitions for the sake of exposition. The
general case of many objects and many partitions can be handled by our protocol.
The extension of the merge protocol to the case of more than one data objects and n
parti t ions is described below.

The final value of each da ta object can be efficiently reconstructed using the merge
protocol from the history of transaction operations available in the partition logs. Recall
that we maintain each operation on the data objects, instead of before and after values.
We can view the merge protocol as operating sequentially on each data object in the
database, taking into account only those relevant transactions that operated on that
da ta object. Thus the set of relevant transactions for merging may be different for
different objects, the only requirement being a global ordering of transactions across
all partitions.

We consider only simple partitioning of the database at any instant of time, and
exclude the possibility of byzantine failures. The merge protocol can then be applied
successively to each binary partit ion to handle a general n-way partitioning. Thus any
arbi trary partit ioning of the database can be described in terms of a finite sequence of
binary partitionings that can be linearly ordered in time.

One important question is that of failure during recovery. Since our algorithm
does not use a voting technique to maintain consistency, the algorithm holds even if
there is a failure during recovery. At the time of performing the merge algorithm, if
there is a new failure at the site where the merge algorithm is running, we can view
the situation de novo, in the sense that when recovery occurs again, the whole merge
process s tar ts again from scratch. In this respect, our algorithm is at least as good as
other algorithms for recovery.

14.5 Incorporat ing Paral le l i sm in the Merge
Pro toco l

Once the operations in the initial merge logs have been classified into collapsible and
non-collapsible, the new proposed way of handling the merge processing is to use
parallel execution of the operations in the final merge log, since the operations in the
final merge log do not interfere with each other. However, this is possible only if the
machine architecture or a software emulation allows parallel execution of operations
in the final reduced merge logs. With parallel concurrent writes, there is reason to

286 CHAPTER 14. EFFICIENT PARALLEL RECOVERY

believe that ths speedup obtained in merging and consequently in the recovery process
can reach speeds approximating real-time operation.

Parallelism is significantly faster in the case of operations involving multiple data
objects, since frequently the processing involves join operations, which are costly in
distributed databases. It is of great importance to utilize opportunities for parallel
execution of recovery operations to speed up the recovery :process.

14.6 Performance Analysis of the Parallel
Merge Algorithm

We compare the performance of the parallel merge protocol proposed by us with the
log transformations protocol proposed in [67] using a simulation model. The objective
of the performance analysis is to obtain the efficiency measure for both protocols. The
efficiency measure is defined as the percentage reduction obtained in the initial merge
logs using the protocol whose performance is being evaluated.

Initial merge logs are generated containing on an average 10 to 90 percent non-
collapsible transactions (correspondingly, 90 to 10 percent transactions are collapsible).
Transactions are randomly classified into N (non-collapsible) or C (collapsible) and
filed into the initial merge log. Once an initial merge log is generated, reductions
are performed on it using our protocol and the log transformations protocol. Since
our protocol is a one pass protocol, we simulate the reductions obtained by both the
protocols in one pass.

The implementation of the log transformations (LT) protocol requires a graph
representation and operations on a graph that will eventually discover most of the re-
ductions obtained by us but at considerably greater expense, because of the complexity
of their implementation. The implementation of the LT protocol results in a multi-pass
approach, as is made evident by the examples presented in [136]. In order to perform
a fair performance evaluation, we compare the performance of the two protocols using
all reductions obtained in one pass only.

For each level of NC (percentage of non-collapsible transactions in the initial merge
log), varying from 10 to 90, and for each initial merge length (IML) varying from 10
to 100, replications of the experiment are performed to achieve s*atistica]ly significant
results (95 % confidence intervals) Thus, each of our point estimates for the proportion
represents 385 replications. The computer programs were written in the C program-
ming language.

For ~ny given initial merge log length, the eff• of the both our merge protocol
and the LT protocol increases as the value of NC decreases. This can be explained by
the fact that as the value of NC decreases, there are less non-collapsible transactions on
an average in the initial merge log, and consequently greater reductions are possible.

We performed the simulations for NC = 10 to NC = 90, since this spans the feasible
region of transaction mixes. Here, we present the results for NC = 10 to NC = 40, since
the reductions are more obvious. NC = 70 to NC = 90 follow the same pattern, but
at a reduced level. The results from the simulation model indicate that the reductions
obtained using the parallel merge protocol are significantly higher than those obtained
by the log transformation technique for NC = 10 to 40 level.

The results obtained in the simulation were from randomly generated transaction
streams. There are transaction streams that could lead to worst case performance
results. If we have a transaction stream that alternates strictly between C and NC

14.7. CONCLUSION 287

transactions, then neither our merge protocol nor the LT protocol will be able to find
any reductions thereby implying that the worst case behavior of both the algorithms
is the same. This is, however, true for any protocol utilizing semantic knowledge of
transactions, when faced with a transaction stream that strictly alternates between NC
and C transactions.

14.7 Conc lus ion

In this chapter, we have proposed a new parallel recovery algorithm for rephcated data-
bases that axe subject to site failures and network partitioning. The recovery algorithm
utilizes available semantic information about the operations of transactions to classify
the operations into collapsible and non-collapsible operations. This classification allows
us to obtain reductions in merge logs to speed the recovery process when partitions
are repaired and merged together by exploiting parallehsm. The recovery algorithm
proposed by us is also suitable for systems with long duration or nested transactions,
such as C A D / C A M databases and emerging multi-media apphcations.

Our work is most closely related to the proposal for recovery in centralized data-
bases in [331]. We have considered a rephcated database environment and performed
simulation experiments to test the efficiency of our recovery protocol. Results of this
performance evaluation indicate that our recovery protocol provides improved perfor-
mance than a previously proposed protocol based on the log transformation technique.

One of the important issues for future research is how to pre-classify operations
of transactions and define compensating operations. Certainly an approach that au-
tomatically collects this information from the database system is preferable over one
that requires users to specify this information. However, it may not be possible to
obtain the complete semantics of all operations automatically through the database
system, because knowledge outside the appfication domain may be required to infer
the semantics.

Another significant research area is the investigation of parallel machine architec-
tures and their influence on recovery strategies. It can be conjectured that the parallel
recovery algorithm will be different for a connection machine type of massively parallel
architecture, than an algorithm for a Gray Y-MP type of vector processor architec-
ture. The influence of architectures and support for parallel operations in databases of
the future is key to handhng grand challenge apphcations such as the human genome
project.

Chapter 15

Document Allocation In Multiprocessor Information
Retrieval Systems

Hava T. Siegelmann* Ophir Frieder t

1 5 . 1 I n t r o d u c t i o n

The volume of data accessible online is steadfastly increasing. This growth will
shortly render conventional information retrieval systems helpless in terms of respond-
ing to users' queries within an acceptable period of time. The increase in the volume
of data available online stems from improvements in data communication and storage
technologies which in turn spurred an increase in the number of information providers,
and the volume of data provided by each information source.

To provide the computational demands needed to deliver acceptable response times
in the wake of voluminous information retrieval databases, numerous large-scale (scal-
able) multiprocessor information retrieval systems [1, 23, 131, 455, 454, 513, 545,
546,544, 550] have been proposed. A scalable multiprocessor information retrieval sys-
tem generally necessitates the exploitation of a distributed memory architecture as a
large number of processors is currently not possible in a shared-memory configuration.
A distributed memory system, however, introduces the problem of mapping the data
onto the given architecture. (A poor document mapping onto an architecture results
in high access and retrieval times.) We refer to this problem as the Multiprocessor
Document Allocation Problem (MDAP), and develop a heuristic approach based on
Genetic Algorithms which yields a near optimal mapping.

Throughout this research, the term "document" is used generically to represent
any datum to be accessed. That is, a "document" may take various forms, ranging
from simple text to highly detailed photographs to voice and animated video. For
example, in a hospital setting, patient data includes EKG readings, blood sample mea-
surements, x-rays, patient daily charts annotated in handwriting by the physician,
patient history, and possibly, accounting information. Such a system must incorpo-
rate pictures (x-rays), contiguous electronic signals (EKG readings), hand written free
formatted annotations (doctors' notes), and formatted data such as billing. (For a
detailed evaluation of the design issues of medical databases, see Allen and Frieder
[14].)

*Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, U.S.A.,
siegelma@yoko.rutgers.edu

tDepartment of Computer Science, George Mason University, Fairfax, VA 22030, U.S.A.,
ophir@cs.gmu.edu

290 C H A P T E R 15. D O C U M E N T A L L O C A T I O N IN M U L T I P R O C E S S O R

We assume a clustered document database for the following reasons. First, in
view of an appropriate data model, highly data intensive applications typically lend
themselves to a clustered approach. In the medical arena, for example, a doctor may
wish to capture:

�9 the entire medical history for a given patient (clustering based on patient iden-
tity);

�9 information concerning a given disease (clustering based on the type of disease);

�9 diseases exhibiting a given type of symptoms (clustering based on symptoms);

�9 all available data regarding common ailments for a particular region of the world
(clustering based on geographical location).

Second from a standpoint of a compromise in terms of storage and processing
times, a clustered approach reduces the storage overhead introduced by an indexed file
organization. Haskin [243] proclaimed that an indexed file organization can introduce
a storage overhead of up to roughly 300%. As compared to a full-text or signature
analysis technique, a document clustering approach results in significantly lower search
times.

In the context of a clustered document database, a proper solution to MDAP is any
mapping of the document onto the processors such that the average cluster diameter is
kept to a minimum while still providing for an even document distribution across the
nodes. An even document distribution is needed to provide an equal workload across
the processors. As shown in Frieder and Baru [198], a low average cluster diameter
increases the inter-query parallelism. (The distribution of clusters along large diameters
introduces high traffic in the communications network, increasing the contention and
reducing the system throughput - see Frieder, et al. [199].) Returning to the medical
database example described above, a solution to MDAP may involve the mapping of
patient records across the nodes of a given distributed multicomputer such that efficient
retrieval is supported for all queries that view the database as being clustered based
on each of the above four clustering views.

The remainder of this chapter is organized as follows. Initially, a proof demon-
strating that MDAP is NP-Complete is provided. The Mapping Problem and several
of its derivatives are similar to MDAP, and hence, a brief review of solutions addressing
these problems is provided in Section 3. Also provided in Section 3 is a brief discus-
sion of prior relevant multiprocessor information retrieval systems. In Section 4, our
genetic-based, document allocation algorithm is described. The theoretical foundation
on which our approach is based, a proof of convergence of the derived allocations to
a good mapping, is given in Section 5. An experimental evaluation of the proposed
algorithm is presented in Section 6. We conclude in Section 7.

15.2 M D A P is N P - C o m p l e t e

An instance of MDAP consists of a homogeneous distributed memory architecture
with n nodes, Xi ,0 < i < n - 1, and partitions of the documents D~,0 < i < d - 1,
called clusters, C. Each cluster C~, 0 < i < c - 1, represents a set of all the documents
associated with it. The distance between a pair of nodes is defined as the cost of sending
a packet from node i to node j and is represented by the internode communication
cost matrix, Mij, 0 ~ i , j _< n - 1. The diameter of a cluster is the maximum distance
between any pair of nodes that contain documents belonging to the given cluster.

15.2. M D A P IS N P - C O M P L E T E 291

MDAP requires the documents to be evenly distributed across the nodes such that
the sum over all cluster diameters is minimal. As the sum of the cluster diameters is
reduced, the total communication traffic is minimized. An even distribution is required
to achieve a balanced workload across the processors.

Here, we show that MDAP is inherently hard. We do so by proving that it belongs
to the class NP-complete. Problems including in this class are considered too hard to
be solved in practice, even when allowing for much computation resources. Instances
of such problems, hence, can at best only be solved approximately.

(We provide in this paragraph a brief overview of the class NP-complete, a well
studied issue in the field of computational complexity theory: NP is the class of deci-
sion problems, for which affirmative solutions can be verified polynomially. This class
includes for example the Satisfiability problem; i.e., given a Boolean formula, decide
whether there is an assignment of the variables so that the formula yields the True
value. Here, an assignment of the variables can be verified as satisfying in polyno-
mial time. NP-complete is a class of "hard" problems. A problem is in the class
NP-complete if it is in NP and is at least as hard as any other NP problem (i.e., the
existence of a polynomial time algorithm solving it implies that all other NP prob-
lems are solvable in polynomial time as well). Satisfiability is in this class, as well as
the Traveling Salesman Problem, Multiprocessor Job Scheduling and many others. A
detailed discussion about NP-completeness and many examples can be found in Gary
and Johnson [212].)

Here, we concentrate on the decision form of MDAP: Instead of finding an allo-
cation that satisfies some constraints, we ask if such an allocation may at all exist.
Formally, M D A P is defined as follows:

I N S T A N C E :

�9 A distributed memory architecture with:

- Nodes (PEs): X = {X~[0 < i < n - 1};

- Communication cost: Mij, (0 < i , j < n - 1);

�9 A clustered document domain with:

- Documents: D = { D i [0 < i < d - 1 } ;

- Clusters: C = { C i [O < i < c - I , C i C D } ;

�9 A real value bound: B.

Q U E S T I O N :

Decide whether there is an allocation map

A : D ~ X

of the documents to the processors that satisfies the following conditions:

1. Let Xi be a node. Define the number of documents mapped onto this node by
the allocation ~4 as

~*A(X~) : I{Ds ~ D I A(D~) = X~}l.

Then, for a/l i (0 < i < n - 1), #.a(X 0 < [~].

292 C H A P T E R 15. D O C U M E N T A L L O C A T I O N IN M U L T I P R O C E S S O R

2. Let Cj be a cluster of documents. Define the diameter of this cluster under a
given allocation A as:

Then,

diameter ~t(Cj) = max{M.4(Dk).4(D,) I Dk, Dz E Cj} .

a--1

diameterA(C3) <_ B .
j=o

T h e o r e m 1. MDAP is NP-Complete.
P roof :

1. Assume an instance of MDAP together with an allocation map A that satisfies
the required conditions. Then, A can be verified as an affirmative solution using
a polynomial time algorithm. Therefore, MDAP is in NP.

2. To prove that MDAP is complete in NP, we reduce the NP-Complete problem,
Binary Quadratic Assignment Problem (BQAP), defined in Garey and Johnson
[212] to MDAP in polynomial time. We show that a solution to an instance of
BQAP exists if and only if there is a solution to the associated MDAP instance.
This means that a polynomial algorithm to MDAP implies one for BQAP and,
hence, for all of NP. Thus, MDAP is complete in NP.

B i n a r y Q u a d r a t i c A s s i g n m e n t P r o b l e m (B Q A P) :

I N S T A N C E :

�9 Non-negative costs: bij E {0, 1}, bij = bji, 1 <_ i , j <_ g;

�9 Distances: mkz, 1 < k,l < h;

�9 Abound : Z E Z +.

Q U E S T I O N :

Is there a one to one function f : {1, 2, 3, ...,g} --+ {1, 2, 3,...,h} such that
~ r b,j �9 rn$(Ql(j) <_ Z ?

Given an instance of the BQAP, define an associated instance of MDAP as
follows:

�9 An architecture with h processors;

�9 A cost matrix Mkl = mkl, 1 <_ k, 1 <_ h;

�9 A set of g documents;

�9 A set C of two-document clusters, such that {D~,D~} ~ C if[b~ i -- 1;

�9 A b o u n d B = z ~-.

This transformation takes polynomial time in the size of the input. It is easy to
verify that an MDAP allocation exists to this instance if and only if there is a
function f to the BQAP instance. Thus, MDAP is NP-Complete. �9

15.3 R e l a t e d Efforts

A review of previous mapping algorithms (Section 3.1) and related multiprocessor
information retrieval efforts (Section 3.2) is provided.

15.3. RELATED EFFORTS 293

15.3.1 Previous Approximations of the Mapping Problem

The Mapping Problem and some of its derivatives are NP hard; therefore, heuris-
tic algorithms that approximate optimal solutions were developed. Some of these
approaches [69, 70, 352] dealt, in some manner, with the mapping of a communicat-
ing set of processes onto an architecture with a fixed interconnection topology. This
problem is similar to MDAP in that both problems must map a set of tasks (items)
onto a given architecture. However, the goals of the above efforts differ from MDAP
as MDAP does not aim to maximize the amount of concurrent interprocess communi-
cation, but instead, aims at reducing the total communications diameter of its logical
tasks (clusters).

Bokhari [69] introduced a pairwise-exchange heuristic algorithm that accepted as
input two adjacency matrices representing graphs G (set of communicating processes)
and G' (target architecture). Using the cardinality of the number of communicating
pairs that directly communicated with their neighbor as the objective function, Bokhari
developed and evaluated an algorithm that mapped graph G onto graph G'.

Lee and Agrawal [352] extended that Bokhari's effort by developing objective func-
tions that more accurately quantified the communication overhead. Using a set of
objective functions (parametric equations) that corresponded to the cost associated
with the given mapping, Lee and Agrawal precisely measured the optimality of the
derived mapping. The main limitation in their approach was that it only employed a
fixed path routing scheme for the network traffic.

Bollinger and Midkiff [70] used a two-phase simulated annealing algorithm to map a
logical system onto a physical architecture. The first phase, process annealing, assigned
the processes onto the physical nodes. The connection annealing phase mapped the
logical connections onto the network data links so as to minimize communication link
conflicts. This effort improved upon Lee and Agrawal [352] in that it utilized the
information concerning the actual routing rules.

Du and Maryanski [166] attacked a variation of the mapping problem. This vari-
ation concerned the allocation of data in a dynamically reconfigurable environment.
The allocation algorithm used a set of "benefit" functions azld a greedy search algo-
rithm. The underlying execution architecture was based on a client/server model (a
heterogeneous system). Although their problem more closely resembles MDAP, as the
underlying architectural model significantly differs from the MDAP execution environ-
ment, their assumptions are not relevant to MDAP.

15.3.2 Related Information Retrieval Systems

Distributed-memory information retrieval systems have been investigated as a
mean of providing short response times to users' requests. Some of these systems
include various efforts on the Connection Machine [23,545,546, 544], on the Distributed
Array Processor (DAP) [455,454], on a network of Transputers [131], and on Hypercube
systems [513]. Both the commentary on and the extensions of the Connection Machine
efforts [23, 480, 546, 544, 550] as well as the hypercube [513], DAP [455, 454] and
Transputer [131] efforts have all addressed the notion of data organization in the search
and retrieval scheme employed.

Stone [550] demonstrated analytically that, by indexing keywords, a uniprocessor
system with comparable memory to that of the Connection Machine employed in the
Stanfill and Kahle effort [545] can achieve similar user retrieval response times to those
times reported in [545]. Via keyword indexing, the volume of data that had to be

294 CHAPTER 15. DOCUMENT ALLOCATION IN MULTIPROCESSOR

searched was reduced, significantly reducing the total I /O processing time. A parallel
index-based retrieval effort on the Connection Machine was later reported in Stanfill,
Thou, and WMtz [546] and in Asokan, Ranka, and Frieder [23]. Additional parallel
text retrieval search methods are described in Salton and Buckley [480].

Various descriptions of efforts that focus on the organization of da ta for the DAP
system, appear in the literature. In Pogue and Willett [455], an approach using text
signatures is proposed and evaluated using three document databases comprising of
roughly 11000, 17000, and 27000 documents. Pogue, Rasmussen, and Willett [454],
describe several clustering techniques using the DAP. Both reports clearly demonstrate
that if a proper document mapping onto the individual Processing Elements (PEs) is
established, the DAP system readily achieves a high search rate. However, an improper
mapping results in a poor search rate stemming from the inability of the DAP system
to access the documents.

Cringean, et al., [131] describe early efforts aimed at developing a processor-pool
based multicomputer system for information retrieval. The physical tested hardware
consists of an Inmos Transputer network. To reduce the volume of data accessed and
hence the total query processing times, a two phase retrieval algorithm is proposed.
The initial phase acts as a filter to retrieve all potentially relevant documents. By
using text signatures, the majori ty of the non-relevant documents are eliminated from
further processing. This filtering of documents vastly reduces the volume of da ta
processed in the compute-intensive second phase. (Some non-relevant documents are
selected as a consequence of false-drops. False-drops are common to all text signature
analysis approaches.) In the second phase, full text search is performed. The two
phase algorithm is yet another example that .'emphasizes the need for intelligence in
the organization and retrieval of documents.

Finally, Sharma [513] describes a hypercube-based information retrieval effort. The
results presented are based on the timing equations provided. To reduce the volume of
da ta read, Sharma relies on the fact that the documents are initially p~rtitioned into
clusters, and only documents that belong to "relevant" clusters are retrieved. As in
our approach, Sharma does not address nor is dependent on any particular clustering
technique. Sharma does require, however, that the cluster scheme employed yield
non-hierarchical clusters, whereas we do not impose such a restriction. Thus, all the
clustering schemes, including the numerous schemes described in Willett [613] can also
be employed in our setting. Sharma partit ions the clusters across the individual nodes
according to an architectural topology-independent, best-fit heuristic. No evaluation
of the document distribution algorithm is provided.

We also rely on clustering, but use a genetic algorithm approach that uses infor-
mation about the underlying architecture to map the documents onto the nodes. As
the actual dataset used in the [Sha89] evaluation is not described, it is not possible
to directly compare the results of our algorithm to the algorithm described in [513].
For tutorials on clustering and other information retrieval related topics, the reader is
referred to [78, 482,613].

15.4 A Genet ic Algor i thm for M D A P

As MDAP is NP-Complete, obtaining an optimal allocation of documents onto the
nodes is not computationally feasible. The heuristic algorithm proposed here is based
on Genetic Algorithms [224]. In our representation, the set of documents is represented
by a document vector which is a sequence of integers 0 to d-1. A permutation of this

15.4. A G E N E T I C A L G O R I T H M F O R M D A P 295

sequence defines an allocation Of the documents onto the nodes where a document Di
found at position j is stored at node j modulus n. This representation scheme results
in all nodes containing an equal number of documents, with the possible difference of
a single document. Each allocation is evaluated as the sum of the cluster diameters it
defines. The lower the sum, the bet ter is the allocation.

As with most genetic algorithms, the proposed algorithm comprises of initializa-
tion, reproduction, crossover, and mutation. In the initialization phase, a set--cal led
population--of random permutations of the document vectors is generated. Each ran-
dom permutat ion represents a possible allocation of the documents onto the nodes. By
repetitively modifying the permutations, a near optimal allocation is generated. The
number of simultaneous permutations (population size) p is an experimental parameter
that is evaluated in Section 6.

The reproduction phase replaces permutations that represent poor mappings with
those permutations that are viewed as good. Using the sum of the cluster diameters as
an objective function, the merit of each permutat ion is evMnated. A biased roulette
wheel favoring the bet ter permutations (allocations) is created. A random sampled
value is obtained. Using the biased roulette wheel and the sampled value, a corre-
sponding allocation is determined. Each selection corresponds to the birth of a new
alloca*ion. The permutat ion that is replaced by this new birth is deemed as deceased.
Probabilistically, in this phase the poor allocations are killed, while additional copies
of the good allocations are reborn.

The crossover phase represents the cross-fertilization of permutations, similar to
the composition of genes from both parents in a birth, and consists of a position-
wise exchange of values between each randomly paired permutations. Two random
numbers are chosen and serve as the bounds for the position-wise exchange. Each
document of the first permutation that falls within the determined bounds is swapped
with the corresponding document of the second permutation, and likewise the second
permutat ion with the first.

Finally, to lower the probability of convergence of the allocation to local values
that are not a global minima, a mutation phase is incorporated into the algorithm.
Periodically, with a low probability, a permutation is randomly modified.

A L G O R I T H M :

I n i t i a l i z a t i o n P h a s e :

1. Create a permutat ion matrix, Pi,j (0 < i < p - 1,0 _< j < d - 1). Every
row of P, Pi, (0 < i < p - 1) is a complete permutation of ~11 documents D~,
(0 < j _< d - 1). For exasnple, if p = 3 and d = 6, a possible permutation matrix
is P .

p =

0 1 2 3 4 5
0 1 0 2 5 3
1 0 2 4 1 3
2 4 5 3 2 1

2. Define the document to node mapping function .4~ : D -+ X for any given row
of P, P,, (0 < i _< p - 1) as A~(Dk) = j rood n, where 3" is the index in row Pi
of document Dk, (0 < k < d - 1). If ~ = 3, r o w P 0 implies that documents 0
through 5 are mapped to nodes 1, 0, 2, 1, 2, 0, respectively.

296 C H A P T E R 15. D O C U M E N T A L L O C A T I O N I N M U L T I P R O C E S S O R

R e p r o d u c t i o n Phase :

3. Given the mapping function Jll for a given row Pi, (0 < i < p - 1), determine
the cluster diameter, Ri,j, (0 < j _< c - 1) for each cluster association list array
entry, Cj. R~ = Max{MA~(z~k),.ai(DD, where 0 < k,1 < d - 1 and Dk,Dz E Cj}.
Then, if

{0 1 2 c = ~ a 4
1 { 0 2 M = 0 [0 2 4

1 { 2 0 1
2 4 1 0

4.

5.

then R is
0 1

R = 0 4 1
1 4 2
2 4 4

Define an evaluation function, E. This function measures the "goodness" of the
allocation defined by a row Pi, (0 < i < p - 1), and the corresponding mapping
function A~. In our case,

c - - 1

E(P~) = Z Ri j O < i < p - I
j=0

Create a biased roulette. Compute the reciprocal of each E(Pi), (0 < i <_ p - 1).
Call them E -1 (P~). Bias the roulette proportionally to E -1 (P~). Assign each
allocation an interval on the unit vector 0 to 1 based on the corresponding biased
probability. In the above example, E(Po) = 5, E(P1) = 6, and E(P2) = 8,
resulting in the following roulette wheel.

ii::-~ill
ii:iii:~:i:;~

":.Z;': ::::::::::::::::::::::::::::

[] Alloc 0 - 0.20

[] AUoc 1- 0.17
[] A l l o c 2 - 0 .13

Thus, permutations Po, P1, and P2, are weighted at a probability of 0.4, 0.34,
and 0.26, and ate assigned the intervals [0.0, 0.4), [0.4, 0.74), [0.74, 1.0], respec-
tively.

15.4. A G E N E T I C A L G O R I T H M FOR M D A P 297

6.

7.

8.

Replace the permutat ion matrix P. Randomly choose p numbers from within the
interval [0.0, 1.0]. For each of the p random values obtained, copy the allocation
permutat ion whose assigned ir~terval corresponds to the random value generated
into row Pi, (0 < i < p - 1). To insure the survival of successful document
allocations (permutations), the lowest cost allocation is always kept. Therefore,
if the permutat ion corresponding to the largest interval, say Pj, (0 < j < p - 1),
is not selected within the first p - 1 selections, Pj is assigned to row Pp-1. In
the example, if 0.23, 0.92, and 0.36 were the random numbers obtained, then P
would be

P =

0 1 2 3 4
0 1 0 2 5 3
1 4 5 3 2 1
2 1 0 2 5 3

Crossover P h a s e :

While maintaining a copy of the lowest-cost permutation, say P~, randomly
pair up the rows in P. If p is odd, ignore the unpaired row. For each pair of
rows in P , say A and B, randomly generate two integer values, i and j , such
that 0 < i < j < d - 1. Position-wise exchange Ai,Ai+I,A~+2,... ,Aj_I,Aa,
with B~, B,+I, B;+2, ..., Bj-1, Bj, respectively within the two strings. Replace

the highest cost permutation with P~. The replacement of the resulting highest
cost permutat ion by Pt guarantees the survival of the "most-fit" parents. For
example, A =/)1 , B =/~ i = 3, j = 4, mapping string A to string B exchanges
the 2 and 5 and the 1 and 3 in row B while mapping string B to string A swaps
the 5 and 2 and 3 and 1 in row A. In this example, P0 is the minimum-cost
permutation. The resulting P is

0 1 2 3 4 5
p = 0 1 0 2 5 3 4

4 2 1 5 3 0
3 0 5 2 1 4

M u t a t i o n P h a s e :

Mutate the permutat ion periodically to prevent premature loss of important no-
tions [224]. Randomly choose a number from the interval [0, 1]. If the number
falls outside the interval [1 - q, 1], where q is the probability of mutation, then
terminate the mutation step. Otherwise, select a random number between 1
and r, that designates the number of mutations that occur in the given step.
For each of the mutations, select three random integer values i, j , k, such that
0 < i _< p - 1, 0 < j , k _< d - 1 , j - k, and position-wise exchange Pi,j with Pi,k.
Given q = 0.01 and r = 1, a randomly generated value of 0.006, i -= 0 , j ---- 1,
and k = 5, then P would be

P =

0
O' 1
1 4
2 3

1 2 3 4 5
4 2 5 3 0

2 1 5 3 0

0 5 2 1 4

298 C H A P T E R 15. D O C U M E N T A L L O C A T I O N IN M U L T I P R O C E S S O R

9.

C o n t r o l S t r u c t u r e :

Repeat steps 3 through 8. The precise number of iterations is dictated by an early
termination condition (all allocations are identical) or by a maximum iteration
count. Throughout the experimentation presented here, the maximum limit
was set at 1000. In the future, an appropriate limit, possibly a percentage
of the population size and/or the number of documents, will be determined
experimentally. Upon termination, evaluate the "goodness" of the allocation
defined by a row Pi, (0 < i < p - 1), and the corresponding mapping function
.Ai. Choose the best allocation.

1 5 . 5 T h e o r e t i c a l F o u n d a t i o n s

As any other heuristic algorithm, the above algorithms is not assured to yield an
opt imal solution. However, we can still characterize its behavior.

We define the function b(t), where t is a natural number, to be the evaluation of
the best string in the t *h population. This function is monotonically non-increasing.
We say that the algorithm converges to a value l, if

nm
t---* OO

exists and is equal to 1.
There have been a few independent efforts to analyze the behavior of the Genetic

algorithm. All dealt with the classical Genetic Algorithm operating on binary strings.
The most significant of them was conducted by Goldberg [224]. Goldberg has charac-
terized the convergence property of different sets of strings (which he calls schemata).

Our algorithm operates on permutations rather than binary strings, and the oper-
ators are more complex. We observe that each of the phases has a specific role: The
reproduction phase makes the population exponentially converge towards a minimal
cluster diameter. The crossover and mutation phases guarantee that a wide search
space is investigated. In particular, the crossover phase searches inside some subset
("span" [303]) of the permutat ion domain, while mutation allows for a search in the
space of all possible permutations. The combination of these three results in a very
efficient search procedure.

' The "Fundamental Theorem of Genetic Algorithms" [224] characterizes the behav-
ior of classical Genetic Algorithms. Towards the development of this theorem, Goldberg
defines the schema H E {0, 1, *}~ as a set of binary strings w E {0, 1} ~ that satisfy

Hi = 0 =~wi = 0,

and
H i - - - - l ~ w i = l .

For example, the schema H -- '01 * , 1 1 . ' includes both '0111110' and '0101111'. Non-
starred elements within H are called fixed positions of the schema.

Go]dberg observed the following two determining features for any schema H:

�9 o(H), the schema order: the number of fixed positions in the schema.

�9 6(H), the schema length: the difference between the first and last fixed positions
in the schema H.

15.5. T H E O R E T I C A L FOUNDATIONS 299

Let re(H, t) be the number of strings in the population that are included in H at
time t. Given re(H, t), the Fundamental Theorem of Genetic Algorithms derives the
expected value of re(H, t + 1). Goldberg shows that the appearance of a schema grows
exponentially with its relative fitness, and decreases exponentially with o(H) and ~(H).

T h e F u n d a m e n t a l T h e o r e m F o r t h e P r o p o s e d A l g o r i t h m

We generalize the observations by Goldberg into our algorithm. Let the special symbol
'* ' represent any of the missing values in (0 . . . d - l) ; that is, any value not appearing
in any of the fixed positions. Let

r(H) be number of consecutive stars starting at the right most location.
(Starting with the left side is equally suitable.)

For example, if H1 = ' 0 1 . . 1 1 . ' , H2 = ' 0 1 , * * * * ' , and H3 = ' 0 1 . * * . 1 1 , then
r(H1) = 1, r(H2) = 5, and r(H~) = 0.

We consider the effects of the reproduction, crossover, and mutation phases on
the schemata implied by the population of permutations. The effects of reproduction
precisely mimic the case of binary strings, as described in [224]. Let ft(H) be the
average fitness of the strings representing schema H at time t. If ft is the average fitness
over the population at time ~, then ~ is the relative fitness of the schema. After a

reproduction step, roughly re(H, t + 1) = re(H, t) . (~) copies of schema H exist. If

for all time t, f t(H) > (l+c)*ft, where c is a constant, then re(H, t) = re(H, 0)*(c+]) t.
Thus, desirable schemata grow exponentially.

In the crossover phase, two random numbers are chosen as the boundaries. A
schema can be destroyed if the boundaries bound some of its fixed values. Therefore,
the probabili ty of the survival of a schema H is:

This probabili ty results in an increase of the number of copies of short schemata.
Rabinovieh, Sinclair, and Wigderson [459] have showed that had the Genetic algorithm
operated on an infinite population, repetitive steps of one-bit crossover (or mutation)
would have caused the population to converge to some distribution, depending on the
initial population. A similar assertion seems to hold in the case of permutation-based
population.

The mutat ion phase modifies a schema H that includes the permutat ion Pi(O <
i < p - 1) if and only if:

1. At least one of the two positions chosen are of the fixed part of the schema; (This

occurs with the probability ~ - (@) 2)

2. The positions do not designate the same processor. (This occurs with a proba-
bility of ,~-1 --a--)

During each mutation phase, i single mutations result, 1 < i < r. The probability
of surviving a mutation is approximated by (assuming the independence of (1) and (2)
above):

r

§ 2 1- '

i = l

300 C H A P T E R 15. D O C U M E N T A L L O C A T I O N IN M U L T I P R O C E S S O R

where q is the probability that a mutation occurs. A schema with a small number of
fixed positions is more likely to survive.

Ignoring low order terms, we summarize the combined influence of the three oper-
ations as:

> m(H, t) (f (H)) (1 2(r(H) -t-5(H)) r - 1 m (H , t + l)
- d - q r

2o(H)q(n-1)~
rpnd

This equation demonstrates that a schema grows exponentially according to its
relative fitness in the current population and inversely to the number of fixed positions,
the distance between the first and last fixed position within the schema, and the number
of consecutive rightmost variable (starred) positions.

R e p r e s e n t a t i o n I n d e p e n d e n t A n a l y s i s

We continue further and analyze the behavior of a general Genetic Algorithm based
heuristic for the MDAP problem for any possible encoding of the allocations. Doing
so, we gain a general theoretical understanding of such an algorithm.

Define Q as an equivalent, unique representation of the permutation matrix P as
Qi[j] = k if and only if Pi[k] = j. The permutation Qi(O < i <_ p - 1) is an allocation of
the documents onto the processors, such that document Dj(0 < j < d - 1) is allocated
on processor Xk(0 < k < n - 1) if and only if (Qi[j] rood n) = k. That is, position j
in the permutation represents document j and the corresponding entry modulus n is
the processor where the document is stored. For example, if P is:

P =

0 1 2 3 4 5

0 1 0 2 5 3
1 0 2 4 1 3

2 4 5 3 2 1

then the equivalent Q is:

Q =

0
0 1
1 0
2 5

1 2 3 4 5
0 2 4 5 3
3 1 4 2 5
4 3 2 0 1

Replacing each value Qij E Qi with (Q~j modulus n) results in a vectoi of length
d with the values 0 to n - 1. We refer to this vector as the allocation vector s (or Si)
of the permutation Pi and to Matrix S as the allocation matrix of P. Given n = 3,
the equivalent allocation matrix for P is:

S =

0
0 1
1 0
2 2

1 2 3 4 5
0 2 1 2 0
0 1 1 2 2
1 0 2 0 1

Vector Si defines an allocation where each document Da is allocated to processor
Si [j]. Every allocation is represented by a unique vector Si. Notice that the function
AL : P --* S is not one to one. On the contrary, (gT) n different permutations map n r ~ ' +

15.6. E X P E R I M E N T A L E V A L U A T I O N 301

to the same allocation. If the population size is p, then the probability that the
initialization phase yields two or more permutations that define the same allocation is:

p--1
I _ H d ! - i x d I ,~

d----U-.' w h e r e x =

i=0

Define an s-schema of an allocation vector s as the vector itself, however, in some
of the positions in s, instead of the actual value appearing, a special symbol & is
present. This symbol designates any of the valid orderings of the values 0 to n - 1 . For
example, given the allocation vectors so and sl, so -- "1 0 2 1 2 0", sl ---- "0 0 1 1 2 2",
s-schema H0 may be "& 0 & 1 2 &". Ho is an s-schema of both so and sl. Schema
Ha = "1 0 & 1 2 &", however, is an s-schema of so but not of sa. Let # (i) designates
the number of the fixed positions in a schema in which the value i appears. Then,
either [d j _ # (i) or V~] - # (i) of the appearances of the special symbol &, designate
the value i.

Similarly to the prior computation, we compute re(H, t + 1) given m(H, t) for
this representation-independent schema. The effects of the reproduction and muta-
tion phases are similar to the case provided above. The main distinction between this
representation-independent method and the representation-dependent scheme de-
scribed above lies in the crossover phase. Here the effects of the crossover phase are
exponentially decreasing in o(H), rather than in 6(H) and r(H). (These measurements
are not defined for this case).

We conclude that reproduction converges the population towards the best string
that have already been found. Both crossover and mutation diminish the appearance
of individual strings (or generally, high order schemata) and intensify that of low order
schemata. That is, these phases enlarge the domain of the explored solutions.

15.6 Experimental Evaluation of the Derived
Algorithm

To evaluate the described Mgorithm, a simulation was developed. Given a particu-
lar multicomputer architecture (the number of nodes and a cost matrix specifying the
internode communication topology) and a set of documents partitioned into clusters,
the simulation derived a document allocation using the proposed genetic algorithm.
The cost of the derived allocations over a magnitude of architectures and document
distributions were used to evaluate the merit of the algorithm.

Various partitioning schemes of the documents into clusters were considered.
Sharma [513] stated that d-document collections form from v/-d to d/constant clus-
ters and assumed such a cluster organization in his evaluation. However, he did not
mention what assumptions were made regarding the number of documents per cluster.
In this study, we assumed V'-d clusters and varied the number of documents per cluster.
That is, the number of documents per cluster varied from a uniform distribution of
documents to clusters to a partitioning in which 25 percent of the clusters contained
50 percent of the documents. The behavior of the proposed algorithm was observed in
terms of these varied allocations.

Several multicomputer architectures were considered. These include a 16-node
hypercube engine and three mesh configurations (1 by 16, 2 by 8, 4 by 4).

302 CHAPTER 15. DOCUMENT ALLOCATION IN MULTIPROCESSOR

The effects of varying several parameters common to many genetic algorithms were
studied. These parameters include the size of the population (number of permuta-
tions) and the probabili ty of mutation. Five population sizes ranging from 10 to 50
permutat ions in increments of ten permutations were examined. The population sizes
investigated were kept small to coincide with the size of the database modeled (64
documents). Our intent was to evaluate the algorithm (proof of concept) and not to
derive an allocation for an actual database. We intentionally, therefore, selected a small
database to bet ter understand and verify our findings.

Figures 6.1 through 6.10 illustrate results for a 64 document database distributed
over 16 node systems of varying interconnection topologies. The results for two different
document to cluster parti t ioning are presented. Both document partitions employ 8
clusters but the distribution of documents to clusters is varied. That is, in the first
distribution (figures 6.1, 6.3, 6.5, 6.7 and 6.9), all dusters contain an equal (8) number
of documents.

4 - Hyper 16

85 " 1 [I - t - H y p o r 1 6 M
�9 15= M e s h 1 x 16

�9 ~ " M e s h I x 1 6 M

7 5 4 1 - M ~ s h 2 x 8

�9 I ~ M e s h 2 x 8 M

�9 8 - M e s h 4 x 4 M

15 | - ~ - , - , - , - , - ~ , - , - ~ - , -

0 I00 200 300 400 500 600 700 800 900 I0001100

Iteration

Figure 15.1: Al l a rch i tec tures wi th in an even d o c u m e n t d i s t r ibu t ion

In the second distribution, (figures 6.2, 6.4, 6.6, 6.8 and 6.10), 25 percent of the
clusters contain 50 percent of the number of documents. For notational convenience, we
describe a document partit ioning by a four-tuple (D, C, x, y), where D is the number
documents, C is the number of clusters, and x and y represent the x percentage of
clusters containing y percent of the documents. Therefore, (64, 8, 25, 50) refers to the
la t ter document distribution, while the even document partitioning is represented by
(64, 8, x, x), for all values of x, 0 < x < 100.

Figures 6.1 and 6.2 present the results for all the architectures considered. A point
on any curve represents an iteration in which a better allocation was derived. As shown,
the number of points varies with the architecture considered. All runs terminated at
either a point in which the entire population (document allocations), in this case 30,
were identical or after 1000 iterations (premature termination), which ever came first.

15.6. EXPERIMENTAL EVAL UATION 303

35

2 5 "

15

Hyp~ 16

"~ Hype, r 16 M

-II.- M~h I x 16

~ - 0 - M ~ h 2 x 8 M

�9 i , i - i . i - B �9 i = i = i - i �9 i .

I00 200 300 400 500 600 700 800 900 I0001100

Iteration

Figure 15.2: All architectures within a (64, 8, 25, 50) document distribution

1 0 0

9 0 '

80,

70,

6 0 ,

r~
50,

4 0

3 0

2 0

0

-m- H y p e r 16

" 4 - M ~ h l x 16

-D- M * s h 2 x 8

-O- M e s h 4 x 4

. . . . t i i ,

I00 200 300 400 500

Iteration

Figure 15.3: Without mutation on an even distribution

304 CHAPTER 15. DOCUMENT ALLOCATION IN MULTIPROCESSOR

80 7o, ,
6O

50 �84

4 0

30'

~ , ~
10

0

"g" H y p e r 16

"~" M e s h I x 16

Mr 2 x 8

"#" M e s h 4 x 4

. i | t | i i i

50 I00 150 200 250 300 350 400

Iteration

Figure 15.4: Without mutation on a (64, 8, 25, 50) distribution

85'

75'

65'

55'

45'

35'

25,

15

Hyper 1 6 M

�9 4t.- M ~ h l x 1 6 M

, "I~ M ~ h 2 x 8 M

~ M e s h 4 x 4 M

I00 200 300 400 500 600 700 800 900 I0001100

Iteration

Figure 15.5: With mutation on an even distribution

15.6. EXPERIMENTAL EVALUATION 305

80

70

60

5O

1
] 40

30

20

"~- Hyper 16 M
4- lxl6M Mesh
41- M�9 2x 8M

~ x 4 M .:

.I- .. |....., |.....,..... |........... |..... t.....,..... I
100 200 900 400 500 fi00 700 g00 900 10001100

Iteration

Figure 15.6: With mutation on a (64, 8, 25, 50) distribution

40 "'

I "~ Hypcr 16
4- Hyper 16 M

M~h4x4
35 -4P- M~h4x4M

i i
0 100 200 300 400 500 600 700 800 900 10001100

I t e r a ~

Figure 15.7: Effects of mutation with an even distribution

306 - CHAPTER 15. DOCUMENT ALLOCATION IN MULTIPROCESSOR

40

Hyper 16

-O- Hyper 16 M
35 4 " Mesh 4 x 4

-0- M z s h 4 x 4 M

3O

25

10 ~ i , . . , , l i , , . . , i . . , , . l , . H . l . , H . I

0 100 200 300 400 500 600 700 800 900 10001100

I t e r a t i o n

Figure 15.8: Effects of mutation with a (64, 8, 25, 50) distribution

"i

75

7O

65

6O

55

50

45

40

35

30

25

2O

"~" M e s h 4 x 4

"0" M c e h 4 x 4 M

4 - M c e h 16 x 1

x l M

�9 | . , . | �9 | �9 | �9

10 20 3 0 4 0 50

P o p u l a t i o n S i z e

60

Figure 15.9: Effects of population size using an even distribution

15.6. EXPERIMENTAL EVALUATION 307

85 '

80"

75 '

70 '

65 '

60 '

55'

50'

45 '

40"
35'

30

25

20

15

0
i i i �9 i - i �9

10 20 30 40 50 60

P o p u l a t i o n S i z e

Figu re 15.10: Effects of p o p u l a t i o n size using a (64, 8, 25, 50) d i s t r i bu t ion

A point at 1000 indicates that premature termination occurred. As expected, the higher
the communication diameter of the architecture, the greater was the improvement in
the derived allocation.

Figures 6.3 and 6.4 and 6.5 and 6.6 more clearly illustrate the behavior of the
proposed algorithm in the case where no genetic mutations are possible and when a
0.5 probabili ty of mutation exists, respectively. A 0.5 mutation implies that with a
probability of 0.5, a random number of pairs ranging from 1 to 10, will be exchanged.
That is, on average, 2.75 pairs will be exchanged per iteration. Figures 6.7 and 6.8
illustrate the effects of mutation on the allocations derived for a hypercube and a 4-by-4
mesh system. As seen, and in all runs performed, mutation results in bet ter allocations.
The bet ter allocations result from the prevention of local minima interference.

Finally, figures 6.9 and 6.10 demonstrate the effects of varying the population size
from 10 to 50 allocations in increments of 10. When mutations are not possible,
the performance consistently improves with the increase in the population size. The
improved allocations result from the greater number of possibilities explored during
each iteration. In the case where mutation is possible however, initially the performance
is improved and then eventually deteriorates. The improvement, as in the case where
mutat ions are not possible, is caused by the increase in the number of possibilities
explored. Since s maximum number of mutations per iteration is kept constant
throughout, increasing the population size reduces the effects of mutation. Thus, the
benefit derived from the mutation phase is diminished. Diminishing the effects of the
mutat ion phase results in a derived allocation that more closely resembles the case in
which no mutation is possible. Hence, the performance degrades.

An individual permutat ion p at a given generation t designates a sample point
(p, t) wi th in the total search space. Therefore, given a fixed number of generations
(iterations), it is to be expected that the larger the population, and hence the search

308 C H A P T E R 15. D O C U M E N T A L L O C A T I O N I N M U L T I P R O C E S S O R

Mesh4 • 4 Mesh4 x 4 Mesh 16• 1 Mesh 1 6 z 1
(mutation) (mutation)

p = 10(1000) 31 28 81 46
. = ~ 0 (5 0 0) 31 22 63 35

p = 3 0 0 3 # 27 23 47 36
p = 4 0 (250) 27 27 47 50
p = 50 (200) 26 29 42 43

Tab le 15.1: C o m p a r i s o n of popu l a t i on size versus i t e ra t ion count using a
(64, 8, 25, 50) d o c u m e n t d i s t r i bu t ion

space, the bet ter is the derived allocation. A more balanced evaluation compares the
effects of varying the population size on the derived allocation if a constant explored
search spaced is maintained. That is, an increase in the population size results in a
corresponding decrease in the number of generations permitted. Experimental results
from such a study are presented in tables 6.1 and 6.2. As seen, a clear preference
regarding a larger population versus a longer search is not demonstrated.

. = 10 (1000)
v = 20 (500)
v = 30 (333)

v = 4o (250)
p = 50 (200)

Mesh 4 • 4 Mesh 4 • 4 Mesh 16 • 1 Mesh 16 • 1
(mutation) (mutation)

35 30 76 70
33 28 69 44
27 28 41
32
33

31
30

60

62
63

52
61

Tab le 15.2: C o m p a r i s o n of p o p u l a t i o n size versus i t e ra t ion count using a

(64, 8, x, x) d o c u m e n t d i s t r i bu t ion

Genetic A~ori thm Random A~ori thm Greedy A~ori thm

Hypercube 19 23 29
Mesh 16 - by - 1 26 66 67
Mesh 8 - by- 2 22 37 39
Mesh 4 - by- 4 20 28 38

Tab le 15.3: C o m p a r i s o n of a lgo r i t hms using a (64, 8, 25, 50) documen t d i s t r ibu-
t ion

Ideally, the cost of the derived mapping should be compared against the cost of
an optimal allocation. Since determining an optimal mapping, in the general case, is
not computationally feasible (the problem was shown to be NP-Complete in Section

15.7. C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S 309

Genetic Algorithm Random Algorithm Greedy Algorithm

Hypercube 23 25 24
Mesh 16- by- 1 29 76 56
Mesh 8 - by - 2 23 43 32
Mesh ~ - by - ~ 19 33 32

Tab le 15.4: C o m p a r i s o n of a lgor i thms using a (64, 8, x, x) documen t d i s t r i bu t ion

2), two alternative comparison metrics were developed. The first comprised of ran-
domly drawing 100,000 valid (an even distribution across the nodes) permutations and
choosing the best allocation among those drawn. The second solution involved the
development of a greedy document allocation algorithm based on best fit mappings.

Tables 6.3 and 6.4 compare the derived mappings of the random, greedy, and genetic
algorithm solutions. The genetically derived solutions are based on a population of size
30, (p = 30), and a 1000 iteration search space. In all cases, for both document dis-
tributions, the genetic algorithm approach yielded significantly better mappings than
either the random or the greedy algorithms. The relationship between the greedy and
random algorithms was not derived as neither algorithm yielded acceptable mappings.
(The execution time, in seconds, for all genetic and random algorithms was roughly
equivalent. The greedy algorithm took substantially less processing time.)

15.7 C o n c l u s i o n s and Future D i r e c t i o n s

The performance of multiprocessor information retrieval systems depend not only
on the underlying parallel technology employed but, at least as significantly, on the
organization of the da ta to be retrieved. Poor da ta allocations result in minimal perfor-
mance gains on a parallel engine as compared to a uniprocessor system. The problem
addressing the derivation of document allocations that support efficient retrieval of
documents from a distributed-memory multiprocessor is called MDAP. As an optimal
solution to MDAP is not computationally feasible (MDAP is NP-Complete), we pro-
posed a genetic algorithm for MDAP. A proof demonstrating the convergence of our
derived mappings to an optimal mapping was provided. Via simulation, the derived
document allocations were analyzed. The results obtained compared favorably with
both a random and a greedy algorithm.

To complete the described effort, we are presently developing a parallel version
of the described genetic algorithm. The parallel algorithm will be able to process
significantly larger document sets within an acceptable amount of processing time. As
demonstrated in the study by Blair and Maron [65], results obtained using a small
document set do not always apply to significantly larger collections. Experimental
results using an Intel iPSC/2 will be reported at a later date.

We are also presently developing RIME (Retrieval of Information from a Multicom-
puter Engine). Once developed, we will evaluate the actual response time difference
resulting from the use of various standard document allocation schemes, e.g., round-
robin, hashed, etc., and those allocations derived by the parallel version of the described
genetic algorithm.

310 CHAPTER 15. DOCUMENT ALLOCATION IN MULTIPROCESSOR

Acknowledgments
We graciously acknowledge the assistance and comments of Kenneth DeJong, Michael
Fredman, and William Steiger.

Chapter 16

Amalgame*: A Tool for Creating Interoperating,
Persistent, Heterogeneous Components t

Jean-Claude Franchitti $, Roger King w

16.1 I n t r o d u c t i o n

Persistent applications are becoming more and more "open" in terms of topology, plat-
form and evolution, thus creating a need for a component-based approach to their
development. However, the integration of persistent software components becomes in-
creasingly difficult as we move up through the low-level layers of hardware, operating
systems, database schemas and da ta manipulation languages to the upper-layers of
ontologies, application languages and application systems. Most previous approaches
to component interoperability have provided support at the representation and specifi-
cation levels with little or no concern to scalability and applicability of such support to
layered persistent systems. The Amalgame system, being implemented at University
of Colorado at Boulder, addresses higher semantic levels of interoperability, including
languages, interfaces, and schemas, with a special focus on language/database interop-
erability. The Amalgame system is part of the Heterogeneous and persistent APPlica-
tions interoperabili tY project (called L'Heureux �82 from the acronym "HAPPY"). We
shortly introduce the intent, organization and requirements of the larger project. We
then focus on the goals and novelty of the Amalgame sub-project.

16.1.1 The Persistent and Heterogeneous Applications In-
teroperability Project

L'Heureux has as its primary goal the development of a toolkit for supporting incre-
mental integration of diverse systems. It is interesting to notice that often, in modern

*We are using the French spelling of the equivalent English word "amalgam".
t This material is based on work sponsoredby the Advanced Research Projects Agency under

Grant Numbers MDA972-91-J-1012 and N00014-92-J-1862, and by the Office of Naval Research
under Grant Number N00014-92-J-1917. The content of the information does not necessarily
reflect the position or the policy of the U.S. Government, and no officiM endorsement should
be inferred.

SDepartment of Computer Science, Campus Box 430, University of Colorado, Boulder, CO
80309, U.S.A.

w of Computer Science, Campus Box 430, University of Colorado, Boulder, CO
80309, U.S.A.

�82 for "the happy one"; L'Heureux is Roger's real family name.

314 CHAPTER 16. AMALGAME

businesses, interoperability is provided via humans. The "single point of contact" is a
person who, usually by telephone, is available to answer questions that involve multiple,
heterogeneous systems. As an example, a telephone customer might call up the phone
company and ask about a service problem. He or she doesn't know it, but the question
might involve three separate systems. Rather than being referred to two other people,
the single point of contact is able to view the three systems on three separate screens or
windows and provide an integrated answer. The need for a software toolkit supporting
integration of existing heterogeneous applications is clear from this example.

The L'Heureux toolkit currently consists of inter-related components that address
a variety of semantic levels. The three that we have isolated for our experiments are:
database schemas, database transaction protocols, and application programs. Clearly,
higher levels of semantic richness result in tougher interoperability problems; for this
reason, it is critical that the toolkit support incremental integration, so that het-
erogeneous systems can be gradually integrated, typically starting at lower levels of
semantics. The various components are accessible through a unified interface language
as illustrated in Figure 16.1 below.

Arc A 1 Arc A 2
/ A1 = {vl , v2, v3, v4, v5}

Vl v, ~ v 4 , v5, v6, v7, vS, V 9 }

v7

v9

Figure 16.1: The various levels of interoperabil i ty encompassed by L Heureux

In this integrated architecture, Findit [76] documents, organizes, and helps users
locate underlying application components on wide area networks, and Pano-rama [644,
645] provides reusable abstractions of application queries. These two components act
at the level between database schemas and application programs by managing high
level application descriptions and database queries. A la carte [161, 160, 162] acts at
the level of database transactions by supporting heterogeneous transaction protocols.
The Heraclitus [220, 265, 267, 286] active database manager provides a rule based
repository for keeping track of component interconnections; this system is yet to be

16.1. I N T R O D U C T I O N 315

fully integrated into L'Heureux. Amalgame, which focuses on apphcat ion/database
and apphcat ion/apphcat ion interoperability, can be used along with the other unified
tools to build heterogeneous persistent apphcations that axe truly "open" in the sense
that they support interoperability at various levels and granularities of semantics.

The interoperabili ty toolkit does not support any specific methodology for perform-
ing integration. For example, many existing "legacy" systems [81] are constructed in
a "stove pipe" fashion, with separate application programs running on top of separate
database transaction protocols and on top of separate database systems.

Thus, there might be a system written in C running on top of a relational system,
and there might be a system written in Ada running on top of a home-made persistent
store. It may be desirable to strip away all but the functional core of these systems and
throw away the user interfaces and the database systems, and then integrate them with
a centralized database system and a uniform user interface. Or, it might be desirable to
gradually remove one database at a time and create a uniform database, while leaving
the existing applications and user interfaces alone. Clearly, many methodologies can
be imagined. Our toolkit leaves these decisions up to the user, and only provides
the software modules necessary to integrate systems at a variety of levels of semantic
richness.

Our toolkit does enforce, however, a couple guiding principles of interoperability.
First , we assume that only rarely will complete, global, integrated database schemas
be required, since such schemas are extremely difficult to maintain. Thus, our toolkit
focuses on transaction and application program interoperability; we have not yet con-
structed schema-level components. (Panorama and Findit act closer to the transac-
t ion/apphcat ion 'level and do not support schema integration.) Second, we assume that
often, only pieces of legacy systems are to be integrated. Thus, our toolkit takes an en-
capsulation approach; our goal is to support the isolation of arbitrary code fragments,
and not on building large scale, uniform system interfaces.

Our research II is intended to serve as a vehicle for integrating technologies between
the ARPA Arcadia software environment project [575, 576], the Prototech prototyping
project [602], and the TI Persistent Object Base project (TI POB) [606]. Arcadia and
Prototech are collaborative research programs encompassing groups at several universi-
ties and industrial organizations. The objective of Arcadia is to develop advanced soft-
ware environment technology and to demonstrate it through prototype environments.
On the other end, Prototech is investigating languages and infrastructure requirements
for prototyping environments, and consists of several loosely-connected teams. TI POB
research program focuses on the design and implementation of an open, next-generation
object-oriented database system.

Due to the wide variety of inter-related persistent application components they
produce, the Arcadia, Prototech and TI POB research programs provide an excellent
framework for studying interoperability. In particular, three important goals of next
generation software development environments, such as those envisioned by Arcadia,
are broad scope, extensibility and integration. These goals require that Arcadia en-
vironments facilitate the addition, modification and replacement of any and all kinds
of environment components. To help meet these goals, L'Heureux provides a set of
integrated tools that support interoperability of highly heterogeneous components at
various levels of semantics.

II The development of L'Heureux is being funded by ARPA, ONR and USWest. In particular,
research related to the design and implementation of AmaJgarne at University of Colorado (CU)
is being funded under the ARPA CU-Arcadia and CU-Prototeeh efforts.

316 CHAPTER 16. AMALGAME

16.1.2 Goals and Novelty of the Amalgame System
The high level goal of the Amalgame system is to develop an integrated solution to
address high semantic levels of interoperability, including languages, interfaces, and
schemas, with a special focus on language/database interoperability.

In a nutshell, Amalgame provides a high-level specification language to help hetero-
geneous application designers encapsulate representations of arbitrary code fragments
into classes of an object-oriented database framework. Designers can encapsulate en-
tire applications or isolate components within monolithic applications. They can also
specify mappings between the original application components and their encapsulated
representation. The AmaJgame encapsulated components may then be combined in
various ways to create new heterogeneous applications. Upon request, Amaigame will
validate a specified combination of components and generate a corresponding hetero-
geneous run-time program.

The Amalgame system provides a novel solution to the application interoperability
problem. Indeed, persistent components produced in Amaigame to implement specific
heterogeneous applications can be reused to support new designs. Since Amaigame
designers incrementally unify underlying types in the context of particular applications,
they are not required to conform to a universal type system. Since application sub-
components are abstracted and pieced together as needed, Amalgame ensures efficient
~piecemeal" interoperability. Also, the integration mechanisms provided by Amalgame
are applicable to a wide range of persistent applications interoperability requirements.
Finally, Amalgame provides integrated support for accessing functionality implemented
by other components of the L'Heureux toolkit.

In this chapter, we present the Amalgame approach and describe our prototype
implementation. We first give a short presentation of current research work related
to Amalgame. We then give a detailed description of the Amalgame architecture,
present our initial prototype, and give a report of a working interoperability experiment
involving the use of Amalgame to interoperate various Arcadia tools. To conclude this
chapter, we summarize the experience acquired using Amalgame and outline our plans
for extending both the approach and its realization.

16 .2 R e l a t e d W o r k

Several relatively disparate research areas are relevant to the Amaigame project. This
related work is categorized below according to specific characteristics of the Amalgame
framework.

16.2.1 Interoperability Support

A significant amount of research has been produced in the domain of application in-
teroperability, an area of primary interest to Amalgame. Such interoperability must
address two aspects of cooperation between programs. First, it must coordinate the
execution of interoperating programs tha t may be based on very different execution
models, including procedural, triggers or logic programming models. Second, it must
achieve type correspondence at some level of granularity so that entities such as data
objects or procedures, used in one application can be shared by another application
that may be written in a different language or running on a different kind of processor.

16.2. RELATED W O R K 317

Most current approaches to interoperability do not address the execution model
interoperability issues. Instead, they rely on the assumption that the interoperat-
ing components share some notion of procedure or function call, or some concurrent
communication mechanism [52, 221, 404]. Amalgame departs from these approaches
by supporting the execution of interoperating programs through an extensible set of
coordination mechanisms.

Many research projects have focused on the type model interoperability issues.
These issues have been solved in most approaches by establishing correspondence of
data types at the representation level (RLI) [19, 244, 366,393,392, 403]. The RLI ap-
proach provides a lower level support to interoperability than does Amalgame. Indeed,
RLI is primarily focused on providing mappings between the different representations
of low-level simple types or compound simple types. The lack of support for abstract
types makes RLI awkward to use in conjunction with the rich and extensible typing
mechanisms inherent to modern programming languages.

Specification level interoperability (SLI), which is much more closely related to
Amalgame, overcomes the shortcomings associated to RLI. Rather than focusing on the
mapping between different representations of a type, SLI focuses on support for com-
mon definitions of a type's properties. Of course SLI depends upon RLI mechanisms,
essentially subsuming RLI in those cases involving simple types. Various approaches to
achieving SLI are discussed in the literature [64, 115,611]. A later approach proposed
in [612] is most closely related to Amalgame. Amalgame shares this SLI approach by
defining a unifying model that can be mapped into specific implementations in their
respective domains. However, the Amalgame framework extends SLI mechanisms to
the unification of classes in an integrated object-oriented database framework, thereby
making it possible to capture higher semantic levels.

16.2.2 Architectural Representation
Megaprogramlning

Languages and

Several research projects have defined architectural representation languages to specify
arbitrary software components and support Megaprogramming activities. This work
overlaps the domain of the Amalgame framework.

There is a large amount of hterature related to specification languages that focus
on various issues of module interoperability [44, 382,425, 578,579,620,621]. However,
these approaches are usually restricted to a narrow apphcation domain. More recently,
Prototech [269, 322] has focused on defining general purpose prototyping languages
which provide a way of expressing architectural and interface concerns in a highly
parametrizable manner. To meet these requirements, various Prototech teams have
implemented Module Interconnection Formalisms (MIFs) [30], such as Polylith [458,
457], and Architectural Description Languages (ADLs), such as Griffin [433,534, 533].

The Amalgame framework shares some common goals with Prototech. In partic-
ular, the aspect of defining a specification language to express and relate application
components. However, Amalgame does not intend to produce a language to address
specific apphcation prototyping needs. The Amalgame system is more concerned with
making layered persistent application interoperable. As a result, Amalgame has focused
on providing an extensible and well-integrated service layer infrastructure tailored to
the support of persistent apphcations interoperability.

318 CHAPTER 16. AMALGAME

16.2.3 Extensible Reusable Heterogeneous Frameworks

A lot of related research on heterogeneous and extensible systems has influenced the
design of Amalgame [2, 32, 75, 82, 86, 114, 321, 430, 495, 643]. There have been
several approaches to provide frameworks for tool fragments interoperability [242, 246]
which provide little or no support for extensibility. However, there are several more
general purpose approaches which, like the Amalgame framework, use some form of
meta-information as a basis of analysis or integration. Among these, the ARPA TI
Open Object-Oriented Database (TI OOODB) [606], and the A la carte framework
[161, 160, 162] are most closely related to Amalgame.

The TI OOODB introduces a computational model of extended events which con-
stitutes a formal conceptual framework to operationally characterize openness and
achieve seamless extensibility. The Amalgame internal architecture implements a sim-
ilar model to transparently extend the behavior of normal operations on its component
classes. Amalgame also intends to use an operational version of the TI OOODB as
its own underlying component database. At the difference of the TI OOODB, Areal-
game primary focus is to support tailorable persistent heterogeneous systems rather
than autonomous database systems. To reach this divergent goal, Amalgame provides
a unified language to manage heterogeneous components, allowing multiple persistent
applications accessing various underlying POBs to interoperate, share and potentially
complement their capabilities.

The A la carte system is a toolkit for the rapid construction of heterogeneous,
persistent object stores. This system concentrates on providing extensibility and tai-
lorability for internal heterogeneous database management system software. Amalgame
uses some of the design concepts of A la carte to implement its software component
class management capabilities. At the difference of A la carte, Amalgame provides
a persistent heterogeneous apphcation design environment not forcibly limited to the
design of heterogeneous object stores. Amalgame also provides a natural extension
to A la carte by supplying support for evolving architecture specifications through a
unified specification language.

16.3 A n Overv iew of A m a l g a m e

The Amalgame system provides a toolkit designed to assist the construction of hetero-
geneous and persistent programs. The various components of the Amalgame system
are fully extensible; they allow designers to interoperate arbitrary code fragments at
selected granularities of semantics, and produce reasonably efficient heterogeneous ap-
plications. Using concrete examples, we give a high-level overview of the Amalgame
architecture and show how it is used to implement heterogeneous and persistent pro-
grams. Our architectural overview describes Amalgame from the designer's point of
view, the specification language which guides the designer through the construction
process, and an architectural view of the Amalgame framework itself.

16.3.1 A Motivating Example
To experiment with Amalgame, we implemented a demonstration scenario involving
two persistent software development support systems used in the Arcadia consortium.
A detailed report of this experiment is given in section 16.4 of this chapter. The two
systems involved in the experiment are Rebus [302] and PGraphite [114,611].

16.3. AN OVERVIEW OF AMALGAME 319

Rebus is a requirement specification process program written in a Software Process
Programming Language (SPPL) called APPL/A [301,547]. SPPLs support software-
process programming, a way to formalize the representation of software product and
processes. A P P L / A is an SPPL which specifically addresses the problems related to
change management in process centered environments. A P P L / A is an extension to Ada
which provides abstract and persistent relations to represent inter-object relationships
explicitly, and maintain derivation dependencies automatically. A P P L / A uses Triton
[247] to store the relations existing between the different phases of a software process.
Triton is an object management system built on top of the Exodus [87] database system.
The current implementation of Rebus consists of a menu based DAG editor client and
a Rebus server. The Rebus server maintains underlying A P P L / A relations that are
managed by Triton and stored in Exodus.

PGraphite is a meta-tool which automatically generates persistent Ada implemen-
tations of graph abstract data types from concise declaxative specifications supplied in
a Graph Description Language (GDL). These generated Ada implementations access
the Mneme Database System [418] through a Storage Manager Interface (SMI) to store
and retrieve graph node instances.

To illustrate our presentation of the Amaigame architecture , we will use concrete
examples derived from our experience of using Amalgame to interoperate Rebus and a
Rebus-like PGraphite application.

16.3.2 The Designer's View of the Amalgame Toolkit
The Amalgame toolkit is built on top of the Eiffel environment [279] and relies ex-
tensively on the tools and class management facilities provided by this system. The
Amalgame toolkit consists of two ma~n components that help automate the design of
heterogeneous and persistent applications. These components include the Amalgame
framework which provides a reusable and extensible architecture to integrate persis-
tent and heterogeneous applications, and the Amalgame toolset which provides design
components to operate on the framework. The toolset includes a language processor
complemented with various tools implementing basic and extended functionality.

The toolset language processor performs lexica~ analysis and parsing of Amalgame
scripts. Amalgame scripts are source texts specified by designers and written using
the Amaigame Specification Language (ASL). The ASL is an extension of the Eiffel
[298,401,402] object-oriented language. The design of the ASL extensions to Eiffel was
strongly influenced and guided by the textual version of the Better Object Notation
(BON) [431,432].

The ASL is a unified and extensible language which provides constructs to imple-
ment the full range of capabilities offered by Amalgame. Some of these ASL constructs
are used to define, refine, test, and assemble framework components. Other ASL
constructs implement access methods to the Amalgame toolset basic and extended
functionality.

The basic functionality supported by the AmMgame toolset consists of a browser, a
run-time generator, and a heterogeneous program execution driver. The extended func-
tionality provides a channel to communicate with other components of the L'Heureux
toolkit such as Findit, Panorama, and A la carte. Figure 16.2 below illustrates the
various application design components supplied by Amalgame.

The Amalgame browser allows designers to peruse, edit and query existing frame-
work components. Amalgame also provides a run-time generator to package the various
framework components and support infrastructure involved in specified heterogeneous

320 CHAPTER 16. AMALGAME

programs. Finally, Amalgame provides an execution driver which can be used as an
option to spawn, control and terminate the execution of heterogeneous programs.

Access to the toolset functionality is serverized to promote cooperative hetero-
geneous application development, and ease the integration of AmaJgame in existing
development environments. An Amalgame toolset server can handle concurrent re-
quests from multiple client interfaces. Each client interface provides access to the basic
and extended Amalgame toolset functionality. Amalgame supports a combination of
menu driven and programmatic client interfaces.

Menu driven client interfaces provide interactive implementations of the basic and
extended set of Amalgame functionalities. These interactive interfaces are intended to
support human designers in the process of defining new heterogeneous and persistent
applications. Programmatic interface bindings are currently provided for C and Ada.
These bindings implement ASL interfaces for the supported languages and are intended
to support direct access to the ASL language from existing applications. Heterogeneous
programs specified using the ASL can be built and executed directly through Amalgame
client interfaces. Experienced designers may also elect to build and/or execute their
Amalgame heterogeneous programs manually.

~ M e n u - d r i v e n ~

ASL Server Interface
i

ASL Language Processor

w

\

Browser

irR - e
~ eenerator I I

E• " I
?r'ver J L

f
I

Basic toolset
functionality

Amalgame i x--_/rPanorama~
Framework ~ Interface |

I "(Ala oa e
L ,~176

Extended toolset
functionality

Figure 16.2: A des igner ' s view of the A m a l g a m e design componen t s

16.3 .3 P r a c t i c a l U s e of the Amalgame Toolkit

To describe the construction of a heterogeneous application using the Amalgame
toolkit, we step through the various phases of the Rebus and PGraphite interconnec-
tion process mentioned earlier. We assume that a fictitious human designer interacts

16.3. AN OVERVIEW OF AMALGAME 321

with a running Amalgame server through a menu driven client interface. For reasons
described in section 16.4 of this chapter, our fictitious designer would like to inter-
operate Rebus with a PGraphi te Rebus-like application. As a result, he is wondering
whether Amalgame has been previously exposed to similar applications and can supply
any reusable components.

To answer this question, our designer selects the Amalgame browse menu option to
invoke the Eiffel graphical browser and starts exploring the existing Amalgame clusters.
In Eiffel terminology, a cluster is a group of related component classes. In Amalgame,
any defined application is attached to an environment which itself corresponds to an
Eiffel cluster. To simplify our presentation we assume that the cluster list displayed by
the browser does not show any evidence of applications related to Rebus or PGraphite.
At this stage, our designer can select existing clusters one by one and browse through
them. Another alternative is to select the language processor option and submit a
small ASL script to query the Amalgame framework using the "Find" construct. Fig-
ure 16.3 below shows an example of such a script devised to identify any Amalgame
environment containing components related to the keywords "Rebus" or "Requirement
Specification".

Find
With

ENVIRONMENT

Rebus, Requirement Specification

Figure 16.3: A s imple ASL scr ipt to locate componen t classes

The ASL "Find" construct is implemented through Findit which is part of the
Amalgame extended toolset functionality provided by the L'Heureux toolkit. Other
ASL constructs are supplied to assist designers in locating related Amalgame framework
class components. In particular, the ASL "Browse" and "Show" constructs provide an
alternative to using the graphical browser.

At this point our designer is in the worst case situation where Amalgame cannot
provide reusable framework component classes to build upon. He is now ready to start
from scratch and step through the various phases of the Amalgame heterogeneous
application construction process. These various phases include the encapsulation of
selected Rebus and Pgraphite functionality into framework component classes of speci-
fied AmaJgame environments, the creation and refinement of the infrastructure required
to relate these encapsulated components to the selected application functionality, the
interconnection of the encapsulated components, and the generation of a run-time ex-
ecutable heterogeneous application.

To start with, our designer creates a new Amaigame environment for these applica-
tions. The ASL constructs provided to assist the designer in this process are illustrated
in Figure 16.4 below.

"A..APPL/A" and "A_PGRAPHITE" are the names of the Amalgame environ-
ments selected to respectively contain Rebus and PGraphite Rebus-like components.
This naming scheme provides a good basis for clustering as it suggests grouping appli-
cations writ ten in A P P L / A in the A_APPLA clusters and applications generated using
PGraphi te in the A_PGRAPHITE cluster.

As they attach a new environment to Amalgame, designers may be aware of a subset
of rules for interchanging basic and/or complex types between the type system of the

322 CHAPTER 16. AMALGAME

Attach Environment APPL/A

With NONE

To A_APPL/A

Attach Environment PGRAPHITE

With NONE

To A~GRAPHITE

Figure 16.4: Creat ing A m a l g a m e environments for Rebus and PGraph i t e

environment they are attaching and the Eiffel type system. Amalgame data dictionary
files provide a specific syntax for expressing these rules and communicate them to the
Amalgame system. In particular, the "With" field, in the "Attach Environment" ASL
construct, is used to specify an optional Amalgame data dictionary file name. However,
by selecting "NONE" in the "With" fields, our designer chose to implement the type
conversions as part of the component specification.

Our designer is now ready to encapsulate selected functionality from the Rebus and
PGraphite Rebus-like applications into framework component classes of the respective
"A_APPL/A" and "A_PGRAPHITE" AmaJgame environments. As explained in sec-
tion 16.4, his goal is to store persistent]~ebus objects interchangeably using Triton or
PGraphite. He is therefore trying to isolate the Rebus functionality that manipulates
these persistent components. Careful examination of the Rebus source code reveals
that the nine underlying A P P L / A relations which compose the Rebus process pro-
gram are mapped into a single Triton relation which provides a better compromise
for encapsulation. Figure 16.5 above illustrates the portion of the ASL script which
encapsulates the Triton relation.

Now that appropriate Amaigame class components have been created, our designer
is ready to use the Amalgame extension library to help specify the necessary infras-
tructure to relate his class components to the original Rebus and PGraphite Rebus-like
applications. Amalgame provides library clusters containing various extension compo-
nents, which are generic implementations of a specific type of support mechanism.
Amalgame currently provides data dictionary, communication and translation library
clusters. The set of support mechanisms can easily be extended by adding new clusters
and populating them with extension components implementing the adequate support
mechanisms. Extension components package functionality from existing Arcadia tools
such as Q [392], Triton [247], Chiron [314], and the client/server based generic inter-
connection scheme supplied by A la carte.

At this point our designer chooses to implement a client/server infrastructure.
While browsing through the Amalgame communication library, he notices that the Q-
based communication extension components. "aserver.e" and "aclient.e" provide the
functionality required to solve his problem. These two components also require the
translation extension "adr.e" and the data dictionary extension "add.e'. Figure 16.6
above illustrates the partial contents of the "aserver.e" extension component selected
to support the Rebus communication server mechanism.

To make the selected library generic support mechanisms available to his framework
component environments, our designer uses the ASL "Attach Extension" construct as

16.3. AN OVERVIEW OF AMALGAME 323

Encapsulate From APPL/A.triton.triton_relation

Type Is SUB_COMPONENT

In A_APPL/A.TRITON

As RELATION

With Specification {

class TRITON_RELATION export

insert, delete, update

feature

Create(name: STRING);

do
(...)
end; -- Create

insert(relation: STRING, name: NAME_STRING) is

deferred

end; -- insert

delete(relation: STRING, instance: NODE_NAME_TUPLE) is

deferred

end; -- delete

update(relation: STRING,

instance : NODE_NAME_TUPLE,

update_name: B00LEAN is false,

name: NAME_STRING is ~ ~noname' ') is

deferred

end; -- update

end -- class TRITON_RELATION

Figure 16.5: Encapsulation of Rebus selected functionality

illustrated in Figure 16.7 below.
To complete the implementation of his Rebus framework component infrastructure

mechanisms using the generic client/server mechanisms provided by the Amalgame
library, our designer creates extension mapping components to handle messages which
are specific to his applications. On the Rebus side, his server mapping component
inherits the generic functionality provided by the extension component "qserver.e"
and provides an implementation for the deferred "execute" method of that extension
component. The implementation uses the data dictionary and data translation mech-
anisms provided by the "adr.e" and "add.e" extension components mentioned earlier.
A partial snapshot of the ASL script implementing this phase is given in figure 16.8
below.

Our designer provides similar ASL script specifications to accommodate his
PGraphite Rebus-like component encapsulation. The ASL can Mso be used to define
new extension components or check whether a framework component is an extension
component. This functionality is available through the ASL constructs "New Extension
Component" and "Is Extension Component".

Our designer is now ready to interconnect his Rebus and PGraphite Rebus-like
framework components and implement the internal features of his serverized Re-

324 CHAPTER 16. AMALGAME

class ASERVER export

initialize, execute, shutdown

feature

initialize is

do (. . .)
end; - - i n i t i a l i z e

b e g i n i s d e f e r r e d
end; - - b e g i n

commit i s d e f e r r e d
end; -- commit

abort is deferred

end; -- abort

execute(rune: STRING,

input: ADR_HANDLE,

return: ADR_HANDLE)is

deferred

end; -- execute

shutdown is

do (. . .)
end; - - shutdown

end -- class ASERVER

Figure 16.6: A m a l g a m e class which suppl ies server mechan i sms

bus framework component. To properly support the demonstration scenario de-
scribed in section 16.4 of this chapter, the serverized Rebus framework compo-
nent should properly react to requests of the type "Execute(APPL/A.TRITON.-
RELATION.nodenameinser t , input, . . .) ' , where the 'Snput" buffer supplies the pa-
rameters "(tuple, PGRAPHITE)" . Such a request should insert the specified '%uple"
in the "nodename" relation of APPL/A .TRITON.RELATION in the context of the
"PGRAPt t ITE" Rebus-like application.

The context based mechanism just described allows designers to provide different
internal implementations of their encapsulated components according to the context
in which they are being accessed. As a result, our designer requests the interconnec-
tion and provides the necessary implementations using the ASL constructs partially
il lustrated in Figure 16.9 below.

To emphasize the result of this context-based interconnection process, it is im-
por tant to point out the differences between the Rebus encapsulated component
"A_APPL/A.TRITON.RELATION" and the original Ada package "APPL/A.triton.-
triton_relation". Although both have the same interface in terms of methods and
at t r ibute declarations, the internal implementations of these methods and attr ibutes
are completely different. For example, the "insert" method of "A_APPLA.TRITON.-
RELATION" in the context of P G R A P H I T E shown in Figure 16.9 uses the "Put-
Attr ibute" method provided by the encapsulated component "PGRAPHITE.REBUS"
to store persistent objects in PGraphite.

In a nutshell, the interconnection process we just described specifies a list of com-

16.3. AN OVERVIEW OF AMALGAME 325

Attach Extension To
Of Type
Specified In

Attach Extension To
Of Type
Specified In

Attach Extension To

Of Type
Specified In

AAPPL/A
DATA~ICTIONARY

./library/dictionary/add.e

A_APPL/A
DATA_C0~IJNICATION

./library/cemmunication/aserver.e

AAPPL/A

DATA_TRANSLATI 0N

�9 ion/adr, e

Figure 16.7: Attaching component extensions to the A_APPL/A environment

ponents to interoperate and supplies modifiers that implement appropriate support
features. Through this process, Amalgame environments can dynamically capture
meta-model information that describes the requirements and conditions under which
specified components can be interconnected. This interconnection process is supported
by Amalgame context-sensitive modifiers and a heterogeneous constraint mechanism
[90], which is part of the extended functionality provided by the L'Heureux toolkit.

At this stage, our designer has successfully created the Rebus and PGraphite Rebus-
like framework class components and derived specializations of these components using
Amalgame modifiers. He has also derived and interfaced proper mapping components
as specialized instances of generic AmaJgame framework extension components. It is
now possible to generate a run-time heterogeneous program that will implement the in-
terconnection between the Rebus and Pgraphite Rebus-like encapsulated components.

Our designer can use the ASL construct "Megacompile" to validate framework com-
ponents, generate corresponding Eiffel classes, and Eiffel compile the resulting classes.
He can then use the ASL construct ~'Megalink" to assemble specified framework com-
ponents. The ASL construct "Generate Runtime Component", which is also available
as an option of the menu driven client interface, combines the "Megacompile" and "Me-
galink" phases and generates runtime programs by operating directly on a specified root
class. Once successfully built, the heterogeneous program can be invoked through the
"Execute" menu option or the equivalent ASL construct. Figure 16.10 below shows the
script portion that builds and executes the Rebus/Pgraphite heterogeneous program.

16.3.4 T h e I n t e r n a l A r c h i t e c t u r e of t he A m a l g a m e Toolk i t

The Amaigame internal architecture implements support mechanisms for creating,
maintaining, and interconnecting heterogeneous framework components. These mech-
anisms are handled by various Amalgame underlying components including the persis-
tent object base (POB), the ASL lexieai analyzer and parser, the framework config-
uration manager, the framework component context handler, and additional support
facilities for transaction, correctness and constraint management.

The Amalgame POB is implemented using the Eiffel environment support facilities.
In Eiffel, an environment represents a set of persistent objects that can be individually

326 CHAPTER 16. AMALGAME

Add Class To A_APPL/A

Of Type EXTENSION

As TRITON_MAPPING
With Specification {

class TRITON_MAPPING export

inherit

feature

initialize, execute, shutdown

ASERVER, ADR, ADD

-- Execute method

execute(func: STRING,
input: ADR_HANDLE,

return: ADR_HANDLE) is

local
adr: ADR;
tuple: TUPLETYPE;
relation: TRITON~ELATION

do

end
end -- class

if func= APPL/A.

TRITON.RELATION.nodename.insert then
adr. Create;

adr.set_read;
adr.tupletype (input, tupletype); (...)
relation.Create (''nodename");

-- perform ''insert" on tuple

relation.insert(tupletype); (. . .)
end
-- execute
TRITON_MAPPING

Figure 16.8: Partial snapshot of the Rebus extension mapping component

identified through keys. Amalgame maps its heterogeneous application environments
onto Eiffel environments, and uses keys to identify and selectively manipulate the
various ftkmework components associated with each environment. Amalgame currently
uses the Eiffel facilities to store its heterogeneous application environments in the
UNIX** file system. In the near future, Amalgame will provide specializations of the
Eiffel environment support classes to integrate the TI OOODB and Triton as possible
underlying framework object repositories.

The Amalgame lexica] analyzer and parser provide the language processing support
required to check the syntax and semantics of ASL scripts. This extensible component
is implemented using the Eiffel lexical and parsing library classes. The parser uses the
lexical analyzer to identify ASL tokens as it scans through the ASL constructs found

**UNIX is a registered trademark of AT&T

16.3. AN OVERVIEW OF AMALGAME 327

I n t e r c o n n e c t APPL/A.TRITON.RELATION, PGRAPHITE.REBUS

Modifier For

In Context Of

With Type

With Method

APPL/A.TRITON.RELATION.insert

PGRAPHITE.REBUS

DEFINE
{

insert(relation: STRING, name:

local

do

namestring) is

node: REBUS;

id: integer;

. . .)
if relation = ~nodename'' then

id = GetUniqueId(name);

node. Create(~RebusNode~');

node.AssociateNodeWithId(~RebusNode'');

node.PutAttribute(node.id,relation,name);

node.PutAttribnte(node.id, ~Cnodeid", id);

end

end -- insert

Figure 16.9: In terconnect ion and specification of a context sensitive feature

in the submitted scripts. Once scripts are successfully parsed, the Amalgame lan-
guage processor applies the AmMgame semantics, which implement the specified ASL
constructs through the Amalgame framework configuration and component context
managers.

The Amalgame framework configuration manager maintains a table of configura-
tion connector components to keep track of the inter-relations between the various
Amalgame environments. The configuration connectors also keep track of component
classes and extensions attached to each particular environment. Finally the configu-
ration connectors associate and maintain the keys associated to the Amalgame frame-
work components in their corresponding environments. As an example, during the
encapsulation process described in section 16.3.3, the configuration manager defines
two separate configuration connectors for the "A_APPL/A" and "A_PGRAPttITE"
environments. A third configuration connector is defined for to the Rebus/PGraphite
environment.

The framework component context manager interacts with the framework configu-
ration manager to create new configuration connectors or check the consistency of ASL
constructs according to existing configuration information. The context manager also
creates context-based mapping connector components which are used to seamlessly
adapt the features of encapsulated components through modifiers specified using the
ASL. In the case of the example given in section 16.3.3, the Amalgame context manager
creates a connector component which inherits the deferred insert, delete and update
features of the "A.-APPL/A.TRITON.RELATION" (see section 16.3.3, Figure 16.5)

328 C H A P T E R 16. A M A L G A M E

-- Build and execute run-time heterogeneous program

-- The root class is TRITON_MAPPING

Generate Runtime Component APPL/A.TRITON~APPING

Execute APPL/A.TRITON.RELATION

Figure 16.10: Bui ld ing and executing the Amalgame heterogeneous program

and defines the insert method using the specification provided in the modifier (as
shown in section 16.3.3, Figure 16.9). The functionality of the resulting context-based
connector component is illustrated in Figure 16.11 below.

To generate a run-time version of "A_APPL/A.TRITON.RELATION", the context
manager combines all the context-based connectors defined for "A_APPL/A.TRITON.-
RELATION" into a single object and supplies an access method to allow this generated
component to sense the context in which it is accessed at run-time. This explains how
the "PGRAPHITE" context parameter is used at run-time by "A_APPL/A.TRITON.-
RELATION" to select the insert method shown ill Figure 16.11.

This component context sensitivity plays an important role in supporting concur-
rency control mechanisms and transaction management facilities within heterogeneous
applications created by AmMgame. Let us assume that we are implementing an hetero-
geneous application which is somewhat more complicated than the one we describe ill
the Arcadia experiment. This application still involves a "A_PGRAPHITE.REBUS"
component but this component is now accessible in the context of REBUS as well
as PGRAPHITE. We also assume that the implementations of the modifier methods
defined for the PGRAPHITE context access "A_PGRAPHITE.REBUS" in the con-
text of REBUS. In this case, accessing "A__PGRAPHITE.REBUS" in the context of
PGRAPI-IITE triggers a begin transaction for this particular component/context com-
bination. When "A_PGRAPttlTE.REBUS" is accessed in the context of "REBUS"
AmMgame senses the context parameter, finds out that it is different from the current
transaction context and triggers a nested begin transaction. This example illustrates
the nested transaction model implemented by Amalgame on the basis of defined context
parameters.

To implement the nested transaction model just described, the run-time version
of "A_APPLA.TRITON.RELATION" is created by AmaJgame as a multi-threaded
object which supports concurrency control and a nested transaction model to swi tch
between its defined access contexts. As a result, ff PGraphite were to use a version
of Mneme which supports transaction management and concurrency control, we could
create a heterogeneous application on top of Mneme that supports a context-based
nested transaction model. A similar approach that combines the definition of active
threaded objects in an object-oriented model is described in [82]. As an alternative to
the nested transaction model just described, Amaigame also provides ASL constructs to
reuse existing transaction management and recovery mechanisms supplied by A la carte
through the extended toolset functionality provided by the L'tieureux toolkit.

The context-sensitive mechanism we just described was largely inspired by the TI

16.3. AN OVERVIEW OF AMALGAME 329

...)
export

i n s e r t , d e l e t e , update
f e a t u r e
insert(relation: STRING, name:

local
node: REBUS;

id: integer;

do
(..)
if relation =

namestring) is

~nodename" then

id = GetUniqueId(name);

node. Create(~RebusNode'');

node.AssociateNodeWithId('~RebusNede'');

node.PutAttribute(node.id,relation,name);

node.PutAttribute(node.id, ~Cnodeid", id);

end

end -- insert

delete(instance: NODEJAME_TUPLE) is

deferred

end; -- delete

update(instance: NODE~AME~UPLE,

update_neuae: BOOLEAN is false,

name: NAME~TRING is ~nename'') is

deferred

end; -- update

end
(...)

Figure 16.11: Func t iona l i ty of the Rebus context-based connector component

OOODB computationa/ model of event extensions described in section 16.2.3 of this
chapter. The model seamlessly adds database functionality to existing object-oriented
programming languages as a collection of event extensions. An event is the application
of an operation to a particular set of objects. An extension to a programming language
is modeled as enhancements to the behavior of events in the language. Extensions can
be modeled in various ways and invariants that must be met by the corresponding
operations can be specified. For example, if an extension defines the ability to operate
on remote objects, an invariant could state that the operator and the operands need
to be instantiated in the same physical address space. Each way of meeting such an
invariant is defined in the TI model as a policy which is implemented by a policy
performer. We refer the reader to [606] for a complete description of the TI OOODB
computational model of event extensions.

To model its run-time context sensitive mechanism, Amalgame defines as an event
the operation that consists in applying a set of modifier methods to a framework
class component. This event is extended by defining modifier methods using the ASL

330 CHAPTER 16. AMALGAME

"Modifier For" construct. The corresponding Amalgame invariant rules that the set
of modifiers associated to a class component in a certain context must match the set
of modifiers defined for this context. To meet this invariant, Amalgame currently
implements a single policy as an internal policy performer. This performer selectively
retrieves the proper set of modifiers which are applicable to a specified framework class
component in a certain context.

To complete the description of the Amalgame internal architecture, we briefly de-
scribe its additional support facilities'for transaction, correctness and constraint man-
agement. Amalgame provides transaction management support as part of its generic
extension components. Indeed, the begin, commit and abort methods provided in an
extension mapping such as "TRITONAVIAPPING" can be used to group multiple ASL
constructs in a single transaction. Within this transaction, Amalgame automatically
implements a nested transaction model using the context parameter as a basis for lock-
ing components. An example of a heterogeneous application making use of this nested
transaction model was presented earlier in this section.

Amalgame also inherits correctness enforcement mechanisms from the Eiffel lan-
guage. Semantical correctness ensures that a class implementation conforms to its
specification and other requirements. Eiffel provides language constructs which can be
checked dynamically to ensure partial correctness of run-time programs. In particular,
Eiffel supports the definition of class invariants, method pre/post conditions, and loop
variants/invariants. We refer heterogeneous application designers to the Eiffel language
documentation [279] for a complete description of correctness mechanisms.

Finally, the ASL supports constraint specification, detection, and enforcement, as
part of the extended functionality provided by the L'Heureux toolkit through its het-
erogeneous constraint package. Using this package through special ASL constructs,
designers can ensure correct heterogeneous component integration and maintain con-
sistency in heterogeneous environments.

16 .4 A n A r c a d i a D e m o n s t r a t i o n S c e n a r i o

The interoperability experiment we have implemented using Amalgame consists in
interoperating Rebus with an Ada Rebus-like application generated by PGraphite from
a simple GDL specification. We quickly describe the Arcadia experiment from a high-
level standpoint and expose the simple modifications required to interconnect the Rebus
and Ada Rebus-like applications to the heterogeneous AmaJgame server generated in
section 16.3.3. Finally we summarize the various benefits of using Amalgame in the
scope of this experiment.

16.4.1 High-level Description of the Arcadia Experiment
There are numerous benefits to implementing mechanisms that transparently store re-
quirement specifications produced by Rebus using Triton and PGraphite interchange-
ably. For example, such mechanisms would allow a design specification tool written
using PGraphite to directly access and modify a Rebus requirement specification for a
particular design. This would definitely simplify the specification and maintenance of
the inter-dependencies between software requirement and design specifications. More-
over, the above described mechanisms address the interoperability of applications based
on heterogeneous graph specification languages. As a result, they provide an interest-
ing testbed for experimenting Amalgame interoperability mechanisms at the levels of

16.4. AN ARCADIA DEMONSTRATION SCENARIO 331

protocols and languages.
These various considerations motivated our experiment which precisely consists in

interoperating Rebus, Triton and a PGraphite Rebus-like application to transparently
store Rebus requirement specifications using either Triton or PGraphite. The basic
scenario using Amalgame to interoperate Rebus with Triton and PGraphite is shown
in Figure 16.12 below. On the PGraphite side, a GDL specification is devised to
implement the Rebus underlying APPL/A relations in terms of a PGr~phite node kind.
The corresponding Ada application generated by PGraphite is then made interoperable
with Rebus and Triton using Amalgame supplied extension components. Figure 16.12
also illustrates the encapsulated Rebus and PGraphite components required to support
this experiment and the access contexts supported by these components.

16.4.2 Implementation Details Related to The Arcadia In-
teroperability Experiment

A detailed representation of the Arcadia experiment showing the nature of the actual
components required to support the demonstration is provided in Figure 16.13 above.
We then briefly describe the different components required to support the intercon-
nection of the Rebus and Ada Rebus-like applications to the heterogeneous Ama]game
server generated in section 16.3.3.

Modif icat ions a n d A m a l g a m e S u p p o r t fo r R e b u s

Some small modifications are inserted in the Rebus DAG editor server at the level of its
Triton client interface. These modifications involve initialization and shutdown of the
Amalgame heterogeneous server, and execute method calls to invoke the Amalgame
encapsulated Rebus application component. Actual modifications added to the Triton
relation insert procedure are shown in Figure 16.14 below.

The execute method calls inserted in the Rebus DAG server Triton interface are pro-
cessed by a generic Ada client interface obtained from the Amalgame communication
library. This client interface is specifically designed to communicate with the server
extension component used to create the extension mapping "TRITON_MAPPING"
in section 16.3.3. The generic Ada client interface obtained from the Amalgame li-
brary does not require any modification, it is simply compiled and linked to the Rebus
server/client component. Figure 16.15 below shows the Ada specification for the Amal-
game supplied client package.

M o d i f i c a t i o n s a n d A m a l g a m e S u p p o r t for P G r a p h i t e

Modifications and Amalgame support provided for the PGraphite generated Ada ap-
plication are of similar simplicity as the ones provided for Rebus. Therefore, we omit
the details concerning the Amalgame supplied server interface and the associated mod-
ifications to the PGraphite'application. Figure 16.4.2 below illustrates the GDL script
implemented to specify the Rebus relations in terms of a PGraphite node kind.

class RebusDhG is

package Rebus ;
with Unix_Time. (Time_T) ;
subtype uniqueid is INTEGER ;
subtype timestamp is Unix_Time.TimeX;

332 CHAPTER 16. AMALGAME

subtype namestring is STRING;

subtype accessrights is INTEGER;

subtype text is STRING;

type coordstate is (Posted, Locked, Completed);

type FieldType is (NAME, AUTHOR, DATE, DESCRIPTION, TYPES,

DEFINITIONS,INPUT~PEC, 0UTPUT~PEC,

ACCURACY, ROBUSTNESS, TIMING, FLEXIBILITY,
SECURITY, PERFORMANCE);

type FieldSet is array(FieldType) of Boolean;

type FieldValueTuple is record

typename: namestring;

value: text;

end record;

FieldValues is array (FieldType) of text;

RebusNode;

NodeSequence
RebusNode i s
no de i d : uniqueid;
nodename : String;
p a r e n t s : NodeSequence;
c h i l d r e n : NodeSequence;
c r e a t e d : t imestamp;
modified: t imestamp;
owner: namestring;
r i g h t s : accessrights;
state : coordstate;
a u t h o r : namestring;
stamp : t imestamp;
t o : coordstate;
t r a c e a u t h o r : namestring;
lockowner : namestring;
f ields : FieldSet;
f i e l d v a l u e : FieldValues;
end node ;

t ype
node

t ype
node

end Rebus end RebusDAG;

-- complete definition given belo~

is sequence of RebusNode;

-- nodename

-- parents/children

-- status of node

-- state of node

-- trace of node

-- trace author

-- lock

-- field set

-- field values

F i g u r e 0.16 GDL class representing the Rebus DAG

16 .4 .3 Benefits of The Amalgame Approach
The object-oriented paradigm promotes the reusability of Ama/game components and
past modifications to these components. The encapsulation of general purpose appli-
cation code fragments provides a way to organize existing components by decomposing
them into cooperating objects. As a result, Amalgame framework components usually
support a basic set of reusable functionality that applies to various contexts without
requiring extensive modifications. These modifications are a/so extremely simplified
by the constructs supported by the Amalgame ASL and the underlying Eiffel object-
oriented language. Moreover, inheritance provides a flexible mechanism to isolate,

16.5. FUTURE DIRECTIONS 333

maintain, adapt and reuse past modifications to Amalgame components implemented
through ASL modifiers.

There are other benefits to the Amalgame approach which are not directly related
to its object-oriented approach. In particular, the implementation of the communi-
cation infrastructure supporting our Arcadia experiment is greatly simplified by the
Amalgame extension library which provides the necessary support to quickly imple-
ment the required client/server interfaces. We also find the amount of modifications
required to interoperate the programs to be quite minimal in comparison with the cod-
ing of the Amalgame specification script. The Amalgame lexieal analyzer and parser
are fast and efficient and Amalgame provides useful assistance in the debugging of ASL
scripts.

We can foresee that the type of automated assistance provided by Amalgame be-
comes increasingly useful as more interconnection contexts populate the Amalgame
framework. Since the implementation details are hidden from the interoperating pro-
grams by the Amalgame framework components, we can quickly experiment alternative
modifier implementations without affecting the interoperating programs. Finally, the
use of a single unified specification language is a definite benefit. Indeed, in the case
of our Arcadia experiment, no extensive knowledge of A P P L / A or GDL is required to
interoperate the Rebus and PGraphi te Rebus-like persistent programs.

1 6 . 5 F u t u r e D i r e c t i o n s

16.5.1 A Joint Arcadia and Prototech Demonstration Sce-
nario

We are currently implementing a joint Arcadia and Prototech demonstration scenario to
enable application developers to use variations of Rebus with either Triton or PGraphi te
as their storage manager. These variations of Rebus are obtained by modifying the
Rebus Process Program Control Structures using a MIF [30] prototyping language. For
example, a variant of Rebus could capture bottom-up instead of top-down functional
requirements. Amalgame provides the support components for this interoperability
experiment between Rebus, Triton, PGraphite and the MIF prototyping language.
The demonstration accomplishes four major goals. It shows how Prototech languages
can interoperate with Arcadia tools, it makes Rebus more usable by making it more
flexible, it also validates the usefulness of a Prototech language by using it to quickly
prototype a variation of Rebus. This experiment finally illustrates how Amalgame can
be used to allow a tool to run on a different database platform, and allow a prototype
system to replace an existing version of an outside tool.

16.5.2 An Interoperability Experiment with Chiron

There is a growing interest among the Arcadia researchers at University of California
at Irvine to put Chiton on top of multiple database managers. Chiron is a serverized
user-interface system capable of supporting multiple simultaneous views of abstract
da ta types (ADTs). Chiton provides an Abstract Depiction Language (ADL), which is
object-oriented and used to program new "widgets". Multiple client programs called
"artists" can concurrently send requests to the Chiton server to display different views
of the Chiron server ADTs. We are currently investigating the requirements of the Ch-
iron Object Manager interface which corresponds to a heterogeneous interface between

334 CHAPTER 16. AMALGAME

Chiron and multiple underlying databases. This will help us evaluate the support
provided by Amalgame to place Chiton on top of multiple object managers.

16.5.3 An International "Library" of Deployed
"Wrapped" Persistent Applications

Research performed under the L'Heureux and Discovery projects at University of Col-
orado at Boulder suggests the idea to extend the scope of interoperating persistent
applications to develop an international "library" of deployed encapsulated persistent
applications. Possible interested sites to support this experiment have been identi-
fied in Europe (Esprit, GMD), Japan, Australia (CITRI), and the U.S.A (USC, CU).
Although this project is in its very preliminary stages, it constitutes an interesting
experiment for Amalgame in terms of providing interoperability mechanisms for large
scale persistent systems.

16.6 Conclusion
The Amaigame system provides an integrated solution to the persistent heterogeneous
component interoperability problem by addressing various levels of interoperability
among languages, interfaces, and schemas. In this chapter, we have thoroughly de-
scribed the architecture of Amalgame and discussed an interoperability experiment
involving Arcadia tools.

The existing Amalgame prototype could be improved in many ways. Constraints
between heterogeneous components could be managed in a more flexible fashion. Inter-
faces to existing or upcoming components of the L'Heureux toolkit should be created or
perfected to improve the level of automated assistance. Finally, new components should
populate the extension library to further enhance existing communication, translation,
data dictionaries, or transaction management schemes, and support the various types
of execution models found in diverse application domains.

Amalgame contribution to the "open" database research world is to provide a
framework for analyzing the components that should be exposed to ease interoper-
ability among future database systems. Amalgame provides an important enabling
technology which applies to a large number of application domains ranging from wide
integrated, extensible, broad-scope persistent environments to larger, evolving, hetero-
geneous persistent software systems.

16.7 Acknowledgments
We appreciate the comments and suggestions provided by Dennis Heimbigner, Stun
Sutton, Mark Maybee, Shenxue Zhou, Athman Bouguettaya and Jim Dairymple who
all contributed to the design and implementation of the Amalgame system.

16.7. ACKNOWLEDGMENTS 335

Graph spe~ifmd using
APPL/A r e l a t i o ~

~ : A m a l g a m e interconnect ion

Graph specified
using GDL

GDLscript)

Figure 16.12: High level view of the Amalgame experiment

--9- ~ I ~.~g~.e i

: run-time application ~ : supplies
: component generated by Amalgame _ _ : pre-existing connexion
: component coded by Amalgame designer : amalgame supplied con

Figure 16.13: Amalgame interoperability experiment using Arcadia components

336 CHAPTER 16. AMALGAME

procedure insert(tup: in out tupletype)
is
begin
(...)

if A_initialized = true then
qdr.set_write(A~args);
qdr~upletype(A~args,tup);
qdr~tring~lice (A_qargs,A_context.all);
status := execute(~APPL/A.Rebus. '' ~ relationmame

~.insert'', A_qargs,A~result);
if status <= 0 then raise amalgame~ccess_error;

end if;
end if;

end insert;

Figure 16.14: Sample modification of the Rebus insert procedure

with system;
withq, qpc, qdr, q_pc_clnt;
package amalgame is

amalgame_access_error: exception;
amalgame_c onstraint_error : exception;

function initialize_amalgame (hostname : string)
return integer ;

function shutdown_amalgame(exitcode : in integer:=O)
return integer;

function execute (amalgame_component_method : in string;
input: in qdr.handle := qdr.null_handle;
output: in qdr.handle := qdr.null_handle)

(...)

end area!game

Figure 16.15: Rebus Ada client interface supplied by Amalgame

Chapter 17

Correctness and Enforcement of Multidatabase
Interdependencies

G. Karabatis*, M. Rusinkiewicz*, A. Sheth $

1 7 . 1 I n t r o d u c t i o n

Many industrial computing environments consist of multiple data processing systems
developed along functional or organizational divisions. Each such system usually au-
tomates a part of company operations and consists of an application and a centralized
DBMS. While the systems are frequently interconnected, they typically are not inte-
grated and provide a limited support for interoperability. An important problem in
such environments is to maintain a desired level of consistency of data across these
systems, in the presence of concurrent update operations.

The concept of interdependent data has been introduced in [518] to provide a
framework for studying data consistency in multidatabase environments. Interdepen-
dent data are data objects related by consistency requirements and possibly managed
by different systems. These objects could be quite different structurally and seman-
tically. Data dependency descriptors (D3s) [479] are used to specify the dependency
between related data objects, the levels of permitted inconsistency, and methods that
can be used to restore the consistency if it is violated beyond the specified limits.

In addition to the specification of data consistency requirements, two additional
issues need to be addressed to manage interdependent data: (a) correctness of the
specifications and (b) enforcement of the specifications. In this chapter, we address
these two issues for a wide range of interdependency specifications. However, given the
complexity of handling relaxed constraints consisting of both data state and temporal
components in an environment consisting of heterogeneous and autonomous systems,
significant additional work will be needed in the future.

An update to an interdependent data object, may violate the consistency require-
ments among interdependent data objects. The mutual consistency requirements may
not require immediate restoration of full consistency. Instead, a promise from the
system that the consistency will be restored eventually, may be sufficient. Various
relaxed consistency criteria have been proposed in literature. The relaxed criteria of
consistency for replica control include k-completeness [489], c-serializability [456, 631]

*Department of Computer Science, University of Houston, Houston, TX 77204-3475,
U.S.A., george@cs.uh.edu

tDepartment of Computer Science, University of Houston, Houston, TX 77204-3475,
U.S,A., marek~cs.uh.edu

Bellcore, 444 Hoes Lane, Piscataway NJ 08854-4182, U.S.A., amit@ctt.bellcore.com

338 CHAPTER 17. MULTIDATABASE INTERDEPENDENCIES

and N-ignorance [333]. The above three criteria allow limited inconsistency among
replicas specified in terms of the number of updates or other countable events. D3s
allow specifying more general criteria of lagging consistency and eventual consistency
to capture relaxed consistency requirements involving a variety of temporal and data
state based parameters among interdependent da ta [519].

When the consistency limits of a dependency descriptor are exceeded, an additional
transaction may be created automatically to restore the consistency of the interdepen-
dent data. The execution of this transaction may affect consistency requirements spec-
ified by some other D a and another transaction may be activated. We refer to a tree of
transactions, initiated by an update to an interdependent data, as a polytransaction
[519].

Polytransactions allow automatic maintenance of multidatabase consistency, based
on the weak consistency requirements. When immediate consistency is not required,
an update to a da ta item can be decoupled from the actions that would need to ac-
company it to restore the mutual consistency. These actions can be executed later,
within the limits specified by the dependency descriptor. Such an approach also allows
to reduce the number of remote transactions that are needed to maintain mutual con-
sistency. These consistency-restoring transactions may need to be executed only when
the consistency requirements are violated rather than after every update.

The weak mutual consistency criteria may allow a situation in which an object does
not reflect all the changes to the da ta items to which it is related, but the inconsistency
remains within the allowed limits. We discuss the conflicts between polytransactions
and the correctness of concurrent execution of polytransactions. While the serializ-
ability can be used when no temporal terms are involved, we introduce the concept
of temporal serializability that considers serializable schedules for nontemporal con-
straints as well as temporal precedence for temporal constraints.

This chapter is organized as follows. Section 17.2 reviews our framework for spec-
ifying interdependent da ta and presents a conceptual architecture in which the speci-
fications can be enforced. Section 17.3 discusses the correctness of dependency speci-
fications. Section 17.4 defines the polytransaction mechanism. Section 17.5 discusses
the consistency states of interdependent da ta objects and various operations/events
that lead to the state transitions. We also discuss the need to control updates by local
transactions. Section 17.6 discusses the correctness of the execution of a single poly-
transaction and the issues related to concurrent execution of polytransactions. Finally
Section 17.7 provides conclusions.

17.2 Background
In this section we briefly review our framework for the specification of interdependent
data. A more detailed discussion can be found in [479, 519]. We then discuss a concep-
tual architecture that could support maintenance and enforcement of specifications.

17.2.1 Specification of Interdependent Data
Our framework for specifying interdatabase dependencies consists of three components:
dependency information, mutual consistency requirements, and consistency restoration
procedures. While these components have been addressed in the literature separately,
in our opinion they represent facets of a single problem that should be considered
together. Data dependency conditions are similar to Unlike integrity connstraints

17.2. BACKGROUND 339

in distributed DBMSs [525], full integrity between interdependent da ta in different
databases may be necessary at all times or not possible in many environments. We use
Data Dependency Descriptors (D 3) to specify the interdatabase dependencies. Each
D 3 consists of an identification of related objects and a directional relationship defined
in terms of the three components just mentioned. A D 3 is a 5-tuple:

D 3 =< S ,U,P,C,A >

where:

�9 S is the set of source data objects,

�9 U is the target data object,

�9 P is a boolean-valued predicate called interdatabase dependency predicate (de-
pendency component). It specifies a relationship between the source and target
da ta objects, and evaluates to true if this relationship is satisfied.

�9 C is a boolean-valued predicate, called mutual consistency predicate (consistency
component). I t specifies consistency requirements and defines when P must be
satisfied.

�9 A is called actioncomponent and contains information about how the consistency
between the source and the target da ta object may be restored.

The objects specified in S and U may reside either in the same or in different
centralized or distributed databases, located in the same or different sites. We are
particularly interested in those dependencies in which the objects are stored in different
databases managed by a local database management system (LDBS).

The dependency predicate P is a boolean-valued expression specifying the relation-
ship that should hold between the source and target da ta objects.

The consistency predicate C, contains mutual consistency requirements specified
along two dimensions - the da ta state dimension s, and the temporal dimension t.
The specification of the consistency predicate can involve multiple boolean valued
conditions, referred to as consistency terms and denoted by ci. Each consistency term
refers to a mutual consistency requirement involving either time or the state of a da ta
object.

The action component A, is a collection of consistency restoration procedures. They
specify actions that may be taken to maintain or restore consistency. There can be
multiple restoration procedures, and the one to be invoked, may depend on which
conditions lead to the inconsistency between interdependent data. The execution mode
can be defined for each restoration procedure to specify the degree of coupling between
the action procedure and its parent transaction (i.e., the transaction that invokes it).

The set of all D3s together constitutes the Interdatabase Dependency Schema, (IDS)
[519]. It is conceptually related to the Dependency Schema presented in [373].

Alternative ways to specify consistency requirements among related data have been
also discussed. Identity connections [609] introduced a time based relaxation of mu-
tual consistency requirements among similarly structured da ta items. Relaxed criteria
based on numerical relationships between data items have been proposed in [34]. Quasi-
copies support relaxed consistency between primary copies and quasi-copies, based on
several parameters [16]. E-C-A rules can be used to specify the C and A components
of D3s [138]. In [90, 91] interdatabase constraints axe translated to production rules in
a semi-automatic way, using a language based on SQL, to specify consistency between

340 CHAPTER 17. MULTIDATABASE INTERDEPENDENCIES

interrelated data objects. The derived production rules enforce consistency by gener-
ating operations automatically. However, tolerated inconsistencies are not allowed in
that approach.

In the following example, we illustrate the use of D3s, for the specification of
consistency requirements between a primary and a secondary copy, as a special case
of replicated data. We assume that copies of data are stored in two or more data-.
bases. The dependency between all copies requires that changes performed to any
copy are reflected in other copies, possibly within some predefined time. Let us con-
sider the relation D1.EMP (i.e., relation E M P stored ill database D1) and its replica
D3.EMP_COPY. We assume that E M P must always be up-to-date, but we can tol-
erate inconsistencies in the E M P _ C O P Y relation for no more than one day. q~he
following pair of dependency descriptors represents this special type of replication:

8: D1.EMP
U: D3.EMP_COPY
P: EMP = EMP_COPY
C: ~(day)
~" Duplicate-EMP
(E M P is copied to E M P _ C O P Y) .

$: D3.EMP_COPY
U : D1.EMP
P : EMP = EMP_COPY
C: 1 update on S
.A : Propagate_Update_To_EM P

as coupled & vital
(The update on EMP_COPY
is repeated on EMP.)

The two descriptors above, represent a case of a bi-directionai dependency between
two database objects. The target object in one descriptor is the source object in the
other descriptor. The consistency predicate P is exactly the same in both D3s. The
consistency between the two objects is specified as follows: whenever an update is
performed on E M P _ C O P Y , it must be reflected immediately in the E M P relation.
On the other hand, consistency will be restored in the E M P _ C O P Y with respect to
the updates on E M P only at the end of the day (although there may be a number of
updates performed to the E M P during that day).

17 .2 .2 Conceptual System Architecture
In this chapter we are concerned with the effects that an update operation on a data
object may have on the related data managed by other systems. We assume that a
system involved in the management of interdependent data consists of a data manager
(DM) , the database(s) it manages, and a new component called a dependency sub-
system that is introduced below. A D M can be a DBMS that manages data in the
database(s). With different types of DMs, interfaces vary. However the basic issues of
managing interdependent data that are discussed here apply in all cases.

A possible conceptual system architecture that can be used to maintain interde-
pendent data objects is illustrated in Figure 17.1. Every database participating in
a multidatabase environment is augmented with a Dependency Subsystem (DS), that
serves a dual purpose: it acts as an interface between different databases where in-
coming transactions (updates and queries) are to be executed, and also monitors the
consistency of interdependent data. The evaluation of the consistency between in-
terdependent data implies knowledge of all events and operations in the system. To
facilitate monitoring of relevant events and operations, we assume the existence of a
monitor [470], as an internal part of each DS. To identify all consistency terms that
may be violated due to updates on interdependent data, the monitor in the D S is
informed of all updates of the data objects, which may require adding appropriate

17.3. CORRECTNESS OF DEPENDENCY SPECIFICATIONS 341

commands to a transaction (e.g., see [517]) or linking the data manipulation routines
with procedures that inform the monitor, tn addition, the monitor needs to know
the changes to interdependent da ta before and/or after the updates are performed. If
the consistency requirements are violated, the DS would invoke appropriate actions
to execute restoration procedures on the da ta managed by the DMs. Under the pro-
posed architecture each site can be monitored independently. DSs at different, sites
can communicate with each other, exchanging information between monitors.

A transaction submitted to a DS is analyzed before being executed by the DM.
In particular, the DS consults the IDS to determine whether the data accessed by the
transaction are dependent on da ta controlled by other DMs. Then, a series of related
transactions may be scheduled for execution to preserve mutual consistency of related
data. The initially submitted transaction, and related transactions corresponding to
restoration procedures, are submitted to the DMs that manage the databases where
da ta to be updated are stored. After the execution of a restoration procedure, the
values of the various components of the dependency descriptors that are maintained
by the monitor, including the consistency terms c,, are updated. Special precautions
must be taken to properly serialize the execution of these monitoring transactions with
respect to the updates, to assure that the v~lues observed by the monitor correspond
to consistent snapshots of data. Once it is determined that the inconsistency among
the interdependent da ta has exceeded the limits specified in the IDS, either in the
terms of the da ta state, or temporal constraints, appropriate procedures are invoked
to restore the consistency.

The IDS itself can be either centralized or distributed over multiple systems. In
the la t ter case, only those dependency descriptors that have their source or target
objects stored locally might be kept in the IDS partit ion associated with the DS.

17.3 Correctness of Dependency Specifications
In this section we discuss the issue of correctness of interdependent data specifications,
i.e., the D3s in the IDS. We first introduce a graphical representation of the IDS
and then discuss the correctness issues that can be determined by static examination
of the IDS. We call interdependency specifications to be incorrect when they specify
contradictory requirements, or when there are no potential schedules to enforce them.
In this section we investigate two cases that lead to incorrect specifications in the
IDS: first, we identify incorrect specifications due to potential conflicts among the C
components of D3s. Then, we show incorrect specifications due to conflicts among the
P components of the D3s.

17.3.1 Dependency Graph
Each descriptor D 3, identifies a relationship between the source and the target da ta
objects. The set of D3s that comprise the IDS can be represented as a directed graph
that we call the dependency graph. Figure 17.2 illustrates an example of such a graph.

A database object participating in an IDS is called a Data Object Vertex and rep-
resented by a circle. A dependency descriptor D 3 between two database objects, called
a Dependency Vertex, is represented by a square. The edges of the graph represent the
directionality of the descriptors between the objects. An edge of the graph originates
from a da ta object vertex (source data object), passes through a dependency vertex
(representing the D 3 itself), and terminates at another data object vertex (the target

342 GHAPTER 17. MULTIDATABASE INTERDEPENDENCIES

I DM

Figure 17.1: Architecture of a system for managing interdependent data

da ta object). If a D 3 has multiple source da ta objects, we create edges from all partic-
ipating source objects to the descriptor vertex. From that descriptor vertex, another
edge is directed to the target object vertex of the D 3. In Figure 17.2 the descriptor
D~ specifies the relationship between the source object ol and the target object o3.
Descriptor D 3 connects two source objects ol and o2, with the target object o4. An
object vertex with no incoming edges is called a top vertex. In Figure 17.2 objects ol
and 02 are top vertices.

Every da ta object vertex o~ has outgoing edges to all dependency vertices d~ in
which it participates as a source object. A dependency vertex di, has incoming edges

O1 02

3 3

03 04

Figure 17.2: I n t e rdependen t d~ ta ob jec t s and thei r descr ip tors

17.3. C O R R E C T N E S S OF D E P E N D E N C Y SPECIFICATIONS 343

from all the da ta object vertices that are sources in the dependency descriptor it
represents, and an outgoing edge to the vertex that represents its target da ta object.
Hence, we have

Vdi, in-degree(d~) E {1, n}
Vd~, out-degree(di) = 1, and
voj, o~t-degree(o~) �9 {0, n}

Now, we examine correctness of 1DS specifications.

17.3.2 Correctness Requirements Involving Consistency
Predicates

A possible case of conflict arises when a new D 3 has a target object that is also the
target object of an existing D z. This case introduces the notion of conflict between da ta
descriptors in the IDS. One possibility is to characterize two dependency descriptors
as conflicting if they have the same data object as their targets (see Figure 17.3). The
problem with this specification is as follows. Suppose that ol and o3 are da ta objects

(~)

O1 02

03

Figure 17.3: Confl ic t ing D a t a Descr ip tors

related through descriptor D13 and 02 is related with object 03 through descriptor D~.
The dependency predicates P1 of D~, and P2 of D~ are given below:

P1:o3=o1+3
P2 :o3 = 0 2 * 2

Additionally, the consistency predicates C of both D3s specify that the updates
on the sources should be propagated to the targets immediately. If the initial values
are ol = 1, o2 = 2 and o3 = 4, both D3s are satisfied. Suppose that ol is updated to
5, which is propagated to os through descriptor D~, updating o3 to 8 (5+3). Then,
P2 predicate in D23 is violated. If o2 is now updated, the result of this update is
propagated to o3 invalidating the effects of the previous update on o3 resulting from
D13. In general, there is no way the system can ensure that both dependency predicates
are satisfied simultaneously. The problem is due to the existence of two D3s targeting
the same object, whose consistency predicates overlap (in this particular example they
are exactly the same). In general, it is not clear what semantics these two D3s convey,
and situations like this may lead to uncertainty about the D 3 that updates the target.
It is similar to the case where two rules have the same right hand side and both are
triggered. Stonebraker et. al, refer to such updates as non]unctional [553]. One way

344 CHAPTER 17. MULTIDATABASE INTERDEPENDENCIES

to avoid this problem is not to allow specification of a D 3 that targets a data object
which is already a target of another D 3.

However, this approach is rather restrictive, since there may be cases that a tar-
get object must be mutually consistent with more than one source data objects. Our
framework is flexible enough to allow in a single D 3 the specification of consistency be-
tween multiple sources and one target. For this reason, we recommend incorporating all
source objects having the same target into a single D 3. The collection of all consistency
information regarding the same target object into a single D e gives a uniform struc-
ture to the IDS. The advantages of this approach include a better description of the
I D S , a natural criterion for fragmenting it, and also a safeguard against the creation
of new D3s that may potentially undo actions that other D3s enforce. SchematicaJ]y
we illustrate this by re-directing all edges terminating at the same target object, to the
same descriptor vertex containing the D 3, as shown in Figure 17.3b. The target object
always belongs to one D 3. Whenever a new D 3 is to be created targeting an object
that is already the target of an existing D 3, the two descriptors must be merged to one
with the P, C, and A predicates, appropriately augmented. w Therefore, we impose the
following restriction to the dependency graph: each data object vertex has at most one
incoming edge, i.e., its in-degree(o 0 E {0, 1}.

17.3.3 Correctness Requirements Involving Dependency
Predicates

In this subsection, we discuss the correctness of dependency predicates, first limiting
our discussion to Des involving singleton source sets.

E x a m p l e : Let us consider the following pair of Des:
D~ :: $1 : oi D3 :: $2 : oj

U1 : oj U2 : oi
Pl : oj = o i + 2 P2 : ok = oj - 3
C1 : immed ia te l y C2 : immedia te ly

A~ : Update_oj A2 : Update_ok

In this example, a cycle exists between objects oi and oj in the dependency graph.
If an update occurs on oi so that P1 no longer holds, oj becomes inconsistent, and
must be updated by executing the procedure Update_oj. After oj has been updated,
the P2 predicate is violated. That means, oi is inconsistent, and requires immediate
execution of the Update_o, procedure. This could be repeated indefinitely.

The above abnormal behavior is caused by the fact that each Pi predicate of the
corresponding D3s is not the inverse of the other. If P2 were oi = oj - 2 instead of
oi = o j - 3 the cycle would be acceptable since after performing A2, P1 and P2 are both
satisfied. Therefore, no more updates will be performed due to restoration procedures.
Cycles that do not cause infinite number of updates are harmless and are referred to
as stable.

One way to avoid unstable cycles is to disallow cycles in the I D S . However, this
may be too restrictive, since there may be applications that require cyclic dependencies.
Therefore, we will require that all cycles in the I D S are stable.

To generalize the previous discussion let us assume a cyclic dependency graph as
illustrated in Figure 17.4. All updates resulting from an update to ol can be propagated

w the designer of the D 3 is knowledgeable about the semantics of the existing 0 3 targeting
the same object, it is easy to merge the two D3s into one.

17.4. P O L Y T R A N S A C T I O N S 345

further, up to ok. The last dependency D~ introduces a cycle by linking objects ok
and ol. Let Pi be the dependency predicate of D~, i = 1, 2 . . . k. In order for the cycle
to be stable, the composition of all predicates involved in the cycle must be equal to
identity, i.e., (P1 o P2 o . . . o Pk-1 o Pk) = I . For example, if

/~ : 02 =01 + 3 ,
P2 : 0 3 = 0 2 - - 1,
then for a stable cycle we must have
Ps : ol = 0 3 - 2 .

E
-]

02
~ f
r k..~ Ok

Figure 17.4: A cyclic dependency g raph

The correctness of dependency specifications in the IDS, can be determined by a
static analysis of the dependency graph. Conflicting descriptors and unstable cycles
can be identified, every time a new D 3 is added, and appropriate actions can be taken
to maintain an I D S with correct specifications. The above notion of correctness can
be extended to the cases that involve multiple source objects.

So far, we investigated some cases of correctness of specifications that can be iden-
tified by a static analysis of the dependency graph. In the remainder of the chapter
we will investigate the issues of maintenance and enforcement of consistency between
interdependent da ta that are being updated by transactions.

17.4 Polytransactions
Transaction management technologies have been developed to ensure proper inter-
leaving of concurrent activities, and to maintain database consistency. Most of the
concurrency control methods proposed for distributed databases use the concept of
one-copy serializability to support mutual consistency of related data. In most cases,
its use is limited to replicas. In the context of semantically related da ta maintained
in multiple databases, one-copy seriMizability, and the corresponding replica-control
mechanisms, may be unnecessarily stringent, expensive or difficult to implement. A
possible approach to this problem is to use application/operation semantics to allow
harmless non-serializable conflicts [209, 185].

In an environment consisting of multiple autonomous systems, the concept of global
(multidatabase) transaction that is composed of a well-defined set of subtransactions

346 CHAPTER 17. MULTIDATABASE INTERDEPENDENCIES

may be too restrictive. The need to relax atomicity, isolation and durabifity are dis-
cussed in various papers in [172]. The transactions we are interested in may not have
all the ACID properties [240]. We require that a transaction is correct in a sense de-
fined by the semantics of the apphcation. Depending on the apphcation, requirements
weaker than absolute consistency may optionally be imposed on updates performed on
interdependent data.

Some of the earher efforts that support enforcement of weaker consistency criteria,
but more hmited that those that can be expressed using D3s, or in a hmited system en-
vironment, are as follows. Mechanisms to enforce c-seriahzability [631] and N-ignorance
[333] have been proposed. Demarcation protocols allow maintenance of arithmetic con-
strains [34]. An enforcement mechanism for some types of interdependent data specifi-
cations was proposed by extending a distributed transaction management approach in
[517]. Actions to restore consistency between interdependent da ta were discussed in the
context of active databases with nontemporai constraints are discussed in [138, 257].
An idea comparable to triggers for the management of interdependent da ta was dis-
cussed in [407]. The authors used a table driven approach to schedule complementary
updates (or invoke a contract) whenever a da ta item involved in a multi-system con-
straint was updated. The parent transaction would then terminate, without waiting
for a chain of complementary actions to take place.

To support enforcement of da ta consistency requirements as specified by D3s, we
use the more flexible notion of a polytransaction to describe a sequence of related update
activities. An important difference between polytransactions and the above mentioned
extended transaction models is that polytransactions do not assume that a set of
component (sub-)transactions is known in advance. In this respect, polytransactions
are closest to the transactional model for long running activities proposed in [140].
Polytransactions are dynamically generated when an update or other event could result
in violation of the consistency specification given in D 3. Additionally, polytransactions
allow selective and controlled relaxation of atomicity and isolation criteria, as discussed
later.

A polytransaction P is a '~transitive closure" of a transaction T submitted to an
interdependent da ta management system. The transitive closure is computed with re-
spect to the IDS. A polytransaction can be represented by a tree in which the nodes
correspond to its component transactions and the edges define the "couphng" between
the parent and children transactions. Given a transaction T, the tree representing its
polytransaction P can be determined as follows. For every data dependency descriptor
D 3 such that a da ta item updated by T is among the source objects of the D 3, we
look at the dependency and consistency predicates P and C. If they are satisfied, no
further transaction will be scheduled. If they are violated, we create a new node corre-
sponding to a (system generated) new transaction T' (child of T) to update the target
object of the D 3. T ~ will restore the consistency of the target objec t. Specification of
weaker mutual consistency criteria will result in less frequent violations of consistency.
Hence, the restoration procedures (and the corresponding children transactions) will
be scheduled less often.

When a user submits a transaction that updates a da ta item that is related to other
da ta items through a D 3, this transaction may become the root of a polytransaction.
Subsequently, the system responsible for the management of interdependent data uses
the IDS to determine what descendent transactions should be generated and scheduled
in order to preserve interdatabase consistency. Execution of a descendent transaction,
in turn, can result in generating additional descendent transactions. This process
continues until the consistency of the system is restored as specified in the IDS.

17.4. F O L Y T R A N S A C T I O N S 347

The ways by which a child transaction is related to its parent transaction within
a polytransaction are specified in D 3 by the execution mode of the action component.
This relationship is indicated as a label of the edge between each parent and its child in
the polytransaction tree. A child transaction is coupled if the parent transaction must
wait until the child transaction completes before proceeding further. It is decoupled if
the parent transaction may schedule the execution of a child transaction and proceed
without waiting for the child transaction to complete.

If the dependency schema requires immediate consistency, the nested transaction
model may be used, in which the descendent transactions are treated as subtransactions
which must complete before the parent transaction cast commit. A two-phase commit
protocol may be used in this case. A coupled transaction can be vital in which case
the parent transaction must fail if the child fails, or non-vital in which case the parent
transaction may survive the failure of a child [210].

Traditional transactions are characterized by the ACID properties. Polytransac-
tions provide a mechanism to support these properties if needed, using appropriate
specification of the consistency predicate and the execution mode action predicate of
the dependency descriptors that are used to create a polytransaction. I t is the respon-
sibility of the D 3 designer to specify which of the ACID properties a polytransaction
may have, as follows:

A t o m i c l t y A polytransaction supports atomicity if all of its transactions are executed
in vital mode. Atomicity is relaxed if at least one of its transactions is executed
in non-vitalmode. �82

C o n s i s t e n c y We discuss issues of consistency of polytransactions later in Section 17.6
of this chapter.

I s o l a t i o n A polytransaction supports isolation if all of its transactions are executed
in coupled mode, and the D 3 consistency requirements specify immediate consis-
tency. Otherwise, isolation is relaxed since values of a da ta object that is within
a consistent state, can be seen by other transactions.

D u r a b i l i t y As in other extended transaction models, if every transaction of a poly-
transaction is durable, then the whole polytransaction supports durability.

Several new transaction paradigms have been proposed recently in the literature
that are based on various degrees of decoupling of the spawned activities from the
creator (e.g., [327]). Triggers used in active databases [139] are probably the best
known mechanism in this group. The main problem with asynchronous triggers is that
the parent transaction has no guarantee that the activity that was triggered will, in
fact, complete in time to assure the consistency of the data.

To allow the parent transaction some degree of control over the execution of a child
transaction, the concept of a VMS mailbox has been generalized in [210]. Similar ideas
have been presented in [48], and in [258], where the notion of a "persistent pipe" has
been introduced. Both generalized mailboxes and persistent pipes allow the parent
transaction to send a message to a child process and know tha t the message will be
eventually delivered. If such a guarantee is sufficient, the parent transaction may then
commit, without waiting for the completion of the actions that were requested. The
parent or its descendant may check later if the message has been indeed received and
take a complementary or compensating action.

�82 definition only coupled transactions can be vital or non-vilal.

348 C H A P T E R 17. M U L T I D A T A B A S E I N T E R D E P E N D E N C I E S

17.5 Consistency of Interdependent Data

In this section we present the concept of consistency of interdependent data. First we
discuss about the states, the events, and the transitions that affect the consistency of
interdependent da ta objects. Then we define the measures that can be used to quantify
the consistency of interdependent data. Finally we discuss the issue of when a target
da ta object can be directly updated outside of the polytransaction mechanism without
violating consistency requirements of interdependent data.

17.5.1 States of Interdependent Data Objects

For every dependency descriptor, its source and target data objects must be consis-
tent according to the specified degree. However, the source and the target objects go
through various states of consistency: Initially the target object is fully consistent with
its source objects. Then, updates on the source object may violate the relationship
between them, but the discrepancy may still be within the limits specified in the D 3
(partial consistency). Finally, the source and target will diverge beyond the tolerable
limits (inconsistency). Then a restoration procedure will update the target, restoring
full consistency. This scenario is repeated in a cyclic manner. In this section we classify
the various states of consistency a da ta object can be in, and we introduce metrics to
identify in detail how consistent source and target objects can be at any point in time,
with respect to a given D ~.

D e f i n i t i o n 17.5.1 At any instant of time, the target data object within a given D 3
is defined to be current with respect to a given D 3, i f the dependency predicate P
is satisfied. The data item is said to be consistent if the dependency predicate P is
violated, but the consistency predicate C is not. Hence, if a target item is current then
its consistency is implied, but the opposite is not true: an object may be consistent
and not current. I f both P and C are violated, the target data object is inconsistent
and the corresponding D 3 is violated. A multidatabase with an I D S is defined to be
in a consistent s tate i f every target data object, is either current or consistent, i.e.,
VD 3 E IDS , D3.C = true.

current consistent inconsistent

tl t3

t~ t4

te

F igure 17.5: Transitions of a target da ta object

Figure 17.5 illustrates the transitions among the three states (current, consistent
and inconsistent) of a target da ta object. These transitions occur as a result of the
changes in values of the P and C predicates. The transitions are explained below:

17.5. CONSISTENCY OF INTERDEPENDENT DATA 349

�9 Transition t l : the state of the target data object changes from current to con-
sistent, as a result of an update to a data item belonging to the source set S.
The consistency predicate C continues to be satisfied, although the values of the
temporal or data state consistency terms may be changed.

�9 Transition t2: a current target data object becomes inconsistent as a result of
an update on an object in the source set S. Either the data state and/or the
temporal terms violate the consistency predicate C.

�9 Transition ts: a target data object is transformed from the consistent to the
inconsistent state, due to a change in the terms of the C predicate.

�9 Transition t4: the purpose of a restoration procedure is to change the state of
a target data object, to either consistent or current. Transition t4 occurs when
we perform a partial restoration, so that an inconsistent data object becomes
consistent, but not current. Various cost policies may indicate that a partial
restoration to a consistent state is more appropriate than a (sometimes more
expensive) restoration to a current state.

�9 Transition ts: this transition occurs when the state of the target data object
changes from consistent to current. When the target object is consistent, we
have the choice of either doing nothing, or executing a restoration procedure to
make the data object current. This choice can be made considering performance
parameters, load balancing, etc. Execution of restoration procedures in this
manner will be referred to as eager restoration of current state.

�9 Transition t6: an inconsistent data object becomes current, by invoking a restora-
tion procedure in one of the following ways:

(a) the restoration procedure is executed when it is discovered that C is vio-
lated. This is referred to as late restoration of current state.

(b) the particular data object is marked as inconsistent but no action is taken
until an access to the target object is attempted. Then, the restoration
procedure is activated before the access is granted. This method is referred
to as a lazy restoration of current state. This strategy is used in [517].

External events, such as source updates or time restrictions, change the state of
consistency of a data object in the IDS. In order to estimate the degree of inconsistency,
we need to precisely identify how "far away" a target object is from its source, or how
inconsistent it is with respect to the consistency requirements specified in the DSs.
However, it is not enough, to say that an object is current, consistent or inconsistent.
The monitor must be able to identify the relative discrepancy between the source and
the target at any instant of time. Below, we present definitions that are used as metrics
to calculate the relative consistency between the source and the target objects. From
now on, the word consistent will be used to mean either Current or consistent, unless
we explicitly specify otherwise.

1 7 . 5 . 2 M e a s u r e s o f Consistency
We arc interested in the semantics of consistency requirements of interdependent data.
We estimate the degree of inconsistency between two objects connected by a D 3. We
will view each consistency predicate C of a D 3, as a pair of the two dimensions: time
and data state.

As an example, let us consider the following D3:

350 C H A P T E R 17. M U L T I D A T A B A S E I N T E R D E P E N D E N C I E S

S : a

U : b
P : a = b
C : cl Y c2

cl = 5 versions o f a
c2 = e(48 hours)

A : Update_Target

This example identifies two interdependent data objects a and b. The target data
object b is a replica of the source data object a, as specified by the dependency predicate
P. If the source object is updated the target object becomes inconsistent. We specify
that we can tolerate inconsistencies between the source and the target up to 5 versions
of a or until a 48 hour period ends.

D e f i n i t i o n 17.5.2 A state-time-pair (stp) is a pair (s,t), where s is a value in the
data state dimension, and t is a value in the time dimension.

A value along the state dimension identifies the data state of a database object, and a
value in the time dimension specifies time. We use the syntax described in a previous
section for data state and temporal consistency terms. The pair (5 versions, 48 hours)
is an example of an stp. In general, s and t, can be logical formulae consisting of various
types of consistency terms. For example, if C = 5%(Employee), then the data state
dimension of this term is s = 5%(Employee). A detailed presentation of the different
consistency terms can be found in [519]. For this chapter, we assume that both s and
t can be represented as linear functions.

D e f i n i t i o n 17.5.3 The limit of discrepancy along a D 3, L(D3), is an stp, (ds, dr),
where ds and dt specify the maximum allowed discrepancy along the data state and
temporal dimensions, between the source and the target database objects of a dependency
descriptor.

For example, the limit of discrepancy between the source and the target objects of the
above D 3, is either 5 versions or 48 hours specified as L(D 3) = (5 versions, 2 days).
The limit of discrepancy of every D 3 is constant, and can be extracted from the C
predicate of the D 3 itself.

D e f i n i t i o n 1 7 . 5 . 4 The consistency restoration point of a D 3, I (D3) , is an stp , (i~, it),
where i~ and it specify the values along the data state and time dimension when con-
sistency between source and target objects was restored.

The value of I changes every time we restore consistency between the source and the
target data objects. It is the initial point of reference, used in calculation of discrepancy
between source and target data objects. In the above D 3, assuming that the value of
the 30th version of the source object a was propagated to the target object b, at 10
a.m on 26th of February 1992, then I (D 3) = (30, 26 - 02 - 1992~10).

D e f i n i t i o n 17.5.5 The Current Value C of discrepancy along a D z, C(D3), is an stp,
(c~, ct), where cs and ct identify the distance between current state of the source and
target objects measured in terms of data state and time.

17.5. CONSISTENCY OF INTERDEPENDENT DATA 351

The da ta state dimension c, of the current value changes every time an update
is performed on the source object, and the temporal dimension ct of the current
value changes constantly with time. If an update has been performed on object
a, 15 hours after the last restoration of.consistency the current value of our D 3 is
C(D 3) = (1 version, 15 hours).

D e f i n i t i o n 17.5.6 The Final Value F o] a D 3 is an stp, (fs, f t) , defining a point
when the consistency between source and target objects must be restored.

The value of the final state is calculated as the sum of the consistency restoration
point plus the specified limit of discrepancy, i.e., f~ = is | ds. The operator @ de-
notes summation on da ta states and carries a broader meaning than the regular arith-
metic operator "+", since we have different types of da ta state terms that must be
"added" together. The f t is calculated as the sum of the time of consistency restora-
tion plus the specified limit of discrepancy, i.e., ft = it + dr. In our D 3, we have
F = (35 versions, 28 - 02 - 1992@10).

D e f i n i t i o n 17.5.7 The source S and the target It data objects of a D 3 become incon-
sistent with respect to that D 3, when the value of the restoration point I (D 3) plus the
current value C(D 3) exceed the final value F(D3), i.e., when I (D a) + C(D 3) > F(D3).

Hence, D z is violated (the state of the target object is inconsistent) when at least
one of the following cases occur:

1. the value of the da ta state at restoration point is plus the value of the current
da ta state c~, exceed the value of the final state f~, i.e., c~ �9 is > f~, or

2. the value of the temporal dimension at restoration point it, plus the value of the
current temporal dimension et, exceed the final deadline ft, i.e., ct + it > ft .

As a direct consequence of the above, the source and target da ta objects are current
or consistent if the restoration point of the descriptor, I (D 3) plus the current value
of the descriptor C(D a) has not reached the final value F(D 3) of the same D z, i.e.,
I (D ~) + C(D 3) < F (D 3) r S is consistent w i th / / .

17.5.3 Updatability of Objects
The I D S encapsulates the information about da ta objects and dependency descriptors
and can be used to maintain the consistency of related data through polytransactions.
One of our primary concerns in the management of interdependent da ta is to assure
that applications will always access interdependent da ta in a consistent state. Updates
performed on a da ta object represented by one of the top vertices of the I D S are
guaranteed to propagate to all the dependent objects, to maintain mutual consistency.
However, if an external update (i.e., an update not resulting from the polytransaction
mechanism) is performed directly on a da ta object that is a target of a dependency
descriptor, then we may introduce inconsistencies, which cannot be corrected by poly-
transactions. Such updates occur outside of the consistency maintenance framework,
specified by the set of dependency descriptors. The results of such updates can be in-
validated by subsequent invocations of polytransactions. Also, it is not clear whether
such updates should be propagated along the dependency descriptors.

One possible solution to the above problems that guarantees consistency of inter-
dependent da ta read by applications, is to disallow external updates on target data

352 C H A P T E R 17. M U L T I D A T A B A S E I N T E R D E P E N D E N C I E S

objects. Therefore, external updates to the interdependent data are allowed only on
the da ta objects represented by top vertices. All da ta objects managed by the I D S
can be read by applications at any time.

Although the above mechanism could guarantee mutual consistency of interdepen-
dent da ta of the entire IDS , it is quite restrictive. Frequently, we would like to perform
(possibly limited) external updates on target data objects in addition to the updates
propagated from source da ta objects by polytransactions. At the same time we do
want interdependent da ta to still be mutually consistent as specified in the IDS . We
can achieve this, by allowing external updates on target data objects only if they do
not violate consistency requirements specified by any D 3 in IDS . Since we realize that
maintaining consistent da ta using polytransactions and allowing updates outside the
polytransaction mechanism, are two contradictory goals, we discuss below a compro-
mise solution, based on restricting external updates.

I . Q I [I �9 I ,
ol D~ D~ o~

F igure 17.6: Cons is tency zone for ob jec t o2

Let us consider an object (e.g. 02) which participates in two D3s: as a target in D~,
and as a source in D23 (Figure 17.6). We will examine the effects of an external update to
02 on other objects to which o2 is related. If o2 is externally updated, the dependency
/)1 and consistency C1 predicates of D~ may be violated. In this case, D~ would
be violated, which is not acceptable according to our criterion of mutual consistency.
However, if the consistency predicate C1 is still satisfied, the external update was within
consistency limits. This kind of update does not violate the consistency requirements
between ol and o2. On the other hand, if we examine the relationship between o2
and 03 specified by descriptor D~, we may find that the update on o2, may have been
propagated to o3, which is not desirable. The propagation of external updates on
target objects through the polytransaction mechanism is undesirable, if the updates
do not originate from a top object, because we will face the problems of inconsistency,
described earlier. Therefore, an external update of object o2 affects all D3s that axe
adjacent.

The consistency predicates of these descriptors define a zone of consistency around
a da ta object. In general, the da ta objects that are targets of a dependency descriptors
represent derived da ta and, hence, should not be directly updated unless a complemen-
tary dependency descriptor to a source data item exists. However, we may allow direct
updates to a da ta object, if they would not violate any mutual consistency require-
ments specified in the D3s it participates, either as a source object or as the target
object. Such updates maybe useful for temporarily changing the value of a data object
to a new value for the purpose of running a local application. The updated value repre-
sents a non-permanent patch and would be overwritten by the "correct" value, by the
polytransaction originating from the source data item. However, such direct updates
on target da ta objects should also be directly sent to the top object. The top object
update will flow through the polytransaction mechanism (and may be combined with
other updates) to overwrite this target object.

D e f i n i t i o n 17.5.8 The zone of consistency of a data object is specified by an stp,

17.6. C O N C U R R E N T E X E C U T I O N OF P O L Y T R A N S A C T I O N S 353

(c,, c 0 that is the intersection of the limits of discrepancy Li(D z) of all the descriptors
in which the object participates (as source or target).

If an external update changes the value of the target data object in such a way
that the object remains within its zone of consistency, then the update is allowed. The
zone of consistency of an object can be adjusted by changing the limits of discrepancy
allowed by the relevant dependency descriptors. However, the stricter the consistency
specification is, the smaller zone of consistency we have, which results in limiting ex-
ternal updates that are allowed. We also see that the updates are performed according
to semantic criteria of consistency specified in D3s, as opposed to a fixed number of
updates [631], or a predetermined number of transactions [333]. This is because we
believe that even a single update can irrecoverably destroy the consistency between re-
lated data objects, if semantic information regarding affected data objects is not taken
into account.

In addition to the updates we mentioned above, we can also allow updates on tar-
get objects if there is another D 3, directed from the target object to its source with
execution mode marked as vital and coupled and immediate consistency specification.
We allow such updates, since they invoke the polytransaction mechanism to propa-
gate them immediately. Such example was previously specified using a pair of DSs
identifying a case of replicated data with primary and secondary copies.

1 7 . 6 C o n c u r r e n t E x e c u t i o n o f P o l y t r a n s a c t i o n s

In this section we discuss issues concerning the consistency of a system of interdepen-
dent data in the presence of concurrent polytransactions. A polytransaction starts at
a site and its (sub)transactions may propagate to various other sites to maintain or re-
store mutual consistency of related data. A number of polytransactions may be active
at the same time, updating related data objects. We assume that initially the system
contains consistent interdependent data objects, i.e., the set of all D3s in the I D S is
satisfied. In this section we will investigate the effects of concurrent polytransactions
on the consistency of the interdependent data objects. We first present the correctness
criterion for the execution of a single polytransactioa. Then we define when a con-
current execution of polytransactions is correct. In the discussion below, we use P, to
denote a polytransaction and P[to specify a transaction of polytransaction P~ that
executes at site j .

17.6.1 Correctness of the Execution of a Single Polytrans-
action

First, consider the execution of a single polytransaction. As we described earlier a
polytransaction starts at a particular site, originated by an external update or a tem-
poral event, and propagates dynamically to other sites where interdependent data are
stored.

D e f i n i t i o n 17.6.1 The projection of operations from different polytransactions at a
site over time represent the local history at that site.

A polytransaction accesses various objects in different sites, by means of its trans-
actions. We identify the set of data objects a transaction reads as the read-set of the
transaction, and the set of the data objects it writes as the write-set of the transaction.

354 C H A P T E R 17. M U L T I D A T A B A S E I N T E R D E P E N D E N C I E S

D e f i n i t i o n 17.6.2 A D 3 is incident to a (poly)transaction at a site, if the set of its
source objects intersects the write-set of a transaction, or its target object belongs to
the read set of the transaction.

In the tradit ional transaction model, it is assumed that each transaction when exe-
cuted alone on a consistent database will execute correctly, transforming the database
to another consistent s tate [49]. The equivalent requirement for polytransactions is
that a polytransaction when executed alone on a consistent system of interdependent
data, will terminate and leave the system consistent. The consistency is determined
by the I D S . The above can be stated more formally as:

D e f i n i t i o n 17.6.3 The execution of a single polytransaction is correct if and only if:

�9 Every transaction of a polytransaction obeys intra-polytransaction precedences in
all local histories.

�9 Af ter the execution of every transaction of a polytransaction the temporal and
data state predicates of all D3 s incident to the polytransaction at all sites are
satisfied.

17.6.2 Conflicts in Polytransactions
Now, we consider concurrent execution of polytransactions. In our model we incorpo-
rate a two level approach to the concurrency control. At the lower level are transactions
that belong to polytransactions. At this level we rely on traditionM concurrency control
protocols supported by the D M s and we assume that these transactions are executed
correctly by the local systems, with regards to the ACID properties. Thus, we avoid
problems such as lost updates, non-atomic behavior of transactions, etc. In this chapter
we will not address the lower level, and we will concentrate on the polytransaction level.
We discuss consistency problems due to concurrent execution of different transactions
that belong to separate polytransactions. These transactions are executed under the
control of local systems, with only limited global coordination.

We start by examining the notion of conflict for polytransactions. We assume that
the I D S composed of Das, is correct, i.e., it does not include cycles in the dependency
graph.

D e f i n i t i o n 17.6.4 Two transactions Ti and Tj are in conflict on a dependency de-
scriptor D 3 if and only if they perform conflicting operations on data objects that
belong to the source set S of D 3. Two operations are conflicting if at least one of them
is a write operation.

D e f i n i t i o n 17.6.5 Two polytransactions P~ and Pj are in conflict with respect to the
IDS i f and only i f they contain transactions Ti E Pi and Tj E Pj that conflict on any
D 3 in the IDS.

Figure 17.7 shows a dependency graph with source objects a,b and targets c,d in-
terconnected through descriptors D~ and D~. If the source object a is updated by
polytransaction P,,, and the source object b is updated by polytransaction Pb, then P ,
and Pb are examples of conflicting polytransactions.

Since uncontrolled updates from conflicting concurrent polytransactions may lead
to distortion of da ta and violation of mutual consistency, we need to control the execu-
tion of concurrent polytransactions so that consistency of the data is preserved. One

17.6. CONCURRENT EXECUTION OF POLYTRANSACTIONS 355

a

E]

d

F igure 17.7: A dependency g raph and conflict ing po ly t r ansac t i ons P~, P~

way of achieving this goal is to use serializability for polytransactions, which is anal-
ogous to global serializability. However, in the IDS, the problem of indirect conflicts
caused by local transactions serialized between polytransactions and possibly chang-
ing their serialization order [218] does not arise. This is because we either completely
disallow external (local) updates or limit them to stay within the zone of consistency,
thus assuring that they are insignificant.

The correctness of concurrent execution of polytransactions relies not only on the
execution order and precedence of their transactions, but also on the specification of the
D3s. On one hand, we have a more precise specification of what is considered consistent,
so we can exploit semantic information to preserve consistency. On the other hand,
we may have different actions and restoration procedures and various timing intervals
during which a transaction may run, which impose additional restrictions.

Since we know the code of the conflicting transactions we can use this informa-
tion to customize serializability for polytransactions. If a descriptor D 3 contains only
a single restoration procedure, then two conflicting polytransactions will execute the
same transaction twice. Then under certain conditions we can demonstrate that the
execution of a non serializable schedule, may stil] be correct, regardless of the seri-
alization order. The basic assumption is the following: If the calculation of the new
value of the target object d (Figure 17.7), is a function of both sources a and b, and
each transaction reads the same latest version of the sources when it s tarts executing,
then the two conflicting transactions will execute the same code with identical input
(a, b) and produce the same output d. The order of their operations may violate seri-
alizability but the final value of the target object will be the same regardless of their
relative order. If an edge appears in the serialization graph, due to events of this type,
that introduces a cycle, we can safely remove this edge from the serialization graph,
eliminating the cycle, thus making the schedule correct.

In this case, by examining the specification of the D3s we may allow some relaxation
of serializability. This, in turn, may lead to the reduction of concurrency control
overhead involved in processing of polytransactions. A more consezvative approach

356 C H A P T E R 17. M U L T I D A T A B A S E I N T E R D E P E N D E N C I E S

where serializability is preserved can be found in [207]. The authors introduce two
concurrency control mechanisms for concurrent execution of polytransactions. The first
is a deadlock free graph locking mechanism and the second is a variant of multiversion
t imestamps with rollback, that never rejects operations arriving out of t imestamp
order. However, this conservative approach assumes])3s without temporal predicates.
Concurrent execution of polytransactions including temporal predicates is examined
next.

17.6.3 Polytransactions with Temporal Constraints
So far, we discussed the issue o f concurrent execution of polytransactions triggered by
D3s that do not contain temporal predicates. In the absence of temporal constraints,
it is sufficient to define the notion of "conflict" and then derive a protocol that resolves
conflicts. Usually "preservation of precedence order" is an acceptable criterion of cor-
rectness. However, time itself implies an order, an absolute precedence between events
(e.g. read and write operations). The temporal order of read and write operations on
an object in a database, may not necessarily be the same as the precedence order im-
posed by the concurrency control mechanism. In this subsection we address the issue
of correctness of concurrent execution of polytransactions under temporal constraints
specified in the D3s.

In the following discussion we assume synchronized site clocks and ordering of
events as in [348]. We also assume that a timestamp TS(T) which indicates a real time
value, is associated with a transaction T, similar to the value date by Litwin and Tirri
[374].

D e f i n i t i o n 17.6.6 Transaction Ti precedes in time transaction Tj (Ti ~ Tj) if Ti has
a timestamp smaller than the timestamp o fT j , i.e., TS(t i) < TS(t j) . This precedence
order defines a temporal order between the transactions Ti and Tj.

D e f i n i t i o n 17.6.7 Two transactions Ti E Pi and Tj E Pj are Temporally Serialized
(TSR), if and only if, their serialization order coincides with their temporal order, i.e.,
if Ti ~ Tj, then Ti ~ Tj, or if Tj --+ Ti, thenTj ~-+ Ti.

When we deal with temporal constraints, we have to expand our criterion of correct-
ness in concurrent execution of polytransactions with temporal constraints as follows:

D e f i n i t i o n 17.6.8 A schedule of concurrent execution of polytransactions with tempo-
ral constraints is considered correct, if and only if every pair of conflicting transactions
Ti E Pi and Tj E Pj is temporally serialized.

It is obvious that the introduction of temporal constraints in the polytransactions
modifies the definition of correctness. In particular, a schedule may be seriafizable, but
still incorrect if temporal predicates are not satisfied. On the other hand, if a schedule
obeys temporal predicates but is not serializable then it is not correct either. The
problem introduced by the temporal constraints has been identified by researchers in
the area of real time database systems, as a "trade-off with completeness, accuracy,
consistency and currency" [463]. It should be noted that the existence of temporal
constraints in polytransactions gives them characteristics of long-lived transactions,
executing for prolonged periods of time, and potentially increasing the number of con-
flicts.

17.7. CONCLUSION 357

A variation of the Timestamp Order mechanism can be used to correctly serialize
conflicting polytransactions. However, the t imestamps we use in this mechanism reflect
real time as mentioned earfier. The time of an update on a top object, identifies the
t imestamp TS, given to a polytransaction.

The basic idea is as follows: We order conflicting operations from transactions
in t imestamp order. If an operation comes out of order, the transaction is rejected,
and resubmitted with a new timestamp. However, if the rejected transaction has a
temporal constraint that triggered it, it will not be resubmitted. This can happen
if transactions with temporal predicates carry information that is "older" than the
conflicting transaction that has already accessed the target object. We do not want
the temporal transaction to overwrite a value that has been written by a "younger"
non-temporai transaction. This implies that the regular "recent" transactions have
precedence over transactions triggered by temporal predicates. A temporal constraint
is included in a D 3 specification to propagate the update to the target object, after some
t ime period. In the meantime, if a more recent transaction updated the target object,
then this update carries more recent information, and the rejected update should not
be resubmitted. The same reasoning applies to the case of two conflicting transactions
that both contain temporal predicates. This policy is similar to the Thomas-Write-
Rule [49] which ignores write operations that a t tempt to place an obsolete value in
the database. The above technique guarantees TSR between concurrent execution of
polytransactions at the expense of rejection of transactions with temporal constraints.

The advantage of using IDS to manage interdependent da ta is that the periods of
da ta unavailability can be controlled (or eliminated) by an appropriate specification
of the temporal terms within the consistency predicates. However, the problems of
temporal consistency of da ta needs further investigation.

17.7 C o n c l u s i o n

This chapter addresses issues in managing interdependent data. We provided a brief
overview of the specification of the dependency descriptors, and the interdatabase
dependency schema. We also proposed a conceptual architecture of a system that can
be used to manage interdependent data.

We explored the issue of correctness of specifications. I t involved investigation of
semantic information stored in the interdatabase dependency schema and potential
conflicts that may arise due to the specification of the consistency and dependency
predicates. Two correctness checks we proposed were a) avoiding multiple dependency
descriptors directed to the same target da ta object and b) avoiding cycles that do not
satisfy certain properties.

Then, we described the polytransaction mechanism that could be used to auto-
matically enforce consistency of interdependent da ta according to the requirements
specified in the interdatabase dependency schema. We also discussed issues concerning
the consistency of interdependent data. We presented a classification of various states
of consistency of a data object, and identified the events that lead to changes to its
s tate of consistency. We showed that the consistency of interdependent data can be
violated if uncontrolled updates are allowed outside of the polytransaction mechanism.

Finally, we investigated the concurrent execution of polytransactions. We discussed
the information needed to reason about the correctness of schedules of concurrent poly-
transaction execution and identified cases where they can be enforced. We also pre-
sented a preliminary solution concerning the concurrent execution of polytransactions

358 CHAPTER 17. MULTIDATABASE INTERDEPENDENCIES

with temporal specifications.
This chapter presents the results of our on-going research project on managing

interdependent data at Bellcore. It is inspired by the data consistency requirements
in industrial environments. Real examples of interdatabase dependencies specified as
D3s can be found in [514]..

Chapter 18

F E M U S : A Federated Mult i l ingual Database Sys tem

Martin Andersson*, Yann Dupont t , Stefano Spaccapietrat, Kokou Y6tongnon w Markus
Tresch �82 Haiyan Ye II

18.1 I n t r o d u c t i o n

The increased availability of various databases in large corporations has created the
need to federate the databases into loosely coupled collections of autonomous systems
to aJ]ow controlled sharing of information and at the same time preserve the autonomy
of each participant. Traditional distributed database (DDB) research has provided the
earliest solutions to information sharing in distributed computing environments. The
DDB approach, however, assumes that a single and integrated conceptual view of the
databases must be provided to the users. Federated database (FDB) schema/system
architecture design has partially benefited from this effort. For example, the design
of both DDB and FDB systems includes functionalities such as: schema integration,
query processing, transaction management. The DDB techniques used to provide these
functionalities can be extended and applied to FDBS. The main difference between the
two approaches are in the classes of users and the levels of component autonomy they
support. Users of DDB systems access shared data only through the single conceptual
schema of the DDB. This facilitates the enforcement of integrity constraints attached
to the DDB, in much the same way (from user's point of view) as centralized DB
system's. FDB systems, on the other hand, generally support two classes of users: fed-
eration users manipulate shared distributed information through one or more federated
schemas; and local users, to whom the federation is transparent, access local data only.
Preservation of local access to, and control over, the local database is essential for the
support of component autonomy, the most salient feature of FDB systems.

Typically, federations are built upon heterogeneous systems and may include data-
bases which support different data models: relational, CODASYL, and object-oriented

*EPF Lausanne, Department of Computer Science, Databases Laboratory, CH - 1015 Lau-
sarme, Switzerland.

IEPF Lausanne, Department of Computer Science, Databases Laboratory, CH - 1015 Lau-
sanne, Switzerland.

tEPF Lausanne, Department of Computer Science, Databases Laboratory, CH - 1015 Lau-
sarme, Switzerland.

w Lausanne, Department of Computer Science, Databases Laboratory, CH - 1015 Lau-
sanne, Switzerland.

�82 of Computer Science, University of Ulm, Germany.
IIETH Ziirich, Department of Computer Science, Information Systems - Databases, CH -

8092 Zfirich, Switzerland.

360 CHAPTER 18. FEMUS

da ta models. One of the important issues that need to be addressed is therefore the
da ta model translation problem. Usually, to avoid a proliferation of translators, the
use of a common data model within the distr ibuted/federated system is encouraged.
Semantic or object- oriented da ta models represent the best candidates for this role.
Translations between semantic, object-oriented and relational models have largely been
dealt with in the past. They have been commonly developed for two major cases: 1)
to support a database design process where the database is first described in a con-
ceptual schema which is subsequently converted into a logical schema [77]; and 2) to
support the design and operation of traditional DDB system. In the former case the
translations are one-way processes which produce a single logical target schema from
the source conceptual schema. As user queries are expressed and performed directly
on the logical schema, there is no need for further translations. In the lat ter case,
interoperabili ty among da ta models is needed to move data in and out from the DDB.
However, interoperabili ty is usually not required among data manipulation languages,
as most of the proposed DDB systems are monolingual: they support only one DML,
the one associated to the common data model in use ([144] is an exception). The
distinguishing feature of federated environments is that they have to be multilingual,
because of the autonomy goal [318]. Therefore, the support of interoperability among
DMLs becomes in fact the primary criterion for the specification of data model trans-
lations. Besides the translation problem, interoperability in the federated approach
necessitates a mechanism for making da ta available to the federation and for ensuring
access to the data. This mechanism is usually called an import /expor t facility. Data
exchanges require first that description of accessible (exported) data be available to all
users of the federation or designated set of partners, and second that the information
be presented to them in their local model (in a model they understand). Partners may
then select (import) da ta of interest to them and include/integrate them into their
view of the FDB. Integration facilities are the essential feature in building this unified
view from the different pieces of imported data.

This paper presents the approach of an ongoing research project, FEMUS (FEder-
ated MUltilingual System), jointly developed by the database research groups at Swiss
Insti tutes of Technology (EPFL and ETHZ). The primary goal of the project is to
provide a framework for investigating semantic related issues of interoperable database
architectures. The focus of this paper is particularly on federated database construction
issues. The FEMUS project itself is not discussed in detail. Instead, we examine two of
its most important aspects: data model translation and integration issues. The former
is dealt with in section 3, while the lat ter is the topic of section 4. Section 2 presents
the architecture of the FEMUS prototype and the modeling paradigms on which in-
teroperabili ty is being experimented. Section 5 discusses semantics issues related to
schema negotiation and da t a /me tada t a exchange. Section 6 reviews implementation
aspects related to the expor t / impor t mechanism. Section 7 concludes the paper.

18.2 F E M U S

The aim of the FEMUS project is to set up a framework for building a federated mul-
tilingual database system. By federated it is meant that the global system provides
the functionalities to include, as components, different heterogeneous database sys-
tems cooperating together, and that the major goals are preserving site autonomy and
supporting maximum flexibility in the interoperability mechanisms. By mult~lingualit
is meant that an equally important goal is to build a system which can be accessed

18.2. FEMUS 361

by different users through the local interface (data model and manipulation language)
they are used to.

The initial version of the project includes two different database approaches:

�9 E R C + [447], an object-based extension of the entity- relationship model, in-
cluding the specification of an ER algebra [446] and calculus. The fundamental
concepts of the ERC+ model are entities, relationships, and complex objects.

�9 C O C O O N , an object-oriented da ta model with an object algebra that was
developed based on the nested relational algebra [501, 500,494, 493]. The ba-
sic concepts are objects and functions. COCOON, like DUAL [451], promotes
separation between the type and class hierarchies. This separation introduces
original problems that need to be addressed by the model translation processes.
The two approaches are briefly presented in the subsections hereinafter. Study-
ing interoperabllity between these two approaches is of particular interest, as
they represent, as stated above, two very important and widely used families of
models possible in a federation.

In [515], five schema levels were proposed as a reference architecture for federated
database systems, separating local pre- existing schemas, component schemas (com-
mon model counterpart of local schemas), export schemas, federated schemas (FS),
and external schemas defined over federated schemas. The federated schemas hold a
global dictionary with additional information about fragmentation and allocation of
distributed objects. Thus, to the users of FS, both fragmentation and allocation are
fully transparent. The FDBS is responsible for transforming the global queries and
updates into statements for the component databases. FEMUS basically adheres to
this proposal, while adding one more level to allow users to integrate various import
schemas (derived from either export schemas or from federated schemas) to form their
own federation. In this way ad-hoc federations may be built, enhancing the flexibility
of the system from user's perspective. Figure 1 shows FEMUS six levels generic schema
~rcliitecture. It includes the concept of median schema, as suggested in [496], to em-
phasize domain-specific federations. It also shows that export schemas may be derived
as views over component schemas or directly from local views through da ta model
translation. Finally, import schemas are derivable from any of the schemas available
at the federated level: export, federated or median schemas. A simplified architecture
(Figure 2) is currently being implemented for the first exploratory prototype. It mainly
includes two process types, Translators (mappers) and Integrators. The mapping pro-
cesses translate schemas, integrity constraints, and language elements from one da ta
model/ language to the other (ERC+, COCOON); the integration processes combine
schema and instances from the two components.

18.2.1 The ERC§ Approach
A complete definition of ERC+, and a discussion of its features, may be found elsewhere
[447]. Here we briefly recall the main features of ERC+:

�9 entity types bear one or more attributes. As attr ibutes may in turn, iteratively,
be composed of other attributes~ the structure of.an object type may be regarded
as an unlimited at t r ibute tree;

�9 relationship types may connect any number of participating entity types. As
entity types, they may have attributes. They are said to be cyclic if the same
entity type participates more than once in the relationship type;

362 C H A P T E R 18. F E M U S

�9 a role name is associated to each participation of an entity type in a relation-
ship type. The participation is characterized by its minimum and maximum
cardinalities;

�9 attributes may be either atomic (non decomposable) or complex, i.e. decompos-
able into a set of component attributes, which may themselves be either atomic
or complex. An at t r ibute is also characterized by its minimum and maximum
cardinalities (mandatory/opt ional , monovalued/ multivalued). Attr ibutes may
be valued in a multiset (i.e. not excluding duplicates);

�9 two generalization relationships are supported, the classical "is-a" and an ad-
ditional "may-be-a" relationships. The former corresponds to the well-known
generalization/specialization construct; the lat ter has the same semantics, but
does not require an inclusion dependency between the subtype and the type and
is therefore used to describe multi-instantiation at the schema level;

�9 an object identityis associated to entities.

Figure 3 shows a sample ERC§ diagram. A single continuous line represents a
1:1 link (mandatory monovalued), a single dot ted line represents a 0:1 link (optional
monovalued), a double dotted line represents a 0:n link (optional multivalued), a double
line (once dotted, once continuous) represents a l :n link (mandatory multivalued). No
generalizations appear in this particular example.

Two formal query languages, an algebra and an equivalent calculus, are associated
with the ERC+ data model. The functionalities provided by the algebraic operators
include: selection of entity type occurrences based on a given predicate, projection of
entity type occurrences on a subset of its attributes, union of the populations of two
entity types. Specific to ERC+ is the reduction operator, which allows the elimination
of the values of an at t r ibute which do not conform to a given predicate. Most important
is the relationship-join (r-join, in short) operator. Let El , E2, ..., En be the set of
entity types linked by a relationship type R, the r-join of E1 with E2, ..., En via R
builds a new entity type (and the corresponding population) whose schema includes the
schema of E1 plus an additional complex attribute, named R, whose components are
the schemas of R, E2, ..., En. In some sense, this operator groups into a single entity the
information scattered over entities linked by a relationship. A spe-join operator allows
to join entity types participating into a given generalization [538], thus providing for
an explicit inheritance mechanism. Every ERC+ operation is objects preserving and
creates a new derived entity type. The attributes, relationships, generalization links
and population of the created type are derived from the operand types. Operations
may thus be combined into expressions of arbitrary complexity.

18.2.2 The C O C O O N Approach

COCOON is an object-function model. Its basic constituents are objects, functions,
types, classes and views. The following is an excerpt from [502]. Objects are instances
of abstract types, specified by their interface operations. Functions are either retrieval
functions or update methods. They are described by their name and signature. They
may be multivalued. Types are described by their name and the set of functions
that are apphcable to their instances. A subtype hierarchy defines type inheritance
relationships. Objects are instances of one or more types (multi- instantiation). Full
static type-checking is supported. Classes are collection of objects (type extents). A
subclass hierarchy defines class inclusion relationships. Objects are members of one

18.2. FEMUS 363

t ~ (sLhoc=)

Schema Schema) (,.,L~)

Import / (x (_ _ ~ Sc~ma

\
:.0
@

Schema ~. Schema] ~ Schema

0

~m

Local > v ~ e a l

.,, Sehema
. . , ~ , H I J I . . �9 u H . u . l . i i H I = i o = . . . H H a . e , o , ~ p . .

Translation of local views

Component ~ [Component

~ S ~ e ~ / S ~ / ~

Translation of the local schema

Figure 18.1: The generic schema architecture in FEMUS

364 CHAPTER 18. FEMUS

~...._ Z
0

k

!

S
6
§

C9

|

C9 8
§

8

Figure 18.2: FEMUS prototype specific architecture

18.3. THE MAPPING PROCESS 365

I I J

s o . s o

Date Forename ~ /" ~ ~ /] \ '--.

D e Floor A Type QT

Figure 18.3: A n example E R C + schema

or more classes. For each object class, its member type is an associated type, and its
extent denotes a set of objects of that type. Classes may be constrained by a predicate
that must be satisfied by all members of the class.

A set-oriented query language, called COOL, similar to relational algebra, provides
operators to build an output set of objects from input sets of objects. Query opera-
tors can be applied to extents of classes, set-valued function results, and query results.
The algebra has object preserving semantics. Queries are also used as the view defi-
nition mechanism: they introduce new virtual classes, and define their extent. Views
may be defined by basic COOL operators, over other views or by composite queries.
COOL operators are: selection, projection, extend (allows the definition of new derived
functions), set operators (union, difference, intersection), and generic update operators
(update, insert, delete, add, remove, and set to assign return values to functions). Fig-
ure 4 shows a COCOON type diagram describing the same universe of discourse as the
E R C + diagram in Figure 3. Arrows with single arrow head (respectively, double arrow
head) represent single- valued (respectively, set-valued) functions. A function and its
inverse are linked by a straight line.

18.3 The Mapping Process
The translation process is well understood when converting from a conceptual da ta
model to a target (logical) da ta model during the design of a database. In this context
the main requirement is to minimize semantic loss that may occur when semantically
rich modeling concepts of the source model are converted into less expressive constructs
in the target model. These schema translations mainly focus on implementing da ta
structures and access paths in the target model. By analogy to top down design
methodologies, this conversion process is regarded as a "vertical translation". Since
users queries during the operational phase of the database are expressed in the DML
of the target model, there is generally no DML translation between the conceptual and
logical models. On the contrary, cooperative DBS require hi-directional translation
processes between any pair of component sites. These translations must take into
consideration the reversibility and equivalence issues between two different da ta models
of similar semantic expression power. Thus, the translations are called "horizontal and

366 CHAPTER 18. FEMUS

integer

saing

day
I I month ~

P Date I year

Employee [S-Deliv Shame

r
, ,,o,or ..,o'>, ":

i ~p~,~e,,t I ,_"b.~'~ ~ , ~ ,,,,.-~Y2 "~ I. A ~ I ~ i _ ~ ' ~ g
" - % 1 " * , : " '

Figure 18.4: The C O C O O N equivalent to the example E R C + schema

bi-directional translations". Moreover, interoperability implies that data manipulation
requests will generally be issued by each component of the federation towards the
other components, this also calling for a horizontal translation between the various
DML in the federation. FEMUS focuses on the horizontal translations between object-
oriented and semantic da ta models. The following subsections discuss mappings for
the E R C + / C O C O O N case. The discussion, however, may be easily adapted to other
similar models.

As stated, interoperable mappings need to be defined in terms of both static
(schemas) and dynamic (operations) aspects. Of course, these two mappings are
strongly related to each other, as illustrated in Figure 5. Let S1, $2 be schemas in
two different da ta models, say model-1 and model-2. Let O1, 02 denote operations of
the algebras of model- l , model-2 respectively. An operation is either a single operator
or an expression. The result of am operation is both in terms of new schema elements
and their instances. Let O1(S1) denote the result of applying O1 to S1 (similarly for
O2($2)). Let T be a translation from model-1 into model-2 such that T transforms
S1 into $2 and the underlying database-1 into database-2. Let TOP be a translation
from model-1 into model-2 such tha t it transforms an operation O1 into an operation
02. Then the following should hold:

T(S1) = $2 A WOP(O1) = 02 ~ T(OI(S1)) = O2($2)

18.3 .1 M a p p i n g an E R C + S c h e m a to C O C O O N

The major differences between the two modeling approaches are:

18.3. THE MAPPING PROCESS 367

S1

Ol(S1)

T

TOP .~ 0 2

$2

02($2)

Figure 18.5: Mappings consistency

�9 ERC+ distinguishes between attributes and relationships, while COCOON treats
them uniformly as functions,

�9 ERC+ supports the representation of a complex object as a single entity while
COCOON decomposes it into a set of related objects.

Accordingly, the following schema translation rules may be stated.

a) A t t r i b u t e s

A simple attribute is mapped into a COCOON function whose domain is the
COCOON object type corresponding to the attribute owner, and whose range is
the COCOON primitive type corresponding to the ERCq- value domain of the
attribute. The function is single-valued or set-valued depending on whether the
attribute is monovalued or multivalued.

Examples:

�9 Ename (Figure 3) results in the Ename function: Employee --~ string (Fig-
ure 4).

�9 day (Figure 3) results in the day function: Date ~ integer (Figure 4).

A complex attribute is mapped into a new object type and its associated class.
A function is added to link the owner object type to the new type.

Examples:

�9 Child (Figure 3) results in the Child object type. A set-valued function,
named children in Figure 4, is added to link Employee to Child.

�9 Date (Figure 3) results in the Date object type. A single-valued function,
named bdate, is added to link Child to Date.

b) E n t i t y t y p e s

An entity type is mapped into an object type and its associated class. Functions
are attached to the type according to attributes and relationships translation
rules.

c) t t e l a t l o n s h i p t y p e s

1. Binary relationship types without attributes A binary relationship type
with no attribute is mapped into two inverse functions between the object
types corresponding to the entity types participating into the relationship

368 CHAPTER 18. FEMUS

type. These functions are single- or set-valued depending on the cardinali-
ties of the corresponding roles.

Example:

�9 Job (Figure 3) results in the two inverse functions worksfor and staff.
Worksfor is single-valued as the role of Employee in Job is monovalued.
Staff is set-valued as the role of Department in Job is multivalued.

2. Binary relationship types with attributes and n-ary relationship types.
These relationship types are mapped into a new object type and its as-
sociated class. The attributes, if any, of the relationship type are mapped
into functions according to rules in a). Each role of the relationship type
is mapped into a pair of inverse functions between the new type and the
type corresponding to the entity type attached to the role.

Examples:

�9 Sale (Figure 3) results in the object type Sale (and its class), with the
attached QT function: Sale integer, and two pairs of inverse functions,
D-Sale and Sale-D, linking Sale with Department, and Art-Sale and
Sale-Art linking Sale with Article.

�9 Delivery (Figure 3) similarly results in one new object type, Delivery,
and three p~irs of inverse functions.

d) G e n e r a l i z a t i o n l inks

An is-a link between two entity types is mapped into an is-a link between the
object types and classes corresponding to these entity types. May-be-a links are
not mapped, as there is no such concept in COCOON at the moment.

18.3 .2 M a p p i n g a C O C O O N S c h e m a to ERC+
The COCOON to ERC-I- mapping rises problems typical of reverse engineering situ-
ations, in which a more decomposed representation has to be translated into a more
compact one. A classical example is the relational to ER translation. A straight al-
gorithm may be used to transform a COCOON schema into an ERC§ schema. The
algorithm is driven by class and function definitions. A function from an object class to
a primitive type is mapped into a simple at tr ibute of the ERC+ element corresponding
to the class. A pair of inverse functions between object classes is translated into a
binary relationship between the two entity types corresponding to the related classes.
A function between object classes which has no inverse is mapped as an at tr ibute of the
ERC-J- element corresponding to the class where the function originates. COCOON
classes which have not been translated as attributes using the above rules are mapped
into ERC+ entity types, whose structure (the set of attributes) is derived from the
membership type of the class. An is-a link between two object classes is mapped as an
is-a link between the corresponding entity types.

The algorithm generates a valid ERC+ schema, which includes only binary re-
lationship types with no attributes. Applied to the schema in Figure 4, it does not
produce the schema in Figure 3. The consequence is that applications using the ERC-I-
schema will be overloaded in terms of da ta manipulations needed to get the desired
result. For instance, assume we want a list of departments showing their deliveries in
terms of quantity, supplier and article. To produce the list using the schema in Figure

18.3. T H E M A P P I N G P R O C E S S 369

3, a single r-join operation is needed. To do the same using the schema resulting from
the translation of the schema in Figure 4, it will need three r-join operations (because
Delivery is now an entity type linked by three binary relationship types to Department,
Supplier and Article). There is no automatic solution to avoid such overloading, unless
the COCOON schema is enriched with information on dependencies among its compo-
nents. I t is known that, if certain dependencies hold, a n-ary relationship type may be
decomposed into relationship types of degree less than n. Reversing this reasoning, the
translation algorithm can infer from the known dependencies if a set of pairs of inverse
functions defined on the same object class can be mapped as a n-ary relationship type
also representing that object class.

18.3.3 Operators Mapping
Both ERC+ and COCOON models incorporate an algebra as DML. In this section
we compare the characteristics features of the two aigebraic query languages in order
to define a mapping (translation) of operators from one model to the other. The
two algebra have in common several operations (such as selection and projection, for
instance) with well known semantics. In addition, they contain operations which have
no direct corresponding counterpart in the other model. Thus, an operator in one
model may correspond to an algebraic expression, rather than a single operator, in the
other model. The requirement for correctness of the translation is the consistency of
the mappings as discussed at the beginning of section 3. The mappings relationships
il lustrated in Figure 5 can also be used to determine TOP. Knowing T, we can use it
to translate S1 and O1(S1) into the second model, getting $2 and the result of O2($2).
We can then check how, in the second model, $2 can be mapped onto O2($2). If there
is no direct operator which does it, then we have to find the adequate expression to
build the expected known result. Hereinafter we discuss the operators mapping based
on ERC+ operators.

S e l e c t O p e r a t o r

Select operators in ERC+ and COCOON have the same semantics. They preserve the
schema of their input operands. Their main difference is in the type of predicate they
allow. ERC+ predicates may contain quantifiers (over set-vaiued attributes), whereas
COCOON selections may contain nested expressions and set comparison operators.

Consider the following query:
"select all employees who earn, at least, one salary greater than 6000".

Below we give ERC+ and COCOON algebraic expressions for the queries and derive
the rules for translating the operators.

ERC+ query
The selection operator, noted cr in ERC+, creates a new entity type which con-
tains the entities (objects) that satisfy the selection predicate. The ERC+ alge-
braic expression corresponding to the above query is given by:

E1 : ~r[3ses~(s > 6000)]Employee
where the existential quantifier (3) is extended to apply to multisets.

COCOON query
In the following EmployeeC denotes the class of objects belonging to the type
Employee. The above query is written in COCOON as:

C1 = seZect[sdect[s > 6000](s : SaZ) # O](E,~ployeeC)

370 CHAPTER 18. FEMUS

The nested select operation implements the selection predicate "at least one
salary greater than 6000" by first retrieving the set of salaries over 6000 of an
employee, and then checking whether the retrieved set is empty or not.

If the above query is modified to "select all employees who have all their salaries
greater than 6000", then the corresponding ERC+ algebraic expression is:

E2 = ~r[V~es~,(s > 6000)]Employee.

The universal quantifier included in the predicate can be expressed in different ways
in COCOON by using nested select operations and set comparison operations. The
resulting queries are:

C2 = seleet[select[s > 6000](s : Sa 0 = Sat](EmployeeC).
C2' = select[select[NOT(s > 6000)](s : Sat) = O](EmployeeC).

The second query is obtained from the first one by the application of the standard
transformation of the universal quantifier into the existential one: Vx(P) r -~3x(-~P).

In summary the following rules can be derived for converting selection operations
between ERC+ and COCOON. P(a) is a predicate on variable a, and a is a variable
on a multivalued at t r ibute A.

Equivalence rules between ERC+ and COCOON selection predicates:
3~en(P(a)) r select[P(a)](a.A) # O.
V~eA(P(a)) r select[gOTP(a)](a.d) = 0.

P r o j e c t O p e r a t o r

1. Projection over a simple at t r ibute
Project operators in ERC+ and in COCOON have equivalent behavior when
they are applied to simple attributes. In essence, they are used to drop one or
more simple at tr ibutes from the schema of an entity or object type.

The translation rule in this case is trivial. For instance:
ERC+ COCOON
rr [Ename] Employee r project [Ename] EmployeeC

2. Projection over complex at tr ibutes
As discussed in section 3.1 above, the translation of ERC+ complex attr ibutes
leads to the decomposition of an object over several objects. Therefore the
translation of an ERC+ projection over a component of a complex at tr ibute
requires that the corresponding COCOON object type be augmented with a
derived function which links it directly to the desired attribute. Derivation is
through composition of COCOON functions. For instance, a projection over
the a t t r ibute Forename of the complex at tr ibute Child (Figure 3) is mapped as
follows:

ERC+ COCOON
~r [Child.Forname] Employee r project [forename]

(extend [forename = Forename(Child)])EmployeeC

P r o d u c t O p e r a t o r

A product operator in ERC+ is useful for linking two entity types which are not linked
by any relationship type. In the case where a relationship exists between the two en-
t i ty types, it is simply ignored by the product operator. The operation extends every
occurrence of its first operand with the set of all the occurrences of the second operand

18.4. THE INTEGRATION PROCESS 371

(represented in the schema of the resulting entity type as a multivalued complex at-
tr ibute whose components are the attr ibutes of the second operand). For example, a
product will be applied to the entity types Employee and Supplier of Figure 3 as a first
step to check whether there are employees having the same name as a supplier.

The result of this product operation is an entity type, say ES, with all the original
at t r ibutes from Employee plus an additional complex at tr ibute supplier, which is com-
posed of Sname and Addr. The check is then done through a selection on the result of
the product. The ERC+ selection predicate is:

3,~e~ppZi~.~ (u = Ename).
The result of the product operation can be achieved in COCOON by extending

the object type Employee with a new function to create the link to the object type
Supplier.

Relationship-Join (R-Join)
The R-join transforms a relationship type into a complex at tr ibute structure with re-
spect to one of its participating entity types. Consider the two entity types Department
and Article, and the relationship type Sale in Figure 3. The result of applying R-join
to Department through the relationship Sale is an entity type with all the at tr ibutes
of Department (Dname, Floor) and an additional complex and multivalued at t r ibute
named Sale, whose at tr ibutes are Qt and Article, the lat ter being a complex at t r ibute
with Aname and Type as components.

As the product operator, the relationship-join is used to merge information from
various entity types into a single entity type. While product merges systematically each
entity of one type with all entities of the other type, R-join uses as merging criteria the
fact that the entities forming one occurrence in the result are linked by a relationship
of the given type.

To some extent, we could state that R-join builds more complex entity types from
the existing ones. COCOON objects are not complex objects. Because of decompo-
sition rules of the schema mapping, the result of an R-join, translated in COCOON,
would generate the same objects and functions as those already there. Therefore, the
translation of an R-join is the identity operation.

18.4 The Integration Process
Database integration is the second key feature in building integrated database services
in an interoperable environment. The autonomy goal inherent to FDBS requires that
new integration techniques are developed to cope with all possible discrepancies among
component databases, without altering them, while providing for maximum integrata-
bility. Although schema integration has already been investigated for a long time [38],
existing methodologies lack the power to integrate schemas showing structural conflicts,
i.e. to solve situations where, for instance, the same real world object is represented as
a~ at t r ibute in one schema and as an object in another schema [536]. These method-
ologies need a conforming step, prior to integration, such that all structural conflicts
are removed from the input schemas. The conforming process relies on schema mod-
ification, a consequence which contradicts the primary FDBS requirement: to ensure
continuation of local usage of da ta without any user visible impact due to the new
federation services. Moreover, current methodologies do not really handle da ta model
heterogeneity. They only propose to translate every input schema in some common

372 CHAPTER 18. FEMUS

model within a pre-integration step. This is consistent with the usual approach to
federated or distributed heterogeneous databases, but might become a bottleneck in
more flexible architectures in which multiple federations, although defined on the saxae
component databases, are not necessarily built upon the same data model.

Integration in FDBS is a bot tom-up task, that must combine databases that may
have existed for a long time. These databases may already have a considerable amount
of data. Thus, integration in federated databases must cover both tasks, the integra-~
tion of schemas and of existing objects. This is usually called database integration,
in contrast with view integration where only schemas with no associated extensions
are integrated. A relatively small amount of work concerns database integration. One
recent exception is the Pegasus project [9, 335]. Kent emphasized the separation be-
tween real world entity objects and their, database counterpart, called proxy objects
[315]. The lat ter ones represent entities in different component databases. Object
integration must deal with the fact that due to historical evolution of databases, the
same real world entity may be stored as different database approximations in different
databases (the proxy objects). Thus, the FDB administrator must also specify what
proxy objects of what component databases represent the same real world object and
under what circumstances.

FDBS integration requirements also differ from DDB requirements. In DDB sys-
tems, integration is performed once, taking as input the schemas of existing databases
and producing as output the global schema of the DDB. As there is no mandate to
preserve site autonomy, local pre-existing databases may be modified to make integra-
tion easier or to redefine da ta allocation. For instance, if the same data appear in more
than one local database, the DDB administrator may just keep one copy and have the
other ones deleted to avoid the da ta replication problem. In FDBS, integration may
be performed at different levels, depending on the organization's approach to FDBS
architecture (cf. Figure lb) . As in DDBS, it might be the task of the FDB administra-
tor (for each FDB being built). It might as well be a process performed by end users,
if they are given the ability to i m p o r t d a t a from various sources (whether directly from
local databases or through a FDB) to build their own, single user FDB.

Integration is a two-fold process. First, syntactic as well as semantic relationships
among elements in the input schemas have to be precisely identified. This is the inves-
tigation phase. A first s tream of research developed methods and tools to assist the
database administrator in identifying interschema relationships [516]. In the second
phase, the integration phase, related elements have to be "integrated". Various tech-
niques have been proposed for this purpose. The first approach is manual integration,
where the DBA is provided with a schema restructuring language. The lat ter allows
the DBA to direct the integration process towards the step by step construction of the
integrated schema the DBA is aiming at. The integrated schema is seen as a superview
defined over input schemas [419]. This approach is relatively simple to implement, as
the functionality supported by the system is limited to executing the restructuring
operations. It is, however, of poor user friendliness and badly suited for the non ex-
pert users which might be allowed to build federations in a flexible FDBS. To cope
with these inconveniences, more powerful assertional approaches have been proposed.
They are intended to automatically perform integration from input correspondence
assertions, which instruct the integrator tool on which interschema relationships ex-
ist. Assertional techniques provide a higher level of service t o their users (users just
have to care about existing correspondences, not about how corresponding items may
be merged to form the integrated schema). They build the integrated schema (and
the associated mappings to/ f rom source schemas), using established integration rules

18.4. THE INTEGRATION PROCESS 373

which allow to solve all types of conflicts supported by the tool. Finally, rather than
building a new integrated schema, a third approach performs integration by extending
input schemas (and databases) with the additional interschema descriptions. These
either record correspondence information, or add new constructs to relate one element
in a schema to another element in another schema [502].

FEMUS currently focuses on the integration phase. We discarded the manual su-
perview approach as contrary to FDBS flexibility goal. As for the two other approaches
- the integration assertional technique and the augmentation technique described just
above - no definite assessment has evaluated and compared their pros and cons. Intu-
itively, building an integrated schema seems preferable if there is a heavy overlap among
component schemas, with many component elements resulting in a single element after
the merging. On the other hand, if the component databases have complementary
content, augmenting existing schemas with interschema references is a simpler process.
To know more about the comparison we have decided to investigate and experiment
both techniques in parallel. They are hereinafter separately presented.

To show differences and/or similarities between these two integration techniques, we
illustrate their usage on the same very simple example (Figure 6) modeled according
to object-oriented notations. The example assumes a FDB environment with two
databases, DB1 and DB2. DB1 contains information about cars (the class Car, with
three attributes: the car 's registration number and color, and the person identification
number of the car 's owner), whereas DB2 holds persons (the class Person, with three
attr ibutes: the person's identification number and name, and the registration numbers
of the cars (s)he owns). Since cars are owned by persons, and persons own cars, there is
some sort of inter- database correspondence. We show below how this correspondence
is specified using the assertion-driven integration, and how it is done through the
augmentation ~pproach.

DB1 DB2

J I J I. I I
leg# color owner pm name {cars}

DBI: Class Car tuple <leg#: integer, color, string, owener: integer>

DB2: Class Person tuple <pin: integer, name: string, cars: setof integer>

F igure 18.6: The example in tegra t ion case

As stated, the definitions of the two classes do not bear any indication of their
interrelationship. It is assumed that the FDBA has the external knowledge about the
semantics of the at tr ibutes and the object classes being described. (S)he is therefore
responsible for directing the integration tool through explicitation of that knowledge.
In a repository environment, the definitions would be complemented with some natural
language descriptive information. For instance, the owner at tr ibute could be described
as: this a t t r ibute holds the person identification number of the person who owns the
car. An investigation tool could then guess that there might be some relationship
between the two classes, due to the fact that the term "person" appears in both de-

374 CHAPTER 18. FEMUS

scriptions. Nevertheless, the FDBA would have to be prompted anyway to confirm or
correct the proposed correspondence. Note that the guess made by the tool is only in
terms of structural correspondence, unless both databases are accessed to check the
corresponding populations.

18.4.1 Assertion-driven Integration

The EPFL team has proposed a new assertional method to integrate heterogeneous
source schem~ [537]. The method solves structural, semantic and descriptive conflicts
without changing the input schemas. It is also able to directly integrate heteroge-
neous schemas, without going through a preliminary translation step. To this purpose,
interschema correspondence assertions, stated by the DBA, may relate an element
whatsoever in one schema to an element of any type in another schema. An assertion
defines the relationships between the element "types" (structural description) and the
related "classes" (sets of associated instances). It also includes the necessary definition
of an object mapping at the instance level, which provides for the integration of the re-
lated databases. Integration rules are generically defined on an abstract "generic data
model" (which basically supports objects, value attributes and reference attributes),
but their implementation in the actual integration of two input schemas is taJlorable
to the specific features of the input data model.

Considering the example in Figure 6, and assuming that the two schemas describe
exactly the same sets of cars and persons (for every car seen by DB1, its owner is seen
by DB2, and vice versa), the interrelationship between the two schema would be first
described through two element correspondence assertions:

Car - cars with correspondiffg attributes reg# = cars
owner - Person with corresponding attributes owner = pin

The first assertion states that the set of cars described by the object type Car in
DB1 (the real world state of Car) is the same (=) as the one described by the cars
attributes of the Person object type in DB2. The set equality is between sets of real
world objects, and holds independently of their representation in the two schemas. The
"with corresponding attributes" clause describes the structural relationship between
the two representations. In this case there is only one information about cars which is
represented in both databases: the car's registration number. This is hold by the reg#
attribute in DB1 and by the cars attribute itself in DB2. Hence the stated equality
of the two attributes. The same considerations apply to the interschema relationship
between DB1 car owners and DB2 persons.

The fact that associated elements in one schema (Car and owner in DB1) are
equivalent to associated elements in another schema (cars and Person in DB2) does
not necessarily imply that the association has the same semantics in both schemas. It
could be the case that DB1 talks about ownerships, and DB2 talks about cars being
driven by persons, while still referring to the same real world state for cars and persons.
Therefore, one assertion remains to be stated: a path correspondence assertion, making
explicit that the link between cars and owners in DB1 (noted Car--owner) has the same
semantics as the link between persons and car in DB2 (noted Person--cars). Links are
bi-directional: Person--cars and cars--Person denote the same DB2 link. The path
correspondence assertion for the example simply is:

Car--owner = cars--Person

18.4. THE INTEGRATION PROCESS 375

The integrator tool, with the two schemas and these three assertions as input, will
generate the following integrated schema:

IDB: C l a s s Car t u p l e < r e g # : integer, color: string, owner: r e f e r e n c e Person>
C l a s s Person t u p l e <pin: integer, name: string, cars se tof : r e f e r e n c e Car>

The corresponding diagram may be drawn as follows, with labeled arrows repre-
senting reference attributes:

IDB
owner ~j]

Car I ~ {cars} -~ Person

I I I I
leg# color pin name

F igure 18.7: The in t eg ra ted schema

IDB goes with the mapping information which states that the Car class is to be
found in DB1, the Person class is to be found on DB2, and the references in be-
tween have to be evaluated through the matching criteria Carereg# = Personocars
and Car.owner = Person.pin. Mapping information supports transformation of user
queries against IDB into queries on the underlying DB1 and DB2 databases.

1 8 . 4 . 2 Integration Through Augmentation
The ETHZ team has developed an approach to provide a flexible way to specify the
correspondence between existing objects of different databases. This is achieved by
defining (global) object identity in terms of algebraic (extend) views [502]. We thereby
make use of COCOON's view definition fax:ility [500] that was extended such that it
can span over multiple databases. It includes mechanisms for linking objects across
systems and to deal with semantic conflicts. The necessary view definition method is
to extend the local schema by elements of the schema of another system. Consider
the example in Figure 6. The DBA will s tart the integration process by defining a
view "Cars" as an extension of Car, with an additional function owned-by that returns
for each car-object the person-object of the other database, that owns that car. This
definition is stated as follows:

d e f i n e v i e w Cars as e x t e n d
[owned-by:= s e l ec t [reg#(c) �9 cars(p)](p:Person)](c:Car).

The selection predicate in the view definition materiMizes DBA's knowledge of the
fact that the at t r ibute cars of class Person specifies registration numbers of cars, which
are recorded as values of the r eg# at t r ibute of Car in the other database. Knowledge
that , similarly, the at t r ibute owner of Car specifies a pin of a person in the other
database, leads to similar extension of the Person type in DB2:

d e f i n e v i e w Persons as e x t e n d [owns:=
s e l ec t [pin(p) = owner(c)](c:Car)](p:Person).

The additional function owns returns the cars owned by each person. It acts as
the inverse of owned-by in DB1. Figure 8 below shows the schema of both databases,
extended with views having functions that lead from one database to the other.

376 C H A P T E R 18. FEMUS

Car

I I I
reg# color owner

Cars

Person

I. I I
pm name {cars}

Persons

Figure 18.8: The augmen ted schemas

The advantage of this approach is that it uses almost exclusively the expressive
power of a query language, together with a view definition facility. The only needed
extension is a global object identity predicate. This is necessary, since, due to demand
of local autonomy, we axe not allowed to make any assumption on the local internal
object-identities. Consequently, no change is required in the implementation of local
database systems.

While from a conceptual point of view this approach looks simple and clean, more
effort remains to be spent on the implementation issues. Particularly, an efficient, but
overridable, implementation of the identity test seems to require further investigations.
Till now, comparing object identities is typically hardcoded into the implementation
of local object based management systems. Efficient support by indexes or some other
form of replicated information is needed.

18.5 Negotiation
In a federated system, it is the responsibility of the local DBAs to decide and de-
fine which parts of their local data are available to external users (users from other
sites). The decision process relies on negotiation with the other DBAs, for which
specific tools may be developed within the federated system [245]. Negotiation needs
an understanding of the semantics of data. This is usually supported by information
attached to da ta descriptions and stored in a repository. The repository manager pro-
vides browsing capabilities and facilities to support dialogue and explanations among
DBAs. Negotiation also settles an agreement on access restrictions and the desired
level of consistency between imported materialized views, and the original version in
the exporting system (as discussed below).

18 .5 .1 Exchanging Metadata
The specification of exported data is stored in an export schema (or export view) in
the exporting system. The export schema provides access to both the data defini-
tions (description of types, classes) and the corresponding instances (the objects
in the database). Export schemas may be defined using different techniques: sub-
schemas, views, virtual objects,... Usage permissions granted (read, update, ...) are
also specified. Export schemas may be made available to designated users only (a us-
age permission is attached to the view itself), or they may be broadcasted (available
to everybody), or designed to become a component of some designated federation. It

18.6. IMPLEMENTATION ISSUES 377

is worthwhile noting that da ta is exported to become part of one or more federations
(thus providing for location transparency), not for direct access as in multidatabase
systems [372]. If a local system accesses a federation it contributed to, the system
is importing da ta it exported. From the semantic perspective this is perfectly correct
(similar to what happens everyday in international trade). From the performance point
of view, it is expected that, as in DDBSs, the federated query processors will be able
to access local da ta directly, rather than access some copy elsewhere.

18.5.2 Exchanging Data

A well-known problem in moving objects around in a federated system relates to object
identity. The requirement clearly is that object identity has to be preserved (to avoid
semantic loss). This implies that , when an object comes back to its exporter, updated
by some importer~ it is recognized by the exporter so that the update can be correctly
applied to the local database.

A first problem obviously comes from the fact that the federation may include
value based systems (relational DBMSs), which do not know about object identity.
However, an object-oriented system can also offer values to the federation, instead of
objects, either because it generally does not extract object identities, or because some
type of queries it accepts generate values as result. If object identities can be provided
by component systems, a global identity is easily built [245, 170]. I t will include the
local identity, which allows to later apply external updates on the original exported
object. If no local identity is available to the federation, exported values can be turned
into objects by the FDBS, but this does not make sure that an external update will
be correctly propagated. To that extent, restrictions have to be imposed on exported
values: i.e., they must contain a key which uniquely identifies the value in the local
database (as in relational databases). Otherwise, export should be restricted to read
only import. When an imported object is stored by the importer, it gets a local object
identity. If the object might have to be returned to the exporter, the global object
identity (which is locally meaningless) has to be stored as an additional at t r ibute of
the object (not visible to users), for future reuse in the federation layer. An object to
be imported may contain object identities as references to component objects in the
exporting database. If the component objects are not imported, references are just
dropped before import. If a component object is imported as a component value in
the importing system, the reference has to be replaced in the imported copy with the
value of the corresponding object. If the component object is imported as an object,
new references, local to the importing system, should complement the imported ones
(or replace them, if the importer is not allowed to update the object).

18.6 Implementat ion Issues
Since object identifiers in general are not available outside a system, the specification
of information to import has to be done by means of algebraic expressions [502]. Also
exported information can be specified comfortably with a query expression. The query
is given a name whose value is the result of the query, i.e., a data definition and a set
of instances. At each use of the name the query can be re-executed in the exporting
system and the result t ransmit ted to the importer. To the user there is only one version
of the information located in the exporting system, and up to date. A problem arises
when the amount of da ta specified by the expression is large, the da ta transfer might

378 CHAPTER 18. FEMUS

take considerable time. To avoid the delay, the user might want to create a local copy,
thus he explicitly stores the result of the import expression at his own site. Now, on
the other hand, the importer does not know whether his local copy is up to date or
not, since updates on the original version are not by default propagated to his copy. As
a compromise, it would be possible to refresh the copy of the importer at some access
occasions, but not all.

Another solution to the delay problem would be to keep an automatically updated
local copy that the user never sees. The problem with this approach is of course how to
ensure the consistency between the copy and the original. The following is a summary
of techniques used to solve materialized view management problems. Materialized view
update strategies can be classified according to, first, the consistency that is required
between the original and the materialized view, secondly how to detect that an update
to the original is relevant to a materialized view, and lastly how to actually update the
view.

18.7 Consistency Requirement
The strongest consistency requirement is transactional consistency, i.e., the material-
ized view is updated before the update transaction on the base has terminated. This
implies total correspondence between the versions [66]. The consistency requirement
may be relaxed in a well-defined way [15] where the notion of quasi-copy is introduced.
A quasi-copy may deviate from the original in one of the ways:

�9 Time delay

�9 Version number

�9 Numeric deviation

A way to specify these deviations exactly and to calculate the export costs is
proposed. An even weaker consistency requirement is proposed by [362], where a
"snapshot" is a copy that is updated only periodically, to be used by update-insensitive
applications.

18.7.1 Detection of Relevant Updates

An update operation on the database is made on a set of objects specified by a query. If
these objects are also present in a materialized export view, the view has to be updated,
otherwise not. Thus the problem is to say whether the sets of objects specified by two
queries are disjoint or not, a problem that is in general impossible to solve. It is solvable
for queries involving only the project or join operators, and the select operator with
a condition predicate containing only conjunctions. This is used by [66] to obtain
transaction consistency. [171] improves the method. A different approach is made
in [362] to update snapshots. A "snapshot" is the stored result of a view definition
expression. A snapshot is read-only and is updated "periodically", i.e. all updates on
the database since the last snapshot are propagated. Here a t imestamp is added to
every tuple when it is updated in order to be able to say if the tuple object has been
updated since the last snapshot refresh.

18.7. CONSISTENCY REQUIREMENT 379

18.7.2 Differential Refresh

When an update has been found relevant to a view, the view materialization has
to be updated. One way to do this is to recompute the query specifying the view
and to update the whole query. This clearly may result in the rewrite of a lot" of
unchanged data. I t is desirable to update the view only with the da ta actually changed.
[362] proposes a differential refresh algorithm for snapshots. When the snapshot is
to be updated, the tuples of the base table are traversed, and if a tuple is younger
than the snapshot and satisfies the view condition it is t ransmitted to the snapshot.
Improvements are made by discarding clusters of not interesting tuples. [66] proposes
a different method based on the apphca t ion of the same update operations on the
view materialization, that were applied to the base table. This method relies on the
distributivity properties of set union and set difference, which do not hold in the
relational model, but hold for object oriented models. The method is used to provide
transaction consistency, since the view update is included last in the update operation
transaction of the base table. The authors claim that their results are also valid for
snapshot update, i.e., when the view update is made after the transaction updating
the original table has terminated. It is not evident that the application of an update
operation at a time point when the execution environment may have changed will
produce the same database state as in the original environment.

Another way to improve system efficiency at update, and to avoid the exporter
bottleneck problem that occurs when a lot of importers are requesting updates from
the same exporter, is proposed in [306]. The idea in this method is to let the importing
systems re-export information to other importing systems, thus relieving the original
exporter from work.

There are cases when keeping a local copy at the importing site is necessary for
performance reasons. This copy can be invisible to the user, giving the impression that
there is only one version of the information. The consistency requirement varies, de-
pending on application requirements, from periodically updated snapshots, over quasi-
copies to transaction consistency. The results in the referenced papers concerns the
relational model, it remains to be studied whether they are also applicable to semantic
and object- oriented models. Nothing is however pointing in any other direction, on
the contrary, it seems like further problems encountered in the relational model do not
occur in this environment. For example, the problem caused by the fact that projection
is not distributive over difference in the relational model, does not occur in a model
with object identities, see [66].

An interesting approach seems to be to combine the periodic update with the
differential refresh method that applies the update operations to the view. To update
the view at every modification of the original da ta even if the materialized view is not
used at the moment seems inefficient, instead the update should be made on request
from the view user, then all the updates on the base table can be applied at one time.
An open question is if the update operations applied in the same order will produce the
same result at the later time point. Another question is how the mechanism to update
materialized views can be made symmetric, i.e., how updates on the materialized view
can be propagated to the original.

380 CHAPTER 18. FEMUS

18.8 C o n c l u s i o n and Future Research

In this chapter we have presented the motivation and the key features of the ongoing
FEMUS research project. The aim of the project is to explore architectural and seman-
tic related issues of federated database systems. We have discussed, in particular, two
of the most distinguishing features of the project: da ta model translation and database
integration.

Cooperation between heterogeneous systems can involve bi- directional translations
L

between da ta models of eqmvalent semantic power. Semantic data models and object
oriented da ta models are more and more included in current federated database sys-
tems. In order to avoid a proliferation of translators in the federation, they are often
used as common data model. We have examined in detail the characteristics of the
translation process between object oriented and extended semantic da ta models. The
translations rules between two representative models, ERC+ and COCOON, are given
as an example. Their scope covered both schema and operation mapp ing .

Next, we have investigated database integration issues in interoperable systems.
Integration techniques are used in these systems to build unified views of information
imported from different databases. The main thrust of our research is to extend to
federated database systems two alternative integration methodologies we have devel-
oped. The first one uses interschema correspondence assertions and integration rules
to derive an integrated schema from a set of heterogeneous input schemas. The second
one uses the existing view mechanism to augment the input schemas with interschema
correspondences expressed as constructs of the model (interschema functions in the
ease of COCOON). We presented the key features of these integration methodologies
and an example to support their comparison.

Our future research effort is on:

�9 the specification and identification of tools to aid the translation process. The
translation rules can serve as a basis for defining a rule based generator for the
translation process;

�9 the specification and implementation of a federation server to aid federation
users in sharing information, meta information, and schema construction tools
(translators and integrators). The server must provide sophisticated dictionary
and/or directory look up services to aid navigation and negotiation throughout
the federation;

�9 the extension of the assertional integration technique to solve more cases of
schema discrepancies and the extension of the augmentation integration tech-
nique to cope with heterogeneous input schemas;

�9 the extension of both integration techniques to the integration of object-oriented
methods.

A C K N O W L E D G M E N T S
The authors are indebted to the following people, tha t contributed to the FEMUS
project: Hans-JSrg Schek (ETH Z/irich), Marc Scholl (University of Uhn), as well as
the students Amadou Fall (EPF Lausanne) and Hans-Peter Waldegger (ETH Ziirich)
who did some of the prototype implementation.

Chapter 19

Communication and Synchronization Issues in Distributed
Multimedia Database Systems

Shirley Browne*

19.1 I n t r o d u c t i o n

Current research into high-speed wide-area communications is raising the possibility
of new distributed multimedia applications, including distributed multimedia database
and information systems. The goals of research in this area will be to extend distributed
database and information retrieval paradigms to the following:

* database access over large-scale wide-area packet-switched networks,

. storage, retrieval, and display of multimedia objects.

Although CD-ROM technology provides local mass storage for static information,
distributed databases will be crucial for accessing information which is constantly
changing, inherently distributed, or accessed infrequently by a given user. As the
amount of information available threatens to overwhelm us, multimedia offers a way
of increasing the machine to human bandwidth through the use of images, animation,
sound, and video, as opposed to purely textual display. The economics of bandwidth
sharing argue for use of packet-switching, as opposed to circuit-switching.

Motivating the development of wide-area multimedia information systems will be
the desire for large-scale collaboration on the Grand Challenge problems, saving lives
and reducing costs through the use of medical databases, and consumer demand for
commercial applications such as video browsing and home shopping. For example,
Project Sequoia 2000, funded by Digital Equipment Corporation at the University
of California, involves work on distributed database management of large constantly
changing global change datasets, along with network facilities for accessing, visualizing,
and analyzing the data [300]. Distributed medical databases which allow a doctor han-
dling an emergency to instantly review a patient's medical records remotely will greatly
improve the quality of emergency care. Applications of video browsing, ranging from
computer dating to long-distance real estate services [281], will provide convenience
and cost savings to consumers.

Libraries will become important users and providers of multimedia information ser-
vices. Although libraries have traditionally been repositories of printed information,

*Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301,
U.S.A

382 CHAPTER 19. COMMUNICATION & SYNCHRONIZATION ISSUES

print has limitations, such as fixed, static representation of information, lack of inter-
activity, and its restriction to single-user mode. Multimedia information systems hold
promise for overcoming these limitations, as they can provide a multisensory, dynaxnic,
interactive, multiuser environment. Future library multimedia computer systems are
expected to utilize expert system technology to assist users in selecting and retriev-
ing multimedia information. This technology will be deployed at specialized, powerful
database servers in the networked environment [25]. The problems of interconnecting
heterogeneous networks and databases remain to be solved, however, before integration
of diverse information sources can take place.

Object-oriented software technology, with its properties of encapsulation of oper-
ations, distribution of logical autonomy, processing concurrency, and reactive control
structures [603], may prove to be the most appropriate model for the design of multi-
media databases. With the object-oriented paradigm, it will be possible to incorporate
the display and processing information associated with objects into the objects them-
selves. Other relevant information includes the synchronization and communication
performance requirements of multimedia objects.

Research into object-oriented and multimedia database systems is being carried
out at a number of institutions. O-RAID is an object-oriented extension of the RAID
distributed database system being developed at Purdue University [60]. O-RAID pro-
vides a class structure for objects, with support for large, complex objects and for
object composition and replication. Although not currently a multimedia database,
the modular, object-oriented architecture of O-RAID lends itself to a natural exten-
sion to multimedia objects.

The POSTGRES database system extends the relational model to incorporate
object-oriented features such as inheritance and methods, along with a rules system
for adding intelligence to the database [556]. An extended version of POSTGRES is
being employed to help manage terabytes of global change data for the Sequoia 2000
project mentioned above [300]. Work at Boston University involves the capture of tem-
poral relations for the storage and subsequent retrieval of multimedia objects, using
POSTGRES as the database management system, an X l l user interface, and JPEG
compression.

OMEGA is a object-oriented multimedia database system being developed at the
University of Library and Information Science in Japan [391]. This research project
is extending the object-oriented model to represent temporal and spatial information
about multimedia data. The author of [391] argues in favor of the object-oriented
approach, as opposed to the hypermedia approach.

Researchers at Washington University in St. Louis are designing and implementing
an experimental ATM network which will link physician's workstations with medical
databases. The system is being developed with the goals of eliminating the manual
management, retrieval, and transportation of X-ray and other imaging data, and of
allowing simultaneous access to this data by multiple users.

The Collaborative Visualization (CoVis) Project at Northwestern University in-
volves the design of future distributed multimedia high school science learning en-
vironments [449]. Multimedia database servers will reside at CoVis network testbed
sites. These servers will support collaborative visualization activities for geographically
dispersed students and teachers working jointly on science projects.

Other research efforts include the Multimedia Information Laboratory at Syracuse
University [50], the IRIS Hypermedia System at Brown University [239], research into
efficient search and retrieval techniques at the MIT Multimedia Lab [364], and research
at Fermilab and CERN on extensions to World-Wide Web for the high-energy physics

19.2. CHARACTERISTICS AND REQUIREMENTS 383

community [47].
A number of challenging problems remain to be solved before large-scale distributed

multimedia databases become a reality. Efficient means of organizing and storing
extremely large quantities of diverse types of da ta must be found. Appropriate indexing
and search strategies, with flexible user interfaces, must be developed. Techniques
for retrieving, composing, and synchronizing the components making up a complex
multimedia object are needed. Specification of the communication requirements for
the network transfer of multimedia objects will be a necessary function of a distributed
multimedia database system. The distributed system must also interface with the
underlying communication services to obtain the quality of service desired.

The remainder of this chapter surveys issues involved with synchronization and
communication requirements of distributed multimedia databases. Solutions which
have been proposed in the l i terature are described and related to each other. Finally,
suggestions are made of fruitful areas for future research.

19.2 Characteristics and Requirements
Uses of distributed multimedia databases will span a variety of application areas, in-
cluding the following:

�9 Education - electronic books, educational videos, simulations, multimedia
courseware, and collaborative projects.

�9 Libraries and museums - Literary, musical, and artistic works, and multimedia
presentations.

�9 Offices - documents, memos, training and sales videos.

�9 Medical databases - Case histories, X-rays, test results, and digital da ta from
computer tomography, magnetic resonance, and ultrasound.

�9 Computer aided design - Design documents, symbols and components, simula-
tion.

�9 Scientific databases - Sensory data, da ta visualization, animation, and simula-
tion.

�9 Geographic databases - Maps, satellite images, demographic information.

Despite the wide arena of application areas, a common set of requirements caxt
be defi~ed. The functional requirements for a multimedia database server include the
following [50]:

�9 management of complex multimedia information, in the form of text, images,
audio, and video,

�9 spatial and temporal integration of information units of various types into the
multimedia object of interest to the user.

Because of the extremely large storage requirements of some multimedia informa-
tion types (e.g., images and video), accessing a remote multimedia database is expected
to be a real-time playback application. A real-time playback application, as described
in [113], involves packetization and transmission of some signal by the source followed
by depacketization and replay at a designated playback point by the receiver. Any
da ta that arrives before its designated playback point can be used to reconstruct the
signal; da ta arriving after its playback point is useless. Hence, playback applications

384 CHAPTER 19. COMMUNICATION ~ SYNCHRONIZATION ISSUES

are sensitive to network-introduced delay and j i t ter (variation in delay). A multime-
dia presentation has the additional requirement that the playback points of multiple
signals must be coordinated.

The coordination of multiple streams during playback is called temporal synchro-
nization in [369]. The temporal composition of a multimedia object may consist of
either fine-grained continuous, or isosynchronous, relationships, or course-grained syn-
thetic relationships [369]. An example of a continuous relationship is the coordination
between audio and video streams representing the voice and image of a speaker. An
example of a synthetic relationship is the synchronization of text and images for a
multimedia display. A distributed multimedia database system must provide facilities
for storing these relationships and for enforcing them when a multimedia object is
retrieved and t ransmit ted over the network for display to the user.

In general, the need for synchronization arises from several causes, including the
following:

1. Transmission of a multimedia object may involve transmission of related data
streams over different communication channels (e.g., motion video and accom-
panying voice). Because of their different communication requirements (e.g., low
delay j i t te r for voice, low loss rate for compressed video), it is desirable to use
separate communication channels for different types of media. Since timing rela-
tionships are typically not preserved across different channels, these relationships
will need to be restored at the destination before correct playout of the related
streams can occur.

2. A displayed object may be synthesized from individually stored components. In
a multimedia database, a complex object may consist of components of different
media types which are stored separately. Synchronization requirements for such
an object would specify how the various components fit together temporally. A
database server would need to retrieve the object 's components and transmit
them in such a way that the synchronization requirements are not violated or
made impossible to enforce at the destination. The specification tbr the synthesis
of an object from its components may be pre-orchestrated and stored in the
database or may be constructed at query time.

3. In a distributed environment, retrieval of a complex object may involve the
retrieval of individual components from different database servers. For example,
a sequence of images (i.e., slide show) may be stored at one location, with a
voice commentary stored at a different location. Display of such an object will
involve the combination at the destination of data streams coming from different
database servers. Somehow the timing relationships between the components
must be enforced by synchronization actions taken at the various sources, at the
destination, or at both the sources and the destination.

4. Pipelined decompression architectures can introduce additional delay and delay
j i t ter into a da ta stream. Since the use of compression is highly desirable in a
distributed multimedia environment for reducing the amount of data that must
be transmit ted, techniques are needed to compensate for the j i t ter introduced
by the decompression algorithm.

5. Starvation of a da ta stream may occur because of a shortage of network resources.
With appropriate techniques for statistical multiplexing of network bandwidth,
such starvation can be made highly unlikely, but there is still a chance that it can
occur. Network users may also take a calculated risk of starvation occurring in

19.3. C O M M U N I C A T I O N A P P R O A C H E S 385

exchange for a lower charge for use of the network. Regardless of why starvation
occurs, da ta streams that are receiving adequate service must be synchronized
with those that have fallen behind because of starvation.

The communication requirements of multimedia objects vary greatly, depending
on the type of media and on the degree of compression being used. The bandwidth
required for sound can vary from 2.4 kb/s for coded voice up to 1.4 Mb/s for CD
quality. Full-motion video can range from 30 Mb/s for medium resolution black-and-
white to 750 Mb/s for high resolution color [368]. Sizes of images can vary from a
few to tens of megabits, depending on the resolution. Lossless da ta compression can
reduce these quantities by factors of 3 to 4; greater reduction, up to a factor of 100,
is possible using lossy compression, but with some image degradation. The quality of
service required for different media can be expressed in terms of bandwidth, delay, delay
j i t te r (i.e., the variation in delay), and error rate. Sound has stringent delay and delay
j i t te r requirements, but can tolerate some loss due to error. Image and compressed
video may have stringent error requirements. Video has less stringent delay and delay
j i t te r requirements than audio. Use of delay compression can have an adverse effect on
delay j i t ter . Throughput, delay, j i t ter, and reliability requirements may be expressed
either deterministicaily or statistically [186]. A distributed multimedia database system
must provide facilities either for storing quality of service requirements of objects or
for calculating them on demand, and for negotiating with the communication service
provider to obtain the desired quality of service.

Quality of service requirements can also be classified as either guaranteed or pre-
dicted [113]. If a communication system provides guaranteed service, it ensures that
the quality-of-service commitment will be met, provided the client conforms to its end
of the service contract (i.e., by staying within its declared average and peak trans-
mission rates and its declared burst length). Predicted service, on the other hand,
a t tempts to deliver consistent performance to the client, based on past network condi-
tions, but there is no guarantee. The advantages of predicted service are that it allows
greater sharing of bandwidth, thus reducing communication cost, and that it allows
an adaptive application to adjust its playback point to take advantage of current net-
work conditions. Predicted service may suffice for casual users of multimedia database
systems (e.g., l ibrary browsers, office applications), whereas time-critical and real-time
applications may require the more dependable but more costly guaranteed service.

19.3 Communicat ion Approaches
The Internet is expected to evolve into a network that can support multimedia appli-
cations [448]. Rather than interfacing directly to the underlying network, the commu-
nication manager of a multimedia database system would most likely interact with a
higher level protocol such as the Multi-flow Conversation Protocol (MCP) [636], being
developed at the University of Kentucky, or Bellcore's Touring Machine System [343].
To satisfy bandwidth, delay, j i t ter, and bit error requirements, data streams carrying
multimedia information will need to be sent over flows having performance guarantees
[128]. In the approach in [636], flows are grouped into a logical unit called a multi-flow
conversation. MCP is a t ransport level protocol that provides service primitives for es-
tablishing, managing, and terminating multi-flow conversations. The Touring Machine
System provides a set of logical abstractions for establishing and managing multimedia
communication sessions. These abstractions hide the complexities of resource alloca-
tion, network access control, and session management from the application. A session

386 CHAPTER 19. COMMUNICATION & SYNCHRONIZATION ISSUES

consists of a set of medium-specific connectors, where a connector is a multiway trans-
port mechanism among multiple endpoints.

In the context of public broadband networks [543], the communication manager
for future multimedia database systems will need to interact with the admissions con-
trol and policing mechanisms in use by the service provider. The admissions control
mechanism ensures that the average and peak rates, burstiness (defined as the ratio
of peak to average rate), and burst length of a source are not exceeded. Thus, when
making a call request (e.g., setting up a query session), the database communication
manager will need to give information about call requirements and source traffic char-
acteristics to the network service provider. One possibility is to store this information
in the database schema itself (e.g, in the form of Estimated Bit Rate tables, as in
[167]). Another approach is to calculate the required information from the parameters
of a part icular query session and network and from accumulated statistical information
collected during previous query executions. For example, an algorithm for calculating
buffering requirements by processing the database schemas is given in [370].

Various bandwidth allocation mechanisms have been proposed for admissions con-
trol [262,168,607]. These mechanisms a t tempt to calculate the effective requirements
of a connection request and determine whether or not sufficient resources exist to sat-
isfy the request. Most proposed policing mechanisms use the notion of a token bucket
filter [465]. The token bucket filter works conceptually as follows. Tokens enter the
token bucket at a constant rate, up to some maximum depth. A source that wishes to
t ransmit a packet must remove an appropriate number of tokens from its token bucket
(e.g., a packet of length 1000 bits would be required to remove 1000 tokens). If the
tokens are not available, the packet may be either queued or dropped. The token entry
rate governs the average rate of the source, while the burstiness is governed by the
bucket depth.

Packet scheduling algorithms for controlling congestion and handling real-time traf-
fic have been proposed in [143, 226, 113]. The weighted fair queuing algorithm pre-
sented in [143] is a rate-based flow control scheme that guarantees a given rate to
each flow. In [445] it is shown that weighted fair queuing, when combined with token
bucket filtering, allows the network to make worst-case performance guarantees on de-
lay. Simulation results in [113] show, however, that the worst-case bounds are typically
much worse than the actual delay, and that a modification of FIFO scheduling, while
not guaranteeing a worst-case bound, appears to achieve much lower variance in delay.
The stop-and-go queuing technique described in [226] makes less efficient use of band-
width than the above schemes, resulting in larger average delay, but maintains tighter
control of j i t te r in the network. As research on the performance of packet scheduling
algorithms continues, it appears likely that network providers implementing these al-
gorithms will be able to make deterministic and/or statistical guarantees which can be
used by applications to guarantee adequate quality of service to users.

Future multimedia database communication services will likely run over Asyn-
chronous Transfer Mode networks. Asynchronous Transfer Mode (ATM) is a fast
t ransport scheme, based on fixed-length cells, that is projected to become widely used
for carrying multimedia traffic. ATM achieves bandwidth efficiency by statistically
multiplexing bursty traffic from virtual connections at the expense of cell delay and
loss. Such multiplexing allows varying bit rate on demand, with the ATM specifica-
tions of maximum bit rates at 150 and 600 Mbps. To support multimedia database
retrieval, ATM will need to provide guarantees for cell delay and cell lost performance
requirements for all media types supported. For example, voice data are delay-sensitive
while image da ta are loss-sensitive. These guarantees will be accomplished through the

19.3. COMMUNICATION APPROACHES 387

design and implementation of appropriate traffic control mechanisms. Possible traffic
policing mechanisms are surveyed and compared in [465]. Estabhshing an ATM call
requires negotiation of a traffic contract, which includes the attributes of maximum and
mean cell rate as well as the quality of service requirements with respect to call loss,
delay, and delay jitter. The policing function then controls the cell stream during the
active phase of the call and restricts the traffic source to the characteristics negotiated
in the contract.

A layered view of an ATM network is shown in Figure 1. Traffic flows originate
from sources at the services layer. An ATM adaptation function is required at the
adaptation layer to segment the traffic flow at the source into fixed-length cells and
to reassemble cell contents at the receiver. For message-oriented services, messages
are reassembled. For continuous traffic, the variable transfer delays of the cells must
be smoothed by buffering. The adaptation function may be provided either by the
network or by the end system. In the case of distributed multimedia databases, spe-
cialized adaptation layers may need to be designed to support the coordinated retrieval,
transfer, and display of related streams of data from different sources. The cells are
transferred across the network by the transport layer which is supported by the un-
derlying physical layer. Performance impairments which may be introduced include
cell error, cell loss, and cell delay. Cell loss can result from bit errors at the physical
layer, buffer overflow at transport-layer switches, and smoothing buffer overflow at the
adaptation layer. Cell delay can result from physical propagation delay, transport-
layer switch queuing delay, and adaptation layer cell assembly and smoothing delay.
Although there have been numerous studies of performance requirements at the ATM
transport layer [168, 630], there has been little work on performance evaluation of
adaptation layer functions. Adequate performance at the adaptation layer, as well as
effective allocation of performance requirements between the adaptation and transport
layers, will be critical for good performance of multimedia databases.

Services layer

Adaptation layer

Transport hyer

Physical layer

Figure 1. Layered model of ATM network

388 CHAPTER 19. COMMUNICATION ~ SYNCHRONIZATION ISSUES

19.4 Synchronizat ion Approaches

Synchronization requirements will need to be expressed at the application level. The
Object Composition Petri Net (OCPN) has been proposed as an abstract model for
representing the synchronization of elements composing a multimedia object [369]. The
OCPN is shown to be capable of modeling any of the thirteen possible temporal rela-
tionships between two temporal intervals (The logic of these relationships is presented
in [13]). One of these temporal relations, the overlaps relation, is shown in Figure 2(a)
for a multimedia object with components a and ft. Here, ra represents the duration of
o 4 r~ the duration of fl, and r~ the interval from the beginning of the playout of c~ to
the beginning of the playout of ft. The OCPN is a timed Petri net, with the playout
processing of object components represented by places, and with instantaneous firing
of transitions. The firing rules for the OCPN are summarized as follows [369]:

1. A transition fires immediately when each of its input places contains an unlocked
token,

2. Upon firing, a transition removes a token from each of its input places and adds
a token to each of its output places,

3. Upon receiving a token, a place locks the token for the interval specified by the
place's duration, after which time it unlocks the token.

The OCPN corresponding to the overlap temporal relation is shown in Figure
2(b), with places represented by circles and transitions by vertical lines. The OCPN
is actually a hierarchical model, in that a subnet may be replaced by an equivalent
abstract place. In [369], a hierarchical tree-structured database model is proposed for
representing and storing OCPN's. Two types of tree nodes are used - the terminal
node which represents an atomic object and includes a pointer to the location of the
actual data, and the nonterminal node which indicates the temporal relation imposed
on its children. The representation of the overlap relation in this schema is shown
in Figure 2(c). The OCPN model is extended to n-ary temporal relations (for more
efficient representation) and reverse temporal relations (to allow reverse playout) in
[371].

Algorithms for processing the OCPN associated with a multimedia object that
is to be retrieved, transmitted over a network, and displayed are described in [370].
Algorithms are given for carrying out the calculation of the following quantities:

1. the playout deadline schedule II,

2. the retrieval time schedule O, and

3. the destination buffer requirements.

The timing for a single object is shown in Figure 3, where the network latency A
includes activities such as packetization, transmission, and decompression, and the
control time T is chosen by the algorithm so as to guarantee synchronization within
a given probability of faJJure. Buffer requirements are calculated for the purpose of
smoothing variations in latency and of storing objects that must be held at the desti-
nation for some amount of time prior to their playout deadline. The schedules produced
by the algorithms must somehow be enforced by the communication system. One pos-
sible interface to a proposed system-level network synchronization protocol, the Flow
Synchronization Protocol being developed at BBN [181], is described below.

19.4. SYNCHRONIZATION APPROACHES 389

"gOt
c

Figure2(a). Overlaps relation

Figure 2(b). OCPN for overlaps

Dot DIS

Figure 2(c). Tree-structured schema

T (control time)

< r k (latency) l ~

o i II
retrieval playoit
time ~leadline

"r i (duration)

time

Figure 3. Timing for retrieval, transmission, and display of a single object.

390 CHAPTER 19. COMMUNICATION & SYNCHRONIZATION ISSUES

An alternative approach to expressing synchronization requirements is proposed as
an extension of the CCITT standard Office Document Architecture (ODA) to multi-
media objects [253]. ODA is a hierarchical object-oriented model designed to allow
transmission of documents over a network and either direct display or storage and
subsequent editing by the recipient. The structure of the model is shown in Figure
4. Document types are defined as subclasses in the generic description class hierarchy.
Each instance of a document has a specific description, derived from the appropriate
generic description, which details the actual contents of the document. Logical objects
include such things as sections, paragraphs, and headings. Layout objects include page
formats, fonts, page breaks, etc. The generic description defines what logical and lay-
out objects may exist and contains correspondence relation rules describing how logical
and layout objects interrelate. In the specific description, the logical structure subdi-
vides the document on the basis of meaning, and the layout structure subdivides it on
the basis of paginated layout. A basic object is an object that is not subdivided into
smaller objects. In the specific description, the basic logical and layout objects contain
pointers to actual content portions. The specific description contains correspondence
relations that interrelate the specific content portions. The document profile contains
information such as the title, author, and revision history. An attribute is a property
of a document or of a document component which expresses a characteristic of the
component or a relationship with one or more other components. The set of at tr ibutes
associated with a document as a whole is the document profile. An ODA document
may by t ransmit ted in either finalized or editable form. In the case of finalized form,
only the layout structure and document profile need to be sent, since these are all that
is needed to display the document. In the case of editable form, however, the logical
structure must also be sent so that the recipient can modify it.

Document profile]< ~l

Genedc doscdptlon~

Corre. spondsnce

Logical object ~ Layout object
definitions ~ de fruitions

Generic content
portions

-[ODA document]

Specific d~scdption

_ _ _ ~ C & n c ~ . ~
]Logical ~ L a y o u t

Specific co.tent
portions]

Figure 4. ODA document model

A notation based on path expressions for the description of synchronized actions
composing a multimedia object is presented in [253]. ODA extensions are described
which integrate the semantics of path expressions into the layout structure of a doc-
ument. The extensions are compatible with the current version of ODA. Multimedia
objects are assumed to be logically decomposed into atomic actions, which may be syn-
chronized only at their startpoints and endpoints. Path operators are defined for the

19.4. S Y N C H R O N I Z A T I O N A P P R O A C H E S 391

possible temporal relations between pairs of actions and among multiple instantiations
of an action. A path expression is composed of atomic actions and path operators, and
it describes which path~ are allowed for the actions - i.e., the possible orders in which
the actions may be executed. Path expressions define the semantics of the synchro-
nization without imposing a specific synchronization mechanism. A total of six path
operators are described, but the following three are sufficient for describing Allen's
thirteen possible temporal relations between pairs of actions:

A A B Parallel-last: Actions A and B are started together and execute concurrently.
The composed action terminates when both A and B have terminated.

A V B Parallel-first: Actions A and B are started together and execute concurrently.
The composed action terminates when either A or B has terminated, whichever
terminates first.

A ; B Sequential: B executes immediately after A - i.e., the endpoint of A equals the
star tpoint of B.

For example, the overlap of e~ and t , followed by the overlap of fl and 7, as shown in
Figure 5(a), would be represented by the path expression shown in Figure 5(b). In this
example, ~ (a dummy action which functions as a place holder) is executed only once
but appears in the two path expressions to produce the desired overlap between a and

and between ~ and 7.

Figure 5(a). Overlaps relations Figure 509). Path expressions

A path expression may be viewed as a tree structure, with the path operators
as internal nodes and the actions as leaves. Such a tree structure corresponds to
the hierarchical structure of ODA. The current version of ODA provides for a time-
invariant presentation of a document, with the layout structures describing the spatial
relationships between objects. The only current time-based at tr ibute is Imaging Order,
which gives the sequential ordering for layout objects in the layout object to which they
are immediately subordinate. The author in [253] proposes extension of the layout
structure of ODA to include at tr ibutes describing temporal relations. Extensions to
the logical structure of ODA documents and to time-variant content portions are left
for future work. The following new attr ibutes are proposed for the basic layout objects:

B1 Content Temporal Type - static (time-invariant) or dynamic (time=variant),

B2 Duration- presentation time in Basic Time Units.

It is possible for a static object, such as an image, to have a positive duration. In
the case of a static object with zero for duration, the object is presented until it is
terminated by its successor in the Imaging Order, thus preserving compatibility with
the current version of ODA. The following new attr ibute is proposed for composite
layout objects:

C1 Object Synchronization Type- the type of path operator associated with the object,
which may be parallel-last, parallel-first, sequential, or selective.

392 CHAPTER 19. COMMUNICATION ,~ SYNCHRONIZATION ISSUES

The attribute values parallel-first, parallel-last, and sequential have the meanings de-
scribed above. With the selective attribute, only one of the subordinate layout objects
will be displayed, depending on the user's choice. Additional attributes are defined for
composite layout objects which concern additional timing constraints and user inter-
actions.

Before presentation of a time-variant document, the layout structure must be eval-
uated, and the timing relationships must be extracted and enforced. As in the current
ODA standard, the document imaging process, concerned with presentation of the
document to the user, is not defined by the proposed extensions and depends on the
presentation device being used. An important research question, however, will be how
to interface the proposed ODA extensions with communication protocols and database
user interfaces.

In still another approach to the expression of synchronization properties, the object-
oriented multimedia database system OMEGA [391] incorporates temporal properties
into the class TemporalObject. Members of this class, called temporal objects, have
internal state variables birth Time, death Time, terapoPrec, and terapoSync. The value of
tempoPrec is calculated from the birth time and death time information, and indicates
which object or objects immediately precede an object, and by how many seconds.
The value of tempoSync represents which other objects must be synchronized with the
object. Two objects are considered to synchronize if their lifetime periods overlap.
Temporal properties are then addressed through the class definition language, the
database programming language, and the query language.

The database synchronization manager may interact with a lower-level synchro-
nization protocol such as those described in [181,635, 17, 464]. A lower-level synchro-
nization protocol provides primitives which may be called from an application program
to access communication system synchronization facilities.

The Multi-flow Conversation Protocol (MCP) described in [635] provides a way of
combining logically related data streams which have performance guarantees, called
flows, into a logical unit called a conversation. MCP provides a token mechanism for
enforcing conversation concurrency control, or floor control. The mechanism includes
primitives for creating, replicating, distributing, and deleting tokens. Synchronization
is approached through the enforcement of a A-causality relation which is defined as
follows for messages ml and me and a source S:

ml -+ me, or ml precedes me, if

1. S sends m2 after S sends ml, or

2. S sends rag_ after S receives ml.
z~

ml --+ me, or ml A precedes me~ if

1. S sends m~ after S sends rot, or

2. S sends m~ after S receives ml and end-to-end delays for ml and
m2 are both less than or equal to A.

zx
If ml ---+ me, then ml and m~= are delivered in causal order at all destinations. If

rnl -+ me, but not(m1 ~-~ m2), then ml may be delivered after m2 or may be dropped.
MCP also provides for expedited delivery of control messages. MCP does not

require synchronized clocks, but does require a bound on clock drift between real-time
clocks at different sites. Synchronization requirements for a multimedia object would
be enforced by sending appropriate control messages and taking advantage of the causal
order that is enforced on the delivery of these messages and the actual data messages.

19.4. SYNCHRONIZATION APPROACHES 393

The Logical Time System, or LTS, is a synchronization abstraction implemented
over TCP (the Internet Transmission Control Protocol) as part of the Acme continuous
media I /O server developed at UC Berkeley [17]. Application programs may deal with
logical devices, which are abstract versions of physical devices. Each logical device is
bound to an LTS. I /O on logical devices is synchronized in that da ta units with the same
t imestamp are displayed at approyAmately the same real time. Each LTS has a current
time value. While an LTS is running, its current value increases at approximately the
same rate as real time. Acme provides primitives for creating an LTS, for binding a
logical device to an LTS, for starting and stopping an LTS, for querying an LTS as to
its current time, and for setting an alarm. The bind primitive allows specification of
a max_skew value, which is the maximum allowed difference between a logical device
and the current LTS time value. Aeme enforces synchronization by adjusting the rates
of logical devices, using the techniques of skipping and pausing. The LTS abstraction
provides local abstraction only. That is, all logical devices for an LTS must reside at
a common location. It is not required however that the associated physical devices all
reside at this location, but delay and j i t ter induced by the network connection between
a logical device and its associated physical device would not be handled by Acme. The
Acme system requires synchronized clocks.

The Flow Synchronization Protocol described in [181] uses a modular architecture
that permits the application to tailor the synchronization actions to its own synchro-
nization requirements. The protocol t imestamps the data at the sources and equalizes
the delay at the destinations, so that the end-to-end delay among flows is synchronized.
The protocol relies on the underlying use of clock synchronization protocol to achieve
a global t ime reference. The timing relationships are illustrated in Figure 6. In the
database context, the collection delay would include the time required to process the
query and seek and access the data, and the delivery delay would include the time to
decode and present the data to the user [368]. The application is allowed to specify the
following three application-specific function to override the system-provided default
functions:

1. a Filtering Function to estimate the unequalized flow delay,

2. a Synchronization Function to compute - given the estimated individual flow
delays, the maximum acceptable end-to-end delay for each flow, and the flow
priorities - the common synchronization delay A.

3. a Delivery Function to schedule data delivery (following insertion of the equal-
ization delay) to the application.

The protocol is adaptive, in that it can adjust the synchronization delay A to reflect
network conditions and performance. For example, if too many packets are being
discarded because of late arrival, the synchronization delay may need to be increased.
Thus, the database synchronization manager would be responsible for supplying the
application-specific functions and for contacting the synchronization protocol controller
if necessary to change protocol parameters, such as the interval at which A is updated.

The protocol assumes a flow model in which each flow has a source process sending
da ta to a destination process. The source t imestamps the da ta and the destination
implements equalization by buffering the data. The destination processes execute the
application-specific functions. Destination processes belong to synchronization groups.
The processes in a synchronization group regularly exchange messages to compute a
common synchronization delay A for the group. Synchronization groups can be used
both for multiple destinations for the same source and for multiple related flows for

394 CHAPTER 19. COMMUNICATION dz SYNCHRONIZATION ISSUES

5 t 5 5

t
r

A
5 c collection delay
5 t transit delay
g

e equalization delay
t r release time
5 d delivery delay

synchronization delay

Figure 6. Timing relationships for Flow Synchronization Protocol

the same application. Because the synchronization and delivery functions are executed
by the destination processes, it might appear that the OCPN model for application
synchronization, described in [369], could not be used together with this synchroniza-
tion protocol, since the processing of the OCPN which corresponds to computing these
functions must take place at the source. However, the Flow Synchronization Protocol
provides a mechanism of event messages by means of which the a source process may
send information about the flow known only to it to its corresponding destination pro-
cesses. Thus, the OCPNs could be processed at the source and the results could be
sent via event messages to the destinations where they could be used to compute the
functions.

A synchronization protocol designed to work in the absence of both synchronized
clocks and control messages is described in [464]. The media mixing problem has the
goal of minimizing the differences between generation times of packets being mixed from
different sources, in the absence of synchronized clocks, but in the presence of jitter
and transmission delays. The set of packets from different sources that are to be mixed
to form a composite media packet is called the fusion set. Packets are transmitted
from their sources to a mixer. Minimum and maximum bounds on the communication
delay from a source to the mixer are assumed to be known. Packets are assumed to
be generated at regular intervals, i.e., with a period p. Two packets may belong to
the same fusion set if and only the difference between their generation times is less
than or equal to p. This requirement is cMled the Mixing Rule. Conditions on jitter
and generation intervals are given under which it is possible for the mixer to determine
fusion sets. For the possible cases, algorithms for determining fusion sets are given. The
possible communication architectures for media mixing range from centralized, with a
single central mixer, to fully distributed, where mixing is performed independently
at each destination. To make the mixing algorithms scalable with respect to both
the number of participants and the geographical separation between participants, a
hierarchical tree-structured communication architecture is proposed, with destinations
at the leaves and mixers at the root and internal nodes. A bound on the time a mixer
must wait for lost packets is derived that minimizes the real-time delay in a hierarchical
architecture.

19.5. CONCLUSIONS 395

19.5 C o n c l u s i o n s

This chapter has discussed the issues involved with synchronization and communica-
tion in the context of distributed multimedia databases. Some proposed strategies for
dealing with these issues have been described. As this field is in its infancy, a great
deal of work remains to be done. Further research and development are needed in the
foUowing areas:

�9 Interfaces between multimedia database systems and communication subsystem
synchronization primitives.

Several system-level synchronization protocols are currently being implemented
and tested. Methods of storing and/or dynamically determining synchronization
requirements of multimedia database object are needed, as well as the means of
relaying these requirements to the underlying communication system.

�9 Automated determination of quality-of-service requirements for multimedia da-
tabase query sessions.

Quality-of-service requirements such as bandwidth, delay, and error rate will
need to be specified at the time the network connection for a query session is
established and possibly modified during the session. It is not reasonable to
expect the end user to bear the burden of specifying these requirements. Thus,
the database user interface should be able to determine these requirements and
relay them to the communication service provider.

�9 Integration of abstract synchronization and object-oriented database models.

Some work has already started in this direction, but it needs to be extended.
Currently proposed abstract synchronization models require temporal relations
to be defined when an object is created and do not allow dynamic, query-time
composition. Playout is also restricted to a predetermined rate and direction,
with the user as a passive observer. A more interactive model, such as the VCR
model described in [386], with operations such as fast forward, reverse, suspend,
and resume, would be an improvement. The object-oriented paradigm offers the
possibility of having the display and synchronization properties handled by the
object themselves, rather than having these properties overlaid in a separate
database schema. Methods could then be defined which would allow the objects
to react to user input.

�9 Performance studies using simulation of present and future network technologies.

Multimedia database systems should be designed so as to be able to adapt to
changing network technologies. Projected technologies can be simulated before
they become widely available, so that the development of database systems that
use these technologies need not lag behind.

�9 Studies of the effect on synchronization and communication performance of con-
currency control mechanisms.

Certain multimedia databases, such as l ibrary-type information repositories, may
be largely read-only, but others, such as medical databases that are accessed and
updated by physicians, will be updatable. The presence of updates introduces
the problem of database concurrency control. Conventional concurrency control

396 CHAPTER 19. COMMUNICATION & SYNCHRONIZATION ISSUES

mechanisms can introduce indeterminate delay in the accessing of database ob-
jects. Such delay could violate the synchronization and display requirements of
multimedia objects. Research is needed to determine under what conditions up-
dating may be allowed, and to determine what concurrency control mechanisms
will be most appropriate.

�9 Participation by the database community in international standards efforts, such
as ATM, ISDN, B-ISDN, ODA, and X400.

To achieve the goal of interoperabili ty over large-scale wide-area networks, stan-
dards will be needed, both at the application level and at the communication
system level. Database researchers should be actively involved at both levels to
insure that the capabilities they need are deployed as part of these standards.

Chapter 20

Multimedia Database Systems

Arif Ghafoor*, P. Bruce Berra t

20.1 I n t r o d u c t i o n

The need for multimedia information systems is growing rapidly in a variety of fields in-
cluding business [423, 22], manufacturing [31712 education [633, 297], Computer-Aided
Design (CAD)/Computer -Aided Engineering (CAE) [383], medicine [466, 587, 309],
weather, entertainment [363, 169, 386], etc. Multimedia data include images, audio,
full motion video, text and numeric data. Due to the diverse nature of the multimedia
data, systems designed to store, transport , display and, in general, manage such da ta
must have considerably more functionality and capability than conventional informa-
tion management systems. The main issues which multimedia database management
researchers/designers need to face include:

1. Development of sophisticated conceptual models which are rich in their semantic
capabilities to represent complex multimedia objects and express their synchronization
requirements. A transformation from models to a database scheme is then needed.
Subsequently, one also needs to specify the object retrieval algorithms.

2. Designing multimedia query languages which are not only powerful enough
to handle various manipulation functions for multimedia objects but also simple in
handling user's interaction for these functions.

3. Designing powerful indexing and organization techniques for multimedia data.
4. Developing efficient storage layout models to manage real-time multimedia data.
In this chapter, we focus on the first issue of multimedia database systems. The

major challenge in multimedia information management is how to synchronize vari-
ous types of da ta both in space and time in order to compose complex multimedia
objects [367]. The problem is especiaJly acute if we are dealing with "live" da ta such
as digital video or audio. The synchronization requirement plays a key role while de-
signing a multimedia database. The traditional relational da ta model is not capable
of handling synchronization aspects and the heterogeneous nature of the multimedia
data. More powerful da ta modeling schemes are needed for this purpose. Recently, we
have seen the emergence of various new data models which are capable of representing
different characteristics of multimedia objects. The intent of this chapter is to discuss
these models and their pros and cons in terms of suitability for developing multimedia
databases.

* School of Electrical Engineering, Purdue University, West Lafayette, IN, 47907, U.S.A.
t CASE Center and Department of Electrical and Computer Engineering, syracuse Univer-

sity, Syracuse, NY, 13244, U.S.A.

398 CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS

We begin this chapter with a discussion on the characteristics of multimedia data.
We then elaborate on the problem of multimedia synchronization in Section 2. The
conceptual modeling of multimedia da ta is also discussed in this section. This is fol-
lowed by an overview of the current state-of-the-art in multimedia databases. We
conclude this chapter by describing the future trends and challenges in this area.

20.2 Charac ter i s t i c s of M u l t i m e d i a D a t a

20.2 .1 T e x t a n d F o r m a t t e d D a t a

Format ted textual and numeric da ta will remain an essential part of any multimedia
information system. Database systems based on relational, network or hierarchical
models are well suited for managing such type of data and generally provide efficient
access paths to da ta in secondary storage by maintaining some type of indexing scheme.
Queries based on a number of key values such as partial match queries are supported
by using intersection operations. Tree structure and hashing can be extended to multi-
dimensional da ta in order to support such queries. Examples of such methodologies
include k-d trees and multi-dimensional extensible hashing.

Each indexing scheme has its own advantages and disadvantages depending on the
nature of query processing and da ta lifetime. When the database is static and most
queries are based on few keys, an inverted index can be the best indexing scheme. On
the other hand, when the database is frequently updated, and partial match queries
based on a number of key values are common, compressed files [51] and most dynamic
multidimensional file structures can provide better performance. Maintaining indices
for large unformatted textual da ta requires an even more complicated strategy as the
index file itself can easily grow beyond any manageable size when full text inversion is
used for indexing. Although the access rate of this type da ta is not as crucial as the
real-time deliverable data, such as video, audio etc., a large index file can prevent the
database system from carrying out real-time updating.

20 .2 .2 A u d i o a n d M u s i c D a t a

Due to their nature the audio waveform signals are usually sampled, encoded and then
stored. In general, a high quality encoding scheme requires a great amount of storage
space. Another way to provide users with the desired audio signal is to use some speech
synthesis approach [619]. However, such an approach requires sophisticated processing
and is usually slow. Compared to the speech signal, musical signals are much more
regular and structural. This implies that forming an abstraction of music signals at a
high level is possible. Graph model has been proposed for this abstraction [477], where
common musical notations are used to represent the structures of the graph.

20 .2 .3 I m a g e s a n d P i c t u r e s D a t a

Many data structures have been proposed for storing images in a database system.
These include pixel-oriented [110], quadtrees [484], R-trees [476] or vector based [304].
However, irrespective of the representation, the storage of this type of data is essentially
in a digital form with the indexing scheme to provide 2-dimensional browsing. The
digital information is generally stored in a compressed form. For the da ta that is

20.3. N O T I O N OF T IME FOR MULTIMEDIA DATA 399

highly structured and formatted, high speed retrieval and storage techniques can also
be employed in this case.

20.2.4 Full-Motion Video Data

These da ta are unique in their nature in the sense that they can be totally in analog
form containing both video frames and associated audio signals or in digital form. The
information can be stored in the same way as in video cassetts with the functions of
replay, freezing frame, advancing etc. However, in order to integrate this information
with other da ta they must be digitized in order to prepare composite digital da ta
packets carrying requested multimedia object information for the user. Therefore,
analog to digital conversion and compression of video data needs to be carried-out
by the server. The equivalent inverse function needs to be performed at the user end.
This signal processing can be avoided if the video information is prestored in a digitized
compressed form. In digital form data manipulation is much more flexible as compared
to analog form. However, irrespective of the nature of information, this service requires
an enormous capacity for storage and very high transfer rate.

From the da ta modeling point of view virtually nothing exists. Selection of at-
tributes, indexing techniques, access and retrieval of video da ta are some of the open
research issues in characterizing and managing video data.

20.3 N o t i o n of T i m e for M u l t i m e d i a D a t a

A multimedia object may contain real-time da ta like audio and video in addition to
the usual text and image da ta that constitute present-day information systems. Real-
time da ta can require time ordered presentation to the user. A composite multimedia
object may have specific timing relationships among the different types of component
media. Coordinating the real-time presentation of information and maintaining the
time-ordered relations among component media is known as temporal synchronization.
Assemblying information on the workstation is the process of spatial composition,
which deals basically with the window management and display layout interface.

For continuous media, the integration of temporal synchronization functions within
the database management system is quite desirable since it can make the storage and
handling of continuous da ta more efficient for the database system. Also, implementa-
tion of some standard format for da ta exchange among heterogeneous systems can be
carried out more effectively. In this section we first elaborate on the problem of tempo-
ral synchronization of multimedia da ta for composing objects, followed by a discussion
of modeling time. These models are then used to develop conceptual models for the
multimedia data, as described in a later section.

20.3.1 The Temporal Synchronization Problem
The concept of temporal synchronization is illustrated in Figure 20.1, where a se-
quence of images and text is presented in time to compose a multimedia object. One
can notice, from this figure that the system must observe some time relationships (con-
straints) among various da ta objects in order to present the information to the user
in a meaningful way. These relationships can be natural or synthetically created [369].
Simultaneous recording of voice and video through a VCR, is an example of natural re-
lationship between audio and video information. A voice annotated slide show, on the

400 C H A P T E R 20. M U L T I M E D I A D A T A B A S E S Y S T E M S

other hand, is an example of synthetically created relationship between audio and image
information. In this case, change of an image and the end of its verbal annotation,
represent a synchronization point in time.

still still still
image text image text image

N N
t I t [t I t I t I "

1 2 3 4 5

time

Figure 20.1: T i m e - O r d e r e d M u l t i m e d i a Data

A user can randomly, access various objects, while browsing through a multimedia
information system. In addition to simple forward playout of time-dependent data
sequences, other modes of da ta presentation are also viable, and should be supported
by a multimedia database management system. These include reverse playout, fast-
forward/fast-backward playout, and random access of arbitrarily chosen segments of
a composed object. Although these operations are quite common in TV technology,
(e.g., VCRs), these capabilities are very hard to implement in a multimedia system.
This is due to the non-sequential storage of multimedia objects, the diversity in the
features of hardware used for data compression, the distribution of data, and random
communication delays introduced by the network. Such factors make the provision of
these capabilities infeasible with the current technologies.

Conceptually, synchronization of multimedia information can be classified into
three categories, depending upon the "level of granularity of information", requiring
synchronization [568]. These are the physical level, the service level, and the human
interface level [568], as shown in Figure 20.2.

At the physical level, da ta from different media are multiplexed over single physical
connections or are arranged in physical storage. This form of synchronization can be
viewed as "fine-grain". The service level synchronization is "more coarse grain", since it
is concerned with the interactions between the multimedia appfication and the various
media, and among the elements of the appfication. This level deals primarily with
intermedia synchronization necessary for presentation or playout. The human interface
level synchronization is rather "coarse grain" since it is used to specify the random user
interaction to a multimedia information system such as viewing a succession of database
items, also known as browsing.

In addition to time dependent relational classification (i.e., synthetic/natural) , data
objects can also be classified in terms of their presentation and appfication lifetimes.
A persistent object is one that can exist for the duration of the application. A non-
persistent object is created dynamically and discarded when obsolete. For presentation,
a transient object is defined as an object that is presented for a short duration without
manipulation. The display of a series of audio or video frames represents transient
presentation of objects, whether captured live or retrieved from a database. Henceforth,

20.3. NOTION OF TIME FOR MULTIMEDIA DATA 401

Human Interface

(Presentation Synchronization)

Service Layer

(Stream Synchronization)

Physical Layer

Figure 20.2: Levels of Synchronization of Multimedia Data

we use the terms static and transient to describe presentation lifetimes of objects while
persistence expresses their storage life in a database.

In another classification, multimedia da ta have been characterized as either contin-
uous or discrete [250]. This distinction, however, is somewhat vague since time ordering
can be assigned to discrete media, and continuous media are time-ordered sequences
of discrete ones after digitization. We use a definition attr ibutable to Herrtwich [250],
where continuous media are represented as sequences of discrete da ta elements that
are played out contiguously in time. However, the term continuous is most often used
to describe the fine-grain synchronization required for audio or video.

20.3.2 Model ing Time

The problem of multimedia synchronizing at presentation, user interaction, and physi-
cal layers, reduces to satisfying temporal precedence relationships among various da ta
objects under real timing constraints. For such purpose, models to represent time
must be available. Temporal intervals and instants provide a means for indicating ex-
act temporal specification. In this section, we discuss these models and then describe
various conceptual data models to specify temporal information necessary to represent
multimedia synchronization.

To be applicable to multimedia synchronization, time models must allow synchro-
nization of components having precedence and real-time constraints, and provide the
capability for indicating laxity in meeting deadlines. The primary requirements for
such a specification methodology include the representation of real-time semantics and
concurrency, and a hierarchical modeling ability. The nature of presentation of multi-
media da ta also implies that a multimedia system has various additional capabilities
such as: to handle reverse presentation, to allow random access (at an arbitrary start
point), to permit an incomplete specification of intermedia timing, to handle sharing of
synchronized components among applications, and to provide da ta storage for control
information. In fight of these additional requirements, it is, therefore, imperative that

402 CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS

a specification methodology must also be well suited for unusual temporal semantics as
well as be amenable to the development of a database for storing timing information.

The first time model is an instant-based temporal reference scheme that has been
extensively applied in the motion picture industry, as standardized by the Society of
Motion Picture and Television Engineers (SMPTE). This scheme associates a virtually
unique sequential code to each frame in a motion picture. By assigning these codes to
both an audio track and a motion picture track, intermedia synchronization between
streams is achieved. This absolute, instant-based scheme presents two difficulties when
applied to a multimedia application. First, since unique, absolute time references
are assumed, when segments are edited or produced in duplicate, the relative timing
between the edited segments becomes lost in terms of playout. Furthermore, if one
medium, while synchronized to another, becomes decoupled from the other, then the
timing information of the dependent medium becomes lost. This instant-based scheme
has also been applied using Musical Instrument Digital Interface (MIDI) time instant
specification [416]. The same scheme is used to couple each time code to a common
time reference [252].

In another approach, temporal intervals are used to specify relative timing con-
straints between two processes. This model is mostly applicable to represent simple
parallel and sequential relationships. In this approach, synchronization can be accom-
plished by explicitly capturing each of the thirteen possible temporal relations [369]
that can occur between the processes. Additional operations can be incorporated in
this approach to facilitate incomplete timing specification [250].

We now discuss how these approaches can be used to develop conceptual models
for multimedia objects. We discuss pros and cons of these models and compare them in
terms of their effectiveness to represent objects and user's data manipulation functions.

20.4 Conceptual Models for Multimedia
Objects

A number of a t tempts have been made to develop conceptual models for representing
multimedia objects. These models can be classified into five categories, namely; graph-
ical models, Petri-Net based models, object-oriented models, language based models,
and temporal abstraction models. Some models are primaly aimed at synchronization
aspects of the multimedia da ta while others are more concerned with the browsing
aspects of the objects. The former models can easily render themselves to an ultimate
specification of the database schema, as briefly discussed later in this section. Some
models, such as based on graphs and Petri-Nets have the additional advantage of pic-
torially illustrating synchronization semantics, and are suitable for visual orchestration
of multimedia presentations. These models are discussed below.

20.4.1 Graphical Models

Labeled directed graphs have been extensively used to represent information [586]. Hy-
pertext systems provide an example of such a mechanism. This approach allows one to
interlink small information units (data) and provides a powerful capability for users to
navigate through a database. Information in such a systems represents a "page" con-
sisting of a segment of text, graphics codes, executable programs, or even audio/video
data. All the pages axe linked via a labeled graph, called hypergraph. The major

20.4. CONCEPTUAL MODELS FOR MULTIMEDIA OBJECTS 403

application of this model is to specify higher level browsing features of multimedia
system. The essence of hypertext is a nonhnear interconnection of information, unhke
the sequential access of conventional text. Information is linked via cross-referencing
between keywords or subjects to other fragments of information. An application has
been implemented [492] for interactive movies by using the hypertext paradigm.

Various operations, such as updating and querying, can be performed on a hyper-
graph. Updating means changing the configuration of the graph and the content of
the multimedia data. Querying operations include navigating the structure, accessing
pages (read or execute), showing position in the graph, and controlling side effects.
Basically, it is a model for editing and browsing hypertext.

The hypergraph model suffers from many shortcomings. The major drawback is
that there is no specific mechanism to handle temporal synchronization among da ta
items.

20.4.2 Pe tr i -Net Models

Recently, the use of Petri-Nets for developing conceptual models and browsing seman-
tics of multimedia objects [145, 369, 558] has been proposed. The basic idea in these
models is to represent various components of multimedia objects as places and describe
their inter-relationships in the form of transitions. These models have been shown to
be quite effective for specifying multimedia synchronization requirements.

For example, one such model is used to specify high level (object level) synchroniza-
tion requirements which is both a graphical and mathematical modeling tool capable
of representing concurrency. In this approach Timed Petri Net has been extended to
develop a model that is known as Object Composition Petri Nets (OCPNs) [369]. The
particularly interesting features of this model are the ability to explicitly capture all
the necessary temporal relations, and to provide simulation of presentation in both the
forward and reverse directions. Each place in this Petri-Net derivative represents the
playout of a multimedia object while transitions represent synchronization points.

In [369], thirteen temporal relationships between two objects are presented, which
are sufficient to specify temporal composition of any complex multimedia object. An
OCPN model can represent all these relations. It has been shown in the paper that
an arbitrarily complex process model of temporal relations can be constructed with an
OCPN. Figure 20.3 shows an example of an OCPN that describes a slide show. As can
be noticed, in this model the duration of each object is also specified.

F igure 20.3: AN O C P N Model for A Slide Show

In another model, called Petri-Net-Based-Hypertext (PNBH), the higher level
browsing semantics can be specified. In this model information units are treated as

404 CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS

net places and links as net arcs. Transitions in a PNBH indicate the traversal of links,
or the browsing of information fragments. Figure 20.4 illustrates a PNBH model con-
sisting of segments of an interactive movie. These segments can be played-out in a
random order, as selected by the user and restricted by the semantics of the net.

F igure 20.4: P N B I t Pe t r i Net

Unlike the OCPN, net places in PNBH can have multiple outgoing arcs, and there-
fore can represent nondeterministic and cyclic browsing. On the other hand, the OCPN
specifies exact presentation-time playout semantics, useful in real-time presentation
scheduling. Clearly these two models complement each other for specifying both user
interaction and presentation orchestration.

The above mentioned Petri-Net based models lack one capability. That is, there
is no mechanism to specify communication requirements and control functions for dis-
t r ibuted composition of objects. An at tempt has been made in [145] where another
Petri Net based hierarchical model, called G-Net, has been proposed. This model does
allow specifications of communication primitives and types of connections that can be
established among communicating sites, floweret, the model is rather over simplified
since, unlike OCPN, it does not facilitate generation of database schema in a straight
forward manner for the multimedia objects. On the other hand, the Petri-Net models,
especially the OCPN, can be easily extended to model databases. For this purpose,
a place represents an object. Attributes, operations on objects, pointers to physical
data, etc. can be associated with each object. The semantics of the schema, therefore,
can be represented by the net structure. This conversion is explained at the end of this
section.

20.4.3 Object-Oriented Models
The basic idea in this model is to represent a real world thing or concept as an object.
An object usually has an identifier, attributes, methods, a pointer to data, etc. One
such approach has been proposed in the OMEGA system [390]. To facilitate the presen-
tat ion of multimedia objects, OMEGA uses temporal information associated with each
object to calculate precedence and synchronization between objects. In this model, a
multimedia object has attributes, relationships which are its value reference to other
objects, components (its value reference to other object(s) that are dependent on the

20.4. CONCEPTUAL MODELS FOR MULTIMEDIA OBJECTS 405

referring superordinate object), and methods. Some integrity rules also apply. These
include class, instance, subclass, superclass, inheritance, generalization, and aggrega-
tion. For instance, in OMEGA systems, IS_PART_OF and IS_ REFERENCE_OF can
be specified between objects. In order to handle different types of multimedia data,
a metaclass called mult imediact~ is defined in the OMEGA system that consists of
sound, image, text, and video class.

In another approach [45], a three dimensional class hierarchy is used to represent
spatial objects. Definition and manipulation (usually specified in methods) are opera-
tions applied to objects.

This approach can facilitate the generation of multimedia database schema, by
using either programming languages or ER diagrams.

20.4.4 Language Based Models

Concurrent languages have been extensively used to specify parallel and distributed
process structures. These languages also have the potential to specify multimedia
synchronization requirements. For one such scheme, an extension to the language
called Communicating Sequential Processing (CSP) has been proposed. This exten-
sion supports multimedia process synchronization, including semantics for real-time
synchronization of multimedia data. The extension is based on a proposed concept,
called "restricted blocking" which provides a resolution mechanism for the synchroniza-
tion problem encountered while handling continuous media [548]. In the "restricted
blocking" mode, an object may be forced to wait for an other object, to perform syn-
chronization if the later does not arrive in time. For this purpose, the extention to
CSP includes various constructs such as SYNCHRONIZE, WITH object-name, AT
end, MODE type-of-blocking, WHILE_WAITING do-something. In this command, an
object is forced to walt for the other object to arrive for synchronization. For this
purpose, the parmater for the MODE (type-of-blocking) primitive can be set as re-
stricted_blocking. The waiting object can be replayed or slowed down during the wait
state. These constructs are initiated by the system. Also, various time operands can
be specified in this command to adjust the relative display time of two objects.

Various other language-based approaches have also been proposed. Two such ex-
amples include the specification using LOTOS (Language Of Temporal Ordering Spec-
ification) [605], and process-oriented synchronization in CCWS [453].

The major advantage of language based models is that they can directly lead to an
implementation. However, their drawback is that, unlike graphical models, they are
hard to conceptually visualize and are difficult to verify.

20.4.5 Temporal Abstract ion Models

Some of the requirements for multimedia presentation are not well described by either
of the above mentioned models. For example, to reduce (slow motion) or increase (fast-
forward) the speed of a multimedia presentation, the temporal models are deficient.
These requirements can be addressed by temporal abstractions, which are means to
manipulate or control the presentation of a temporal specification via time reference
modification. Various virtual time abstractions have been described in the l i terature
[250, 18]. These describe the maintenance of a time reference that can be scaled to
real-time and adjusted to appropriate playout speeds. If real-time is defined as nominal
clock time as we perceive it, then virtual time is any other time reference system suitable
for translation to real-time. For example, a unitless reference can be converted, or

406 CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS

projected to real-time system by any scaling or offsetting operations. In this manner,
the output rate and direction for a sequence of data elements can be changed by simply
modifying this translation, i.e., an entire temporal specification, either language or
graph-based, can track a specific time reference or translation process.

20.4.6 Database Models for Multimedia Synchronization

Once temporal specifications of time-dependent multimedia objects are effectively mod-
eled, a multimedia information system must have the capability for storing and access-
ing these objects. This problem is distinct from historical databases, temporal query
languages [529, 573], or time-critical query evaluation [256]. Unlike historical data,
t ime-dependent multimedia objects require speci~d considerations for presentation due
to their real-time playout characteristics. Data need to be delivered from storage based
on a prespecified schedule, and presentation of a single object can occur over an ex-
tended duration (e.g., a movie).

A conceptual da ta model for time-dependent multimedia objects must support
forward and reverse playout as well as random access (in time) to the object in addition
to conventional DBMS queries. Temporal intervals can be described either by a timellne
representation in an unstructured format, or in a structured format such as the OCPN.
Using the OCPN, temporal hierarchy can be imparted to the conceptual schema as sets
of intervals bound to a single temporal relation.

With this approach, the conceptual schema forms a temporal hierarchy representing
the semantics of the OCPN, as shown in Figure 20.5. Subsets or subtrees of this
hierarchy represent subnets of the OCPN, illustrating the capability of composing
complex multimedia presentations. Terminal elements in this model indicate base
multimedia objects (audio, image, text, etc.), and additional attributes can be assigned

t o nodes in the hierarchy for conventional DBMS access. Timing information is also
captured with node attributes, allowing the assembly of component elements during
playout.

As mentioned above, temporal information can also be encapsulated in the de-
scription of the multimedia da ta using the object-oriented paradigm [390]. Temporal
information including a time reference, playout time units, temporal relationships, and
required time offsets are maintained for specific multimedia objects. For stream type
data, this approach can define the time dependencies for an entire sequence by defining
the period or frequency of playout (e.g., 30 frames/s for video) analogous to a set of
intervals bound to a single temporal relation.

Given an application, the synchronization requirements then can be described by
an OCPN model. The OCPN is then transformed into a database schema. A tree
(network) structure is used to represent the schema. This is depicted in Figure 20.6. As
can be noticed from this figure, three types of nodes are used to capture the information
in OCPN. The first is a terminal node. It has attr ibutes that indicate node type, media
type, an unspecified field, and a pointer indicating the location of data. Nonterminal
nodes have the following at tr ibutes : node type, an unspecified field, left and right
child pointers and temporal data. The third type of nodes is the meta node, which is
similar to a nonterminal node except that it has n (> 2) child pointers.

20.5. SOME MULTIMEDIA DATABASE SYSTEMS 407

pa

pointers to actual data

Figure 20.5: A Temporal Hierarchy for the Semantics of the OCPN

20.5 S o m e M u l t i m e d i a Database S y s t e m s

In this section we discuss various multimedia databases. We start with an introduction
to image database, followed by a description of audio databases.

20.5.1 Image Database

Conventional database management systems have been designed for managing numeric
and text data, which are single dimensional in nature. But spatial or pictorial data are
necessarily two- or three-dimensional and contain a considerable amount of information
that cannot be stored directly as a set of hnear relationships. The spatial or two-
dimensional image data have a great deal of implicit and exphcit knowledge. Explicitly,
there is sensory information pertaining to the hghting-brightness, shadows, colors, etc.
Implicit in all the spatial data is the information related to the concept of position as
well as the notion of distance.

What makes the management of spatial data very comphcated is that the same im-
age can be viewed in different perspectives by various users. Consequently, the primary
features that need to be recognized and extracted can be different for each problem
domain. Moreover~ there is a need to be able to represent image data of various kinds.
For example, a geographical map would directly pertain to two-dimensional informa-
tion, whereas a machine design drawing contains information about three-dimensional
objects. In addition, in order to support a large variety of continuous and discrete rep-
resentations, an image database provides access to special-purpose functions for image

408 CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS

nodes node...no
L

node_type] duration [subject J

terminals
medium J location I

,ubno es o'o_no l,ubno'o_no]'ndox' I'n~ r

Figure 20.6: A Network D a t a b a s e Schema for the O C P N

processing such as primitives for feature extraction. In order go make progress in im-
age databases from the software engineering perspective, it is important to examine
innovations in both processing and representations of images.

One of the most important problems to be considered in the design of image da-
tabase systems is how images are stored in an image database. Many data structures
have been proposed. Some are pixel-oriented; some utilize quadtrees, or R-trees, and
some are vector based. To make an image database system more intelligent, more
flexible, and an efficient da ta structure should be used. Also, the knowledge embedded
in images should be captured by the da ta structure as much as possible, especially
spatial knowledge. Extracting information from images is a time consuming process.
On the other hand, if information or knowledge is extracted from images item by item
in advance and stored for later retrieval, we need much more storage capacity and
therefore, retrieval would take a long time.

In pictorial information retrieval, many approaches have been proposed and include
relational database queries, query-by-view [412], quadtrees etc. We now describe some
image database systems for which such approaches have been proposed and prototyped.

1. Intelligent Image Database System (IIDS) [103]: This is a prototype intelligent
image database system that is based on a new pictorial data structure. Specifi-
cally, a new way of representing a picture by a 2-D string has been introduced in
IIDS. A picture query can also be specified as a 2-D string~ The problem of picto-
rial information retrieval then becomes one of 2-D string subsequence matching.
This approach aJlows an efficient and natural way to construct iconic indexes for
pictures. The 2-D string representation is ideally suited to formulating picture
queries. The iconic index can not only be used in pictorial information retrieval,
but also provides an efficient means for picture browsing. The corresponding
2-D string for this kind of query contains two special icons. One is called single-
variable icon, which can match any single object; the other is called multivariable
icon, which can match any set of objects.
In order to increase the power of the IIDS, it would be advantageous to add

20.5. SOME MULTIMEDIA DATABASE SYSTEMS 409

attr ibutes to symbols in the 2-D strings. In this way, we could convey not only
the relative positions of objects, but also information such as orientation, size,
and other characteristics.

2. Image Database System (IDB) [591]: Most information management systems
are designed to handle traditional alphanumeric data. Today technology makes
available resources that allow the management of new classes of information, such
as image and voice. When deahng with images, we must generalize the input,
processing, and output phases that characterize the management of traditional
da ta types. Furthermore, all these activities require suitable hardware and soft-
ware instruments. From the end-user point of view, the interface between users
and systems would be much more attractive if it were possible to use images to
manage images as well as we use words to manage traditional information. Two
kinds of da ta must be managed by an image system: image files and their de-
scriptions. The former are characterized by large sizes and unstructured forms,
while the lat ter have small sizes and structured forms. Images and descriptions
are stored on different kinds of devices. The main requirement for image da ta
is the availability of a large memory at low cost. Optical disks can meet this re-
quirement, and image da ta are now increasingly stored on those special devices,
while descriptive information continues to be stored on magnetic disks.
The IDB system exploits images as a vehicle of interaction with the user; index
images play a fundamental role in completing the selection of images from the
archive. The architecture is characterized by modularity and flexibility; each
single module is related to a specific task to be performed during the image
management process. Functions have been integrated by distributing resources
among the nodes of a LAN; each node COrresponds to a workstation, and many
users can work with the system.
Future extensions of IDB will involve the integration of new kinds of information
such as audio da ta and image animation. A hypermedia approach is also being
evaluated.

3. Map Database: A map database management system contains facilities to cre-
ate, modify, store, and retrieve spatial information. A Map Database System
(MDS) goes beyond simply replacing paper maps. MDS allows users to view,
compare, and analyze spatial relationships. Map databases allow the generation
of maps that contain only the information required by the map user. The map
information is divided into different layers which overlay on the same area. Typ-
ical layers include streams, cities, sewers, roads, highways, secondary streets,
water pipes, gas lines, telephone cables and so on. The information in layers
may also contain per capital income, product consumption, or other thematic
information.
Map databases contain large amounts of data. Efficient encoding of the graph-
ical information into a format suitable for digital storage is required. The non-
graphical at tr ibutes are usually stored using the normal methods. Several dif-
ferent encoding methods are polygon encoding, dual independent map encoding,
and 2-D encoding [236].

2 0 . 5 . 2 A u d i o D a t a b a s e

Until now, there seems to be no practical audio database management system even
though the technology for audio acquisition is available. In fact, an audio database

4]0 CHAPTER 20. MULTIMEDIA DATABASE SYSTEMS

can be reduced to an audio storage system. However, in order to support real time
applications in multimedia representation, an efficient placement of audio da ta on
optical disks is important . The placement of audio data on the optical disk is of
primary importance because the audio da ta is being extracted from the optical disk
in real-time. Real time means that system interrupts greater than 30 msec cannot be
tolerated. Yu et al. [637] proposed an optimal algorithm for merging two audio records,
resulting in a record having minimum length. This result is useful in minimizing space
for storing audio files, while maintaining realistic sound.

20.6 C h a l l e n g e s in M u l t i m e d i a D a t a b a s e

Conventional databases are mainly designed to process and access the text and numeric
data. These databases can be an important part of the overall multimedia system. Con-
siderable research has been done during the last two decades in these databases. Their
architecture ranges from centralized database to distributed database systems. How-
ever, all these conventional database systems lack the capabilities needed to support
advanced multimedia applications in offices and factories, that require integration of
various types of da ta such as text, image, video and audio into a single object so that
users can interact with it without being aware of the heterogeneity of data in types
and operations.

The organization and management issues for multimedia databases have been the
subject of extensive research and development since the middle of the 1980's. However,
a number of challenges are faced by the database community to provide a comprehen-
sive solution for designing and managing multimedia database systems. These include
designing new da ta models to capture semantics for multimedia objects, storing and ac-
cessing multimedia data, indexing techniques for digital images, video and audio data,
version management for distributed objects, query language development for multime-
dia da ta etc. Some approaches proposed for this purpose are based on the extension of
existing relational, networking, and object-oriented models, as briefly described earlier.

Coming back to four issues discussed in Section 1, we have only addressed the first
issue in this chapter. Extensive research is needed to handle other issues as well. For
example, the base technology that deals with the management of various data types
poses a number of challenges. The major issue is related to storing live data such as
digital video and audio. Specifically, if we need to extend the data models used in
conventional databases, selection of attributes, designing suitable indexing schemes,
searching for video and audio da ta items, linking objects, etc., pose unique challenges
that are not faced in conventional databases. It is possible that a mere extension of
existing da ta models may not prove fruitful for this purpose. More advanced da ta
models, as discussed above, may provide better and more powerful methodologies and
warrant more extensive scrunity and evaluation.

Another major challenge is integration of enabling technologies~ where diverse and
heterogeneous (such as text, image, video etc.) databases need to interact with each
other in order to provide unified composite objects to the end users. Schema integration
for the individual multimedia databases, provision of a high level query language to
manipulate objects across these databases etc., are some of the important issues which
need to be addressed. A number of papers have recently started appearing that provide
more powerful query languages which can be effectly used for multimedia databases
[412]

20.7. CONCLUSION 411

20.7 Conclus ion

One of the requirements of multimedia database systems is that they will need a data
model more powerful than the relational model, without compromising its advantages.
The relational data model exhibits limitations in terms of complex object support,
type system, and object management. To address these issues, we have emphasized
one key requirement for multimedia databases, which is the process of temporal syn-
chronization. We have discussed various conceptual models to specify this requirement
and have highlighted their capabilities and limitations. Still, a number of other issues
need to be faced before multimedia database systems become a reality.

Bibliography

[1] I. Aalbersberg and F. Sijstermans. High-quality and High Performance Full-
Text Document Retrieval: the Paralell infoguide System. In Proceedings of the
IEEE Conference on Parallel and Distribu'ted Information Systems, pages 142-
150, December 1991.

[2] S. Abiteboul, P. Buneman, C. Delobel, R. Hull, P. Kanellakis, and V. Vianu.
New Hope on Data Models and Types: Report of an NFS-INRIA Workshop.
ACM SIGMOD, 19(4), December 1990.

[3] S. Abiteboul and C. Kanellakis. Object Identity as a Query Language Primitive.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 159-173, Portland, Oregon, June 1989.

[4] ACMgl. Special Issue on Next-Generation Database Systems. Communications
of ACM, 34(10), October 1991.

[5] N. Adam and R. Subramanian. An Object-Oriented Model for Intelligent Query
Processing in Geographical Databases. In Proc. 3rd Australian Database Con-
ference, 1992.

[6] R. Agarwal, N. H. Gehani, and J. Srinivasan. OdeView: The Georaphical In-
terface to Ode. In Proc. ACM-SIGMOD Conf. on Mangement of Data, Atlantic
City, New Jersey, May 1990.

[7] R. Agrawal and N.H. Gehani. Ode(Object Database and Environment): the Lan-
guage and the Data Model. Proc. ACM-SIGMOD 1989 Int'l Conf. Management
of Data, pages 36-45, May 1989.

[8] R. Ahad et al. Supporting Access Control in an Object-Oriented Database Lan-
guage. In Proc. Third International Conference on Extending Database Tech-
nology (EDBT), Vienna (Austria), Springer- Verlag Lecture Notes in Computer
Science, volume 580, pages 184-200, 1992.

[9] R. Ahmed and et al. The Pegasus Heterogeneous Multidatabase System. IEEE
Computer, 24(12), December 1991.

[10] T.H. Ahn, H.3.3o, J.H. Kim, Y.J. Lee, and B.C. Kim. Statistical and Scientific
Database Management. In G. Goos and J. Hartmanis, editors, Lecture Notes in
Computer Science 420. Springer-Verlag, 1990.

[11] A. Alashqur, S. Su, and It. Lam. OQL-A Query Language for Manipulating
Object-Oriented Databases. In International Conference on Very Large Data-
bases, pages 433-442, 1989.

414 B I B L I O G R A P H Y

[12] A. Alashqur, S. Su, and H. Lam. A Rule-Based Language for Deductive Object-
Oriented Databases. tn Proceedings of the Sixth Int'l Conference on Data Engi-
neering, 1990.

[13] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of ACM, 26(11):832-843, November 1983.

[14] L. Allen and O. Frieder. Exploiting Database Technology in Medical Arenas:
A critical Assessment of PACS. IEEE Engineering in Medicine and Biology,
11(1):42-49, March 1992.

[15] R: Alonso and D. Barbara. Negotiating Data Access in Federated Database
Systems. Proceedings of the 5th International Conference on Data Engineering,
February 1989.

[16] R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caching Issues in an Infor-
mation Retrieval System. ACM Transactions on Database Systems, 15(3):359-
384, September 1990.

[17] David P. Anderson and George Homsy. A Continuous Media I/O Server and Its
Synchronization Mechanism. IEEE Computer, 24(10):51-57, October 1991.

[18] D.P. Anderson, S.Y. Tzou, R. Wahbe, R. Govindan, and M. Andrews. Support
for Continuous Media in the Dash System. Proc. lOth Intl. Conf. on Distributed
Computing Systems, pages 54-61, May 1990.

[19] Apollo Computer Inc., Chelmsford, MA. Network Computing System: A Tech-
nical Overview, 1989.

[20] W.G. Aref and H. Samet. Extending a DBMS with Spatial Operations. Lecture
notes in Computer science, pages 299-318, August 1991. Vol. 525.

[21] G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database
Systems, 11(4):499-527, December 1986.

[22] H. Armbruster. Broadband ISDN - The Network of the Future: Appfications
and Compliance with user Requirements. Globecom '86 (IEEE Global Telecom-
munications Conference Record 1986), pages 484-490, December 1986.

[23] N. Asokan, S. Ranka, and O. Frieder. High-quality and High Performance Full-
Text Document Retrieval: the Paralell infoguide System. In Proceedings of the
IEEE International Conference on Parallel Architectures and Databases, pages
519-521, 1990.

[24] B. R. Badrinath and K. Ramamritham. Semantics-Based Concurrency Control
Beyond Commutativity. In 3rd IEEE International Conference on Data Engi-
neering, pages 304-311, 1987.

[25] Charles W. Bailey. Intelligent Multimedia Computer Systems: Emerging Infor-
mation Resources in the Network Environment. Library Hi Tech, 8(1):29-41,
1990.

[26] S.C. Bailin. An Object Oriented Requirements Title Method. Communications
of the ACM 32,5, 1989.

[27] B. Baker, E. Coffman, and R. Rivest. Orthogon~ Packings in Two Dimensions.
SIAM Journal on Computing, 9(4):846-855, November 1980.

[28] R. Balzer et al. Operational Specifications as the Basis for Rapid Prototyping. In
In Proceedings of ACM SIGSOFT '88: Third Symposium on Software Develop-
ment Environments, Boston, pages 3-16, December 1982. Software Engineering
Notes 7(5).

B I B L I O G R A P t t Y 415

[29] R. Balzer et al. Common Prototyping Working Group. Draft report on require-
ments for a common prototyping system, University of Maryland, 1988.

[30] Robert Balzer, Dewayne E. Perry, James Purtilo, Richard T. Snodgrass, Alexan-
der L. Wolf, and Jon Ward. Technical Notes 1-9, September 1990-November
1991. Technical report, DARPA Module Interconnection Formalism Working
Group, 1991.

[31] F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recursive
Query Processing. In ACM-SIGMOD, Washington, D.C., 1986.

[32] Francois Bancflhon and Won Kim. Object-Oriented Database Systems: In Tran-
sition. SIGMOD RECORD, 19(4), December 1990.

[33] J. Banerjee, H.T. Chou, J.F Garza, and W. Kim. Data Model Issues for
Object-Oriented Applications. ACM Transactions on Office Information Sys-
tems, 5(1):3-26, January 1987.

[34] D. Barbara and H. Garcia-Mohna. The Demarkation Protocol: A Technique for
Maintaining Arithmetic Constraints in Distributed Systems. In Proc. of the Int'l
Conference on Extending Data Base Technology, Vienna, March 1992.

[35] Daniel Barbara and Chris Chfton. Information Brokers: Sharing Knowledge in
a Heterogeneous Distributed System. Technical Report MITL-TR-31-92, Mat-
sushita Information Technology Laboratory, 182 Nassau STreet, Princeton, NJ
08542, October 1992.

[36] R. Barrera and A. Buchmann. Schema Definition and Query Language for
a Geographical Database System. IEEE Transactions on Computer Architec-
ture:Pattern Analysis and Image Database Management, November 1981.

[37] C. K. Baru and O. Frieder. Database Operations in a Cube-Connected Multi-
processor System. IEEE Transactions on Computers, 38(6):920-927, June 1989.

[38] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative Analysis of Method-
ologies for Database Schema Integration. ACM Computing Surveys, 18(4), De-
cember 1986.

[39] N. Beckman and H.P. Kriegel. The R*-Tree:An Efficient and Robust Access
Method for Points and Rectangles. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, pages 322-331, May 1990.

[40] C. Beeri and T. Milo. A Model for Active Object Oriented Database. In Proc.
of the 17th International Conf. on Very Large Databases, pages 337-349, Sept.
1991.

[41] K. Belkhale and P. Banerjee. Approximate Scheduling Algorithms for the Par-
titionable Independent Task Scheduling Problem. In Proceedings of the 1990
International Conference of Parallel Processing, volume I, pages 72-75, August
1990.

[42] Nicholas J. Belkin and W. Bruce Croft. Information Filtering and Information
Retrieval: Two Sides of the Same Coin? Communications of the ACM, 35(12):29-
38, Dec. 1992.

[43] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition
and Multics Interpretation. The Mitre Corp., March 1976.

416 B I B L I O G R A P H Y

[44] Douglas L. Bell and Alan Kaplan. PIC/ADA Toolset User Reference Manual.
University of Massachusetts, Software Development Laboratory, Computer and
Information Science Department, University of Massachusetts, Amherst, Mas-
sachusetts 01003, arcadia design document urn-91-04 edition, October 1991.

[45] D. Benson a~nd G. Zick. Symbolic and Spatial Database for Structural Biology.
Proc. OOPSLA 91, pages 329-339, 1991.

[46] B. Bergsten, M. Couprie, and M. Lopez. DBS3: A Parallel Database System
for Shared Store. Proceedings of the 2nd Intl. Conf. on Parallel and Distributed
Information Systems, pages 260-262, January 1993.

[47] T.J. Berners-Lee, R. Cailliau, R.-F. Groff, and B. PoUermann. World- Wide Web:
An Information InfraStructure for High-Energy Physics. In Proc. Software Engi-
neering, Artificial Intelligence and Expert Systems for High Energy and Nuclear
Physics, La Londe-les-Maures, France, January 1992.

[48] P. Bernstein, M. Hsu, and B. Mann. Implementing Recoverable Requests Using
Queues. In Proceedings of A CM SIGMOD Conference on Management of Data,
1990.

[49] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

[50] P. Bruce Berra, C. Y. Roger Chen, Arif Ghafoor, Chin Chung Lin, Thomas D. C.
Little, and Donghoon Shin. Architecture for Distributed Multimedia Database
Systems. Computer Communications, 13(4):217-231, May 1990.

[51] P.B. Berra, S.M. Chung, and N. Hachem. Computer Architecture For a Surrogate
File to a Very Large Data/Knowledge Base. IEEE Computer, 20(3):25-32, March
1987.

[52] Brian N. Bershad, Dennis T. Ching, Edward D. Lazowska, Jan Sanislo, a~d
Michael Schwartz. A Remote Procedure Call Facility for Interconnecting Het-
erogeneous Computer Systems. IEEE Transactions on Software Engineering,
13(8), August 1987.

[53] E. Bertino. Data Hiding and Security in an Object-Oriented Database Sys-
tem. Proc. Eighth IEEE International Conference on Data Engineering, Phoenix
(Ariz.), Feb 1992.

[54] E. Bertino and S. Jajodia. Modeling MultiLevel Entities Using Single-Level
Objects. Submitted for publication, August 1992.

[55] E. Bertino and L. Martino. Object-Oriented Database Management Systems:
Concepts and Issues. IEEE Computer, 24(No.4):33-47, 1991.

[56] E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Object-Oriented Query
Languages: the Notion and the Issues. 1EEE Trans. on Knowledge and Data
Engineering, 4(3):223-237, 1992.

[57] E. Bertino and H. Weigand. An Approach to Authorization Modeling in Object-
Oriented Database Systems. To appear in Data and Knowledge Engineering.

[58] Ehsa Bertino and Won Kim. Indexing Techniques for Queries on Nested Objects.
IEEE Transactions on Knowledge and Data Engineering, 1(2), June 1989.

[59] B. Bhargava, S. Browne, and J. Srinivasan. Composite Object Replication in
Distributed Database Systems. In Proc. International Conference on Information
Systems and Management of Data, Bangalore, India, July 1992.

B I B L I O G R A P H Y 417

[60] B. Bhargava, Prasun Dewan, James G. Mullen, and Jagannathan Srinivasan.
Implementing Object Support in the RAID Distributed Database System. In
Proceedings Of The First International Conference on Systems Integration, pages
368-377, April 1990.

[61] B. Bhargava and John Riedl. The RAID Distributed Database System. 1EEE.
Transactions on Software Engineering, 16(6), June 1989.

[62] A. Bhide. An Analysis of Three Transaction Processing Architectures. Pro-
ceedings of the 14th International Conference on Very Large Data Bases, pages
339-350, August 1988.

[63] A. Bhide. Selectivity Estimation and Query Optimization in Large Databases
with Highly Skewed Distributions of Column Values. Proceedings of the 14th In-
ternational Conference on Very Large Data Bases, pages 240-251, August 1988.

[64] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object Structure in the Emerald
System. Technical Report 86-04-03, University of Washington, University of
Washington, Department of Computer Science, April 1986. 1986.

[65] D. C. Blair and M. E. Maron. An Evaluation of Retrievai Effectiveness for a Full-
Text Document-Retrieval System. Communications of ACM, 28(3):289-299, May
1985.

[66] J.A. Blakely, P-A. Larson, and F. W. Tompa. Efficiently Updating Materialized
Views. In Proc. ACM-SIGMOD 1992 lnt'l Conf. on Management of Data, 1986.

[67] B. T. Blaustein and C. W. Kaufman. Updating Repficated Data During Commu-
nication Failures. In Proceedings of the 11th International Conference on VLDB,
pages 49-58, 1985.

[68] J. Blazewicz, M. Drabowski, and J. Weglarz. Schedu/ing Multiprocessor Tasks to
Minimize Schedule Length. IEEE Transactions on Computers, C-35(5):389-393,
May 1986.

[69] S. H. Bokhari. On the Mapping Problem. IEEE Transactions on Computers,
30(3):207-214, March 1981.

[70] S. W. Bollinger and S. F. Midkiff. Processor and Link Assignment in Multi-
computers Using Simulated Annealing. In Proceedings of the 1988 International
Conference on Parallel Processing, pages 1-7, 1988.

[71] G. Booch. Object-Oriented Design with Applications. Benjamin-Cummings, 1990.

[72] H. Boral, W. Alexander, et al. Prototyping Bubba, A Highly Parallel Database
System. IEEE Transactions on Knowledge and Data Engineering, 2(1):4-24,
March 1990.

[73] G. Bordogna, P. Carrara, and G. Pasi. Query Term Weights as Constraints in
Fuzzy Information Retrieval. Information Processing and Management, 27(1):15-
26, 1991.

[74] A. Borgida et al. Knowledge Representation as a Basis for Requirements Title.
1EEE Computers 18,4, 1985.

[75] Gerard Boudier, Ferdinando Gailo, Regis Minot, and Inn Thomas. An Overview
of PCTE and PCTE+. Communications of the ACM, 1988.

[76] A. Bouguettaya, R. King, and K. Zhao. FINDIT: A Server Based Approach to
Finding Information in Large Scale Heterogeneous Databases. In First Inter-
national Workshop on lnteroperability in Multidatabase Systems, Kyoto, Japan,
pages 191-194, April 7-9 1991.

418

[77]

[78]

B I B L I O G R A P H Y

M. Bouzeghoub and E. Metals. Semantic Modelling of Object-Oriented Data-
bases. In Proceedings of the 17th VLDB Conference, September 1991.

G. Brajnik, G. Guida, and C. Tasso. User Modefing in Expert Man - Machine
Interfaces: A Case Study in Intelligent Information Retrieval. IEEE Transactions
on Systems, Man, and Cybernetics, 20(1):166-185, January 1990.

[79] R. Breitl et al. The GemStone Data Management System. Object-Oriented
Concepts, Databases and Applications, W. Kim, and F. Lochovsky, eds., Addison-
Wesley, pages 283-308, 1989.

[80] M. Brodie and D. Ridjanovic. On the Design and Specification of Database
Transactions. In M. Brodie, J. Mylopoulos, and Schmidtn J.W., editors, On
Conceptual Modeling. Springer-Verlag, New York, 1983.

[81] Michael L. Brodie. The Promise of Distributed Computing and the Challenges
of Legacy Information Systems. In Proceedings of the IFIP DS-5 Semantics of
Interoperable Systems Workshop, page 31, November 16-20 1992.

[82] A. P. Buchmann. Modeling Heterogeneous Systems as an Active Object Space.
Technical report, GTE Laboratories, Inc., 40 Sylvan Road, Waltham MA 02254,
1987.

[83] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone Object Database
Management System. Communicatons of the ACM, 34(10), October 1991.

[84] Eick C., J. Liu, and P. Werstein. Integration of Rules into a Knowledge Base
Management System. In First International Conference on Systems Integration,
1990.

[85] Ellis C.A. and Gibbs S.J. Active Objects: Realities and Possibilities. in Object-
Oriented Concepts, Databases, and Applications, ACM Press, 1989.

[86] Michael Carey and Laura Haas. Extensible Database Management Systems.
SIGMOD RECORD, 19(4), December 1990.

[87] Michael J. Carey, David J. DeWitt, Daniel Frank, Goetz Graefe, M. Muralikr-
ishna, Joel E. Richardson, and Eugene J. Shekita. The Architecture of the EXO-
DUS Extensible DBMS. In International Workshop on Object-Oriented Database
Systems, pages 52-65, 1986.

[88] Yves Caseau. The LAURE System: Documentation. Bellcore TM-ARH, 1990.

[89] T. Catarci and G. Santucci. GRASP: A Graphical System for Statistical Data-
bases. In G. Goos and J. Hartmanis, editors, Lecture Notes in Computer Science
420. Springer-Verlag, 1990.

[90] S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. In
Proceedings of the Sixteenth International Conference of Very Large Data Bases,
Brisbane, Australia, pages 567-577, August 1990.

[91] S. Ceri and J. Widom. Production Rules in Parallel and Distributed Database
Environments. In 18th VLDB, pages 339-351, Vancouver, British Columbia,
1992.

[92] U.S. Chakravarthy. Rule Management and Evaluation: An Active DBMS Per-
spective. SIGMOD RECORD, 18(3):20-28, 1989.

[93] U.S. Chakravarthy and J. Minker. Multiple Query Processing in Deductive Data-
base. In 12th International Conference on Very Large Databases, Kyoto, Japan,
1986.

B I B L I O G R A P H Y 419

[94] L. Chambers and D. Cracknell. Parallel Features of NonStop SQL. Proceedings
of the 2nd Intl. Conf. on Parallel and Distributed Information Systems, pages
69-70, January 1993.

[95] A.K. Chandra and D. Hard. Structure and Complexity of Relational Queries.
Journal of Computer Systems and Sciences, 25(1):99-128, 1982.

[96] Chin-Chen Chang and Tzong-Chen Wu. Retrieving the Most Similar Symbolic
Pictures from Pictorial Databases. Information Processing and Management,
28(5):581-588, 1992.

[97] E.E. Chang and R.H. Katz. Inheritance in Computer-Aided Design Databases -
Semantics and Implementation Issues. Computer-Aided Design, 22(3):489-499,
October 1990.

[98] N. S. Chang and K. S. Fu. Query by Pictorial Examples. In Proc. Compsac,
1979.

[99] N. S. Chang and K. S. Fu. Pictorial Query Languages for Pictorial Databases.
IEEE Computer, 1981.

[100] N. S. Chang and K. S. Fu. Picture Indexing and Abstraction Techniques for
Pictorial Databases. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 1984.

[101] N.S. Chang a~d K.S. Fu. Query-by-Pictorial-Example. IEEE Transactions on
Software Engineering, November 1980.

[102] N.S. Chang and K.S. Fu. Picture Query Languages for Pictorial Database Sys-
tems. Computer., November 1981.

[103] S.K. Chang, C.W. Yah, Donald C. Dimitroff, and Timothy Arndt. An Intelligent
Image Database System. IEEE Trans. Software Engineering, 14(5):681-688, May
1988.

[104] M.-S. Chen, H.-I. Hsiao, and P. S. Yu. Applying Hash Filters to Improving the
Execution of Bushy Trees. Proceedings of the 19th International Conference on
Very Large Data Bases, August 1993.

[105] M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young. Using Segmented Right-
Deep Trees for the Execution of Pipelined Hash Joins. Proceedings of the 18th
International Conference on Very Large Data Bases, pages 15-26, August 1992.

[106] M.-S. Chen and K. G. Shin. Processor Allocation in an N-Cube Multiproces-
sot Using Gray Codes. IEEE Transactions on Computers, C-36(12):1396-1407,
December 1987.

[107] M.-S~ Chen, P. S. Yu, and K.-L. Wu. Scheduling and Processor Allocation for
Parallel Execution of Multi- Join Queries. Proceedings of the 8th International
Conference on Data Engineering, pages 58-67, February 1992.

[108] P.P. Chen. The Entity-Relationship Model-Toward a Unified View of Data. ACM
Transactions on Database Systems, pages 9-36, 1976.

[109] Tsz S. Cheng, Shashi K. Gadia, and Sunil S. Nair. A seamless object oriented
model for spatio-temporal databases. Technical Report TR-92-42, Iowa State
University, 1992.

[110] M. Chock, A.F. Cardenas, and A. Klinger. Data Structure and Manipulation
Capabilities of a Picture Database Management System (PICDMS). IEEE Trans.
on Pattern Analysis and Machine Intelligence, PAMI-6(4):484-492, July 1984.

420 B I B L I O G R A P H Y

[111] S. Christodoulakis. Estimating Record Selectivities. Information Systems,
8(2):105-115, 1983.

[112] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press,
Princeton, 1941.

[113] David D. Clark, Scott Shenker, and Zhang. Supporting Real-Time Applica-
tions in an Integrated Services Packet Network: Architecture and Mechanism.
Computer Communication Review (Proc. SIGCOMM '92), 22(4):14-26, October
1992.

[114] L. A. Clarke, J. C. Wileden, and A.L. Wolf. Object Management Support for
Software Development Environments. In Proceedings 1987 Appin Workshop on
Persistent Object Stores, pages 363-381, July 1987.

[115] Lori A. Clarke, Jack C. Wileden, and Alexander L. Wolf. GRAPHITE: A
Meta-Tool For Ada Environment Development. COINS Technical Report 85-44,
University of Massachusetts, Software Development Laboratory, Computer and
Information Science Department, University of Massachusetts, Amherst, Mas-
sachusetts 01003, November 1985.

[116] J. Clifford. A Logical Framework for the Temporal Semantics and Natural-
Language Querying of Historical Databases. PhD thesis, Dept. of Computer
Science, SUNY at Stony Brook, December 1982.

[117] J. Clifford. A Model for Historical Databases. In Proceedings of Workshop on
Logical Bases for Data Bases, Toulouse, France, December 1982.

[118] J. Clifford and A. Croker. On Consistent Extensions of the Relational Model
of Data. Technical Report CRIS-#135, GBA-WP#86-100, Dept. of Information
Systems, New York University, Leonard N. Stern School of Business, 1986.

[119] J. Clifford and A. Croker. The Historical Relational Data Model HRDM and
Algebra Based on Lifespans. In Proc. Third International Conference on Data
Engineering, pages 528-537, Los Angeles, February 1987. IEEE.

[120] J. Clifford, A. Croker, and A. Tuzhilin. On Completeness of Query Languages
for Grouped and Ungrouped Historical Data Models. In A. Tansel, J. Clifford,
S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases.
Press, 1993.

[121] J. Clifford and T. Isakowitz. On The Semantics of Transaction Time and VaJid
Time in BiTemporal Relations. Technical report, Center for Research on Infor-
mation Systems, Stern School of Business, New York University, 1992.

[122] J. Clifford and A.U. Tansel. On an Algebra for Historical Relational Databases:
Two Views. In S. Navathe, editor, A CM SIGMOD, pages 247-265, Austin, TX,
May 1985. acm.

[123] J. Clifford and D. S. Warren. Formal Semantics for Time in Databases. ACM
Transactions on Database Systems, 6(2):214-254, June 1983.

[124] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Englewood
Cliffs, N J, 1991.

[125] E.F. Codd. Extending the Database Relational Model to Capture More Meaning.
ACM Transactions on Database Systems, 4(4):397-434, 1979.

[126] E.F. Codd. A Relational Model of Data for Large Shaxed Data Banks", booktitle
---- " Readings in Database Systems. pages 5-15. Morgan Kaufman Publishers,
Inc., 1990.

B I B L I O G R A P H Y 421

[127] E. Coffman, M. Garey, D. Johnson, and R. Tarjan. Performance Bounds for
Level-Oriented Two-Dimensional Packing Algorithms. SIAM Journal on Com-
puting, 9(4):808-826, November 1980.

[128] Douglas E. Comer and Rajendra S. Yavatkar. Flows: Performance Guarantees
in Best Effort Delivery Systems. In Proc. 1EEE INFOCOM '89, pages 100-109,
April 1989.

[129] Intel Corporation. IPSC/2 User's Guide. Intel Corporation, March 1988.

[130] NCUBE Corporation. NCUBE/ten: An Overview. NCUBE Corporation, Novem-
ber 1985.

[131] J. K. Cringean, R. England, G. A. Mansou, , and P. Willett. Processor and Link
Assignment in Multicomputers Using Simulated Annealing. In Proceedings of the
1990 ACM SIGIR, pages 413-428, September 1990.

[132] Janey K. Cringean, Roger England, Gordon A. Manson, and Peter Willett. Net-
work Design for the Implementation of Text Searching Using a Multicomputer.
Information Processing ~ Management, 27(4):265-283, 1991.

[133] C. J. Crouch. An Approach to the Automatic Construction of Global Thesauri.
Information Processing ~ Management, 26(5):629-640, 1990.

[134] Fish D. et al. Iris: An Object-Oriented Database Management System. ACM
Transactions on Office Information Systems, 5(1):48-69, 1987.

[135] Mulet D., Stein J., Otis A., and Purdy A. Development of an Object-Oriented
DBMS. ACM OOPSLA 1986 Conference, 1986.

[136] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in Partitioned
Networks. ACM Computing Surveys, 17(3):341-370, September 1985.

[137] M. Davis. Computability and Unsolvability. McGraw-Hill, 1958.

[138] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ladin,
D. McCarthy, A. Rosenthal, and S. Satin. The HiPAC Project: Combining
Active Databases and Timing Constraints. ACM-SIGMOD Record, 17(1):51-70,
March 1988.

[139] U. Dayal, M. I-Isu, and R. Ladin. Organizing Long-Running Activities with
Triggers and Transactions. In Proceedings of the 1990 A CM SIGMOD Conference
on Management of Data, pages 204-214, Atlantic City, New Jersey, June 1990.

[140] U. Dayal, M. Hsu, and R. Ladin. A Transactional Model for Long-Running
Activities. In 17th Int'l Conference on Very Large Data Bases, pages 113-122,
Barcelona, Spain, September 1991.

[141] D. De-Champeaux and W. Olthoff. Towards and Object-Oriented Analysis
Technique. Proceedings of the Pacific Northwest Quality Software Conference.,
September 1989.

[142] T. DeMarco. Structured Analysis and System Specification. Yourdon, 1978.

[143] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation of
a Fair Queueing Algorithm. Internetworking: Research and Experience, 1:3-26,
1990.

[144] S. Demurjian and D. Hsiao. Towards a Better Understanding of Data Models
Through the Multilingual Database System. IEEE Transactions on Software
Engineering, 14(7), July 1988.

422 BIBLIOGRAPHY

[145] Yi Deng and Shi-Kuo Chang. A Framework for the Modeling and Prototyping of
Distributed Information Systems. International Journal Of Software Engineering
and Knowledge Engineering, 1(3):203-226, 1991.

[146] D. Denning. Cryptography and Data Security. Addisoff-Wesley, Reading, Mass.,
1982.

[147] L. P. Deutsch. Levels of Reuse in the Smalltalk-80 Programming System. Tuto-
rial:Software Reusability, P. Freeman, Ed., IEEE Computer Society Press, Wash.
D.C., 1987.

[148] L. P. Deutsch. Design Reuse and Frameworks in the Smalltalk-80 System. Soft-
ware Reusability, Vol 1, T. J. Biggerstaff and A. J. Perlis, Eds., ACM Press,
pp-57-71, 1989.

[149] Peter Deutsch. Resource Discovery in an Internet Environment-the Archie Ap-
proach. Electronic Networking, 2(1):45-51, Spring 1992.

[150] O. Deux et al. The Story of 02. IEEE Trans. on Knowledge and Data Engineer-
ing, 2(1):91-108, 1990.

[151] O. Deux et al. The 02 System. Communicatons of the ACM, 34(10), October
1991.

[152] P. Dewan. A Tour of the Suite User Interface Software. In Proceedings of the
3rd ACM SIGGRAPH Symposium on User Interface Software and Technology,
pages 57-65, October 1990.

[153] P. Dewan, A. Vikram, and B. Bhargava. Engineering the Object- Relation Model
in O- Raid. In Proceedings of the International Conference on Foundations of
Data Organization and Algorithms, pages 389-403, June 1989.

[154] D. J. DeWitt and R. Gerber. Multiprocessor Hash-Based Join Algorithms. Pro-
ceedings of the 11th International Conference on Very Large Data Bases, pages
151-162, August 1985.

[155] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, tt.I. Hsiao, and
R. Rasmussen. The Gamma Database Machine Project. IEEE Transactions on
Knowledge and Data Engineering, 2(1):44-62, March 1990.

[156] D. J. DeWitt, J. Naughton, and D. Schneider. Parallel External Sorting Us-
ing Probabilistic Splitting. Proceedings of the 1st Conference on Parallel and
Distributed Information Systems, pages 280-291, December 1991.

[157] D. J. DeWitt, J. Naughton, D. Schneider, and S. Seshadri. Practical Skew Han-
dling in Parallel Joins. Proceedings of the 18th International Conference on Very
Large Data Bases, pages 27-40, August 1992.

[158] D. M. Dins, B. R. Iyer, J. T. Robinson, and P. S. Yu. Integrated Concurrency-
Coherency Controls for Data Sharing. IEEE Transactions on Software Engineer-
ing, SE-15(4):437-448, April 1989.

[159] T.E. Dielman. Pooled Cross-Sectional and Time-Series Data Analysis. Marcel
Dekker, Inc., 1989.

[160] Pamela Drew, R. King, and Dennis Heimbigner. A Multi-Dimensional, Extensi-
ble Framework for the Integration of Next-Generation, Heterogeneous Database
Management Systems. VLDB Journal, Special Issue on Heterogeneous Databases,
1992. To Appear 2Q.

B I B L I O G R A P H Y 423

[161] Pamela Drew, Roger King, and Jonathan Bein. A la Carte: An Extensible
Framework for the Tailorable Construction of Heterogeneous Object Stores. In
Implementing Persistent Object Bases: Principles and Practice, The Fourth In-
ternational Workshop on Persistent Object Systems. Morgan Kaufmann Publish-
ers, Inc., 1990.

[162] Pamela A. Drew. A la Carte: An Implementation of a Toolkit for the Incremen-
tal Integration of Heterogeneous Database Management Systems. PhD thesis,
University of Colorado, Boulder, 1991.

[163] James R. Driscoll, David A. Rajala, William H. Shaffer, and Donald W. Thomas.
The Operation and Performance of an Artificially Intelligent keywording System.
Information Processing and: Management, 27(1):43-54, 1991.

[164] Batory D.S., Barnett J.R., Garza J.F., and Smith K.P. GENESIS: A Reconfig-
urable DBMS. Technical Report 86-07, Dept. of Computer Science, U.T. Austin,
1986.

[165] J. Du and L. Leung. Complexity of Scheduling Parallel Task Systems. SIAM,
Journal on Discrete Mathematics, 2(4):473-487, November 1989.

[166] X. Du and F. 3. Maryanski. Data Allocation in a Dynamically Reconfigurable
Environment. In Proceeding of the IEEE Fourth International Conference on
Data Engineering, pages 74-81, February 1988.

[167] Ken Dubose and Hyong S. Kim. An Efective Bit Rate/Table Lookup Based
Admission Control Algorithm for the ATM B-ISDN. In Proc. 17th Conf. on Local
Computer Networks, pages 20-29, Minneapolis, Minnesota, September 1992.

[168] Zbigniew Dziong, Jean Choquette, Ke-Qiang Liao, and Lorne G. Mason. Ad-
mission Control and Routing in ATM Networks. Computer Networks and ISDN
Systems, 20(1-5):189-196, December 1990.

[169] M.T. Edmead. Interactive Applications Using CD-I. In COMPCON Spring '87,
32nd IEEE Computer Society Intl. Conf., pages 410-412, San Francisco, CA,
February 1987.

[170] F. Eliassen and R. Karlsen. Interoperability and Object Identity. SIGMOD
RECORD, 20(4), December 1991.

[171] C. Elkan. A Decision Procedure for Conjunctive Query Disjointness. 8th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, 1989.

[172] A. Elmagarmid, editor. Database Transaction Models for Advanced Applications.
Morgan-Kaufmann, February 1992.

[173] R. Elmasri, I. E1Assal, and V. Kouramajian. Semantics of Temporal Data in an
Extended ER Model. In 9th Entity-Relationship Conference, October 1990.

[174] R. Elmasri and V. Kouramajian. A Temporal Query Language Based on Concep-
tual Entities and Roles. In 11th Entity.Relationship Conference, October 1992.

[175] R. Elmasri and Shamkant Navathe. Fundamentals of Database Systems. Ben-
jamin Cummings, 1989.

[176] R. Elmasri, J. Weeldreyer, and A Hevner. The Category Concept: An Extension
to the ER Model. Data and Knowledge Engineering, pages 75-116, June 1985.

[177] R. Elmasri and J. Wiederhold. GORDAS: A Formal High Level Query Language
for the ER Model. 2nd Entity-Relationship Conference, October 1981.

424 B I B L I O G R A P H Y

[178] R. Elmasri and G. Wuu. Index by Time Interval: An Efficient Access Structure
for Temporal Queries. Submitted for publication., 1990.

[179] R. Elmasri, G. Wuu, and V. Kouramajian. A Temporal Model and Query Lan-
guage for EER Databases. Benjamin Cummings, 1993.

[180] E.A. Emerson. Temporal and Modal Logic. In Jan van Leeuwen., editor, Hand-
book o] Theoretical Computer Science, page 995. Elsevier, New York, 1990.

[181] Julio Escobar, Debra Deutsch, and Craig Partridge. Flow Synchronization Pro-
tocol. BBN Systems and Technologies Division, Cambridge, MA, March 1992.

[182] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of Con-
sistency and Predicate Locks in Database Systems. Communications of ACM,
pages 624-633, november 1976.

[183] O. Etzion, A. Segev, and G. Avigdor. A Temporal Active Database Model.
Technical Report LBL-32587, Lawrence Berkeley Lab, 1992.

[184] J.J. Ewing. An Object-Oriented Operating System Interface. OOPSLA'86 Pro-
ceedings, SIGPLAN Not. (ACM) 21, 11 (Portland, Oregon, November 1986.

[185] A. Farr~g and M. Ozsu. Using Semantic Knowledge of Transactions to Increase
Concurrency. A CM Transactions on Database Systems, 14(4):503-525, December
1989.

[186] Domenico Ferrari. Client Requirements for Real-Time Communication Services.
IEEE Communications Magazine, 28(11):65-72, November 1990.

[187] R. G. Fichman and Chris F. Kemerer. Object-Oriented and Conventional Anal-
ysis and Design Methodologies. IEEE Computer, October 1992 ~.

[188] D. Fishman, D Beech, H.P. Cate, and E.C. Chow. Iris: An Object-Oriented
Database System. A CM Transactions On Office Information Systems, 5(1):48-
69, January 1987.

[189] D. Fishman et al. Overview of the Iris DBMS. Object-Oriented Concepts, Data-
bases, and Applications, W. Kim, and F. Lochovsky, eds., Addison- Wesley, pages
219-250, 1989.

[190] David W. Flater and Yelena Yesha. An Efficient Management of Read-Only Data
in a Distributed Information System. Technical Report CS-92-04, University of
Maryland Baltimore County, Baltimore, MD 21228, March 1992.

[191] David W. Flater and Yelena Yesha. Query Routing and Object Caching in a
Large Distributed Information System. In Proceedings o] the ISMM First Inter-
national Conference on Information and Knowledge Management, pages 525-534,
Baltimore, MD, U.S.A., November 1992. The International Society for Mini and
Microcomputers.

[192] David W. Flater and Yelena Yesha. A Robust and Efficient Strategy for the Dis-
tributed Caching of Read-Only Data in a Large Networked Information System.
International Journal of Intelligent and Cooperative Information Systems, 1993.
Submitted.

[193] David W. Flater and Yelena Yesha. An Efficient Management of Read-Only Data
in a Distributed Information System. International Journal of Intelligent and
Cooperative Information Systems, Special Issue on Information and Knowledge
Management, 1993. To appear.

B I B L I O G R A P H Y 425

[194] David W. Flater and Yelena Yesha. An Information Retrieval System for Network
Resources. In Proceedings of the International Workshop on Next Generation
Information Technologies and Systems, 1993. To appear.

[195] David W. Flater and Yelena Yesha. Properties of Networked Information Re-
trieval with Cooperative Caching. Technical Report CS-93-08, University of
Maryland Baltimore County, Baltimore, MD 21228, April 1993.

[196] Committee for Advanced DBMS Function. Third-Generation Database System
Manifesto. SIGMOD RECORD, 19(3):31-44, September 1990.

[197] O. Frieder. Multiprocessor Algorithms for Relational-Database Operations on
Hypercube Systems. IEEE Computer, pages 13-28, November 1990.

[198] O. Frieder and C. K. Baru. Site Selection and Query Scheduling Policies for Mul-
ticomputer Database Systems. In Proceeding of lEEE Transactions on Knowledge
and Data Engineering, pages 74-81, February 1994. To appear in 1994.

[199] O. Frieder, V. A. Topkar, R. K. Karne, and A. K. Sood. Experimentation with
Hypercube Database Engines. IEEE Micro, 12(1):42-56, February 1992.

[200] R. Fujimoto. Parallel Discrete Event Simulation. Communications of the ACM,
33(10):31-53, 1990.

[201] S. Gadia and C. Yeung. A Generalized Model for a Temporal Relational Data-
base. A CM SIGMOD-88 Conference Proceedings., June 1988.

[202] S. K. Gadia and J. Vaishnav. A Query Language for a Homogeneous Temporal
Database. In Proc. of The Fourth Annual ACM SIGACT-SIGMOD Symposium
on Principles o/Database Systems, pages 51-56, 1985.

[203] Shashi K. Gadia. A Homogeneous Relational Model and Query Languages for
Temporal Databases. A CM Transactions on Database Systems, 13:418-448, 1988.

[204] Shashi K. Gadia and Sunfl S. Na~r. Temporal Databases: A Prelude to Paramet-
ric Data. In A. Tansel et al., editors, Temporal Databases: Theory, Design and
Implementation. BeDjamin Cummings Publishing Company, 1993.

[205] Shashi K. Gadia and Chuen-Sing Yeung. Inadequacy of IntervaJ Timestamps in
Temporal Databases. Information Sciences, 54:1-22, 1991.

[206] Z. Galil and N. Megiddo. A Fast Selection Algorithm and the Problem of Optimal
Distribution of Effort. Journal of the ACM, pages 58-64, 1979.

[207] S. Gantimahapatruni and G. Karabatis. Enforcing Data Dependencies in Co-
operative Information Systems. In Proceedings o/ International Conference on
Intelligent and Cooperative Information Systems, Rotterdam, The Netherlands,
May 1993.

[208] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a
Distributed Database. ACM Transactions on Database Systems, 8(2):186-213,
June 1983.

[209] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a
Distributed Database. ACM Transactions on Database Systems, 8(2):186-213,
June 1983.

[210] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Coordi-
nating Multi-Transaction Activities. Technical Report CS-TR-247-90, Princeton
University, February 1990.

426 B I B L I O G R A P H Y

[211] M. Garey and R. Graham. Bounds for Multiprocessor Scheduling with Resource
Constraints. SIAM Journal on Computing, 4(2):187-200, June 1975.

[212] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[213] N. Gehani and W.D. Roome. The Concurrent C Programming Language. Silicon
Press, 1989.

[214] N. H. Gehani. Capsules: a Shared Memory Access Mechanism for Concurrent
C/Cq-q-. To Be Published in IEEE Transactions on Parallel and Distributed
Systems, 1990.

[215] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite Event Specification
in Active Databases: Model and Implementation. Proc. of the 18th Int'l Conf.
on Very Large Databases, August 1992.

[216] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event Specification in an Active
Object-Oriented Database. Proc. ACM-SIGMOD 1992 Int'l Conf. on Manage-
ment of Data, 1992.

[217] N.H. Gehani and H. V. Jagadish. Ode a.s an Active Database: Constraints and
Triggers. Proc. 17th Int'l Conf. Very Large Data Bases, pages 327-336, 1991.

[218] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On Serializability of Multi-
database Transactions through Forced Local Conflicts. In Proceedings of the 7 th
IEEE International Conference of Data Engineering, April 1991. Kobe, Japan.

[219] R. Gerber. Datafiow Query Processing Using Multiprocessor Hash-Partitioned
Algorithms. Technical Report Tech. Rep. 672, Computer Science Department,
University of Wisconsin-Madison, October 1986.

[220] S. Ghandehaxizadeh, 1~. Hull, and Dean Jacobs. Implementation of Delayed Up-
dates in Heraclitus. In Proc. of Intl. Conf. on Extending Data Base Technology,
1992. to appear.

[221] P.B. Gibbons. A Stub Generator for Multilanguage RPC in Heterogeneous En-
vironments. IEEE Transactions of Software Engineering, 13(1):77-87, January
1987.

[222] Henry M. Gladney. A Model for Distributed Information NeTworks. Technical
Report RJ5220, IBM Almaden Res. Lab, 650 Harry Road, San Jose, California
95120-6099, July 1986.

[223] A. Go et al. An Approach to implementing a Geo-Data System. TR ERL-M529,
University of California, Berkeley, June 1975.

[224] D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-
ing. Addison Wesley, 1989.

[225] Jonny Goldman. In response to questions sent Through e-mail.

[226] S. J. Golestani. Congestion-Free Transmission of Real-Time Traffic in Packet
Networks. In Proc. IEEE INFOCOM '90, pages 527-536, San Francisco, CA,
1990.

[227] Goodchild. Accuracy of Spatial Databases. Taylor and Francis, 1989.

[228] R. Graham. Bounds on Multiprocessor Timing Anomolies. SIAM Journal of
Computing, pages 416-429, 1969.

B I B L I O G R A P H Y 427

[229] O. Guenther and A. Buchmann. Research Issues in Spatial Databases. SIGMOD
RECORD, December 1990.

[230] Oliver Gunther. Efficient Structures for Geometric Data Management. Lecture
notes in Computer science, 1988. Vol. 337.

[231] Oliver Gunther. The Design of the Cell Tree: An Object Oriented Index Structure
for Geometric Databases. In Proc. of the Fifth IEEE International Conference
on Data Engineering, pages 598-605, 1989.

[232] Oliver Gunther and Eugene Wong. A Dual Space Representation for Geometric
Data. In Proceedings of the 13'th International Conference on Very Large Data
Bases, pages 501-506, 1987.

[233] M.S. Guo, S.Y.W. Su, and H. Lain. An Association Algebra for Processing
Object-Oriented Databases. In Proc. 7th IEEE Int'l Conf. on Data Engineering,
1991.

[234] A. Gupta, C.L. Rorgy, A. Newell, and R. Wedig. Parallel Algorithms and Ar-
chitectures for Rule-Based Systems. In International Symposium on Computer
Architecture, 1986.

[235] Anoop Gupta, Charles Forgy, Allen Newell, and Robert Wedig. Parallel Algo-
rithms and Architectures for Rule-Based System. In ICPP, 1986.

[236] S. Guptill and L. Starr. Making Maps with Computers. American Scientist,
76:136-142.

[237] R.H. Guting. Geo-Relational Algebra: A Model and Query Language for Ge-
ometric Database Systems. In Proc. of the Conference on Extending Database
Technology(EDBT '88), pages 506-527, 1988.

[238] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data., 1984.

[239] Bernard J. Haan, Paul Kahn, Victor A. Riley, James H. Coombs, and Norman K.
Meyrowitz. IRIS Hypermedia Services. Communications of ACM, 35(1):36-51,
January 1992.

[240] T. Haerder and A. Reuter. Principles of Transaction-Oriented Database Recov-
ery. ACM Computing Surveys, 15(4), December 1983.

[241] Donna tIarman, Wayne McCoy, Robert Toense, and Gerald Candela. Prototyp-
ing a Distributed Information Retrieval System That Uses Statistical Ranking.
Information Processing and Management, 27(5):449-460, 1991.

[242] William Harrison. RPDE:'A Framework for Integrating Tool Fragments. IEEE
Software, November 1987.

[243] R. L Haskin. SpeciM Purpose Processors for Text Retrieval. Database Engineer-
ing, 4:16-29, September 1981.

[244] R. Hayes, S.W. Manweiler, and R. D. Sehlichting. A Simple System for Construct-
ing Distributed, Mixed-Language Programs. Software - Practice and Experience,
18(7):641-660, July 1988.

[245] D. Heimbigner and D. McLeod. A Federated Architecture for Information Man-
agement. A CM Transactions on Office Information Systems, 3(3), 1985.

428 B I B L I O G R A P H Y

[246] Dennis Heimbigner. A Tower of Babel: Providing Flexible and Extensible En-
vironment Services. Draft Technical Report CU-CS-580-92, University of Col-
orado, Boulder, University of Colorado at Boulder, Department of Computer
Science, Campus Box 430, Boulder, CO 80309, 1992.

[247] Dennis Heimbigner. Triton Reference Manual. Technical Note CU-CS-483-92,
University of Colorado, Computer Science Department, University of Colorado,
Boulder, CO 80309-0430, May 5th 1992. Version 0.8.

[248] B. Henderson-Se~ars and J.M. Edwards. The Object Oriented Systems Life
Cycle. Communications of the ACM, September 1990.

[249] J. Herring etal . Extensions to the SQL Language to Support Spatial Analysis
in a Topological Data Base. GIS/LIS'88, San Antonio, Texas, November 1988.

[250] R.G. Herrtwieh. Time Capsules: An Abstraction for Access to Continuous-Media
Data. Proc. 11th Real-Time Systems Syrup., pages 11-20, December 1990.

[251] Jerry Hobbs. Presentation on the use of a finite State Machine (FASTUS) to per-
form Information extraction from natural Language texts given in a panel session
at the First International Conference on Information and Knowledge Manage-
ment.

[252] M.E. Hodges, R.M. Sasnett, and M.S. Ackerman. A Construction Set for Multi-
media Applications. IEEE Software, pages 37-43, January 1989.

[253] Petra Hcepner. Synchronizing the Presentation of Multimedia Objects - ODA
Extensions. ACM SIGOIS Bulletin, 12(1):19-32, July 1991.

[254] W. Hong. Exploiting Inter-Operator Parallelism in XPRS. Proceedings of ACM
SIGMOD, pages 19-28, June 1992.

[255] W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in
XPRS. Proceedings of the 1st Conference on Parallel and Distributed Information
Systems, pages 218-225, December 1991.

[256] W.C. Hou, G. Ozsoyoglu, and B.K. Taneja. Processing Aggregate Relational
Queries with Hard Time Constraints. Proc. ACM SIGMOD Intl. Conf. on Man-
agement of Data, June 1989.

[257] M. Hsu, R. Ladin, and D. McCarthy. An Execution Model for Active Data Base
Management Systems. In Proceedings of the 3 ~a International Conference on
Data and Knowledge Bases, June 1988.

[258] M. Hsu and A. Silberschatz. Persistent Transmission and Unilateral Commit- A
Position Paper. In Workshop on Multidatabases and Semantic lnteroperability,
Tulsa, OK, October 1990.

[259] K. A. Hun and C. Lee. Handling Data Skew in Multiprocessor Database Com-
puters Using Partition Tuning. Proceedings of the 17th International Conference
on Very Large Data Bases, pages 525-535, September 1991.

[260] K. A. Hun, Y.-L. Lo, and H. C. Young. Including the Load Balancing Issue in the
Optimization of Multi-Way Join Queries for Shared-Nothing Database Comput-
ers. Proceedings of the 2nd Conference on Parallel and Distributed Information
Systems, pages 74-83, January 1993.

[261] G. David Huffman, Dennis A. Vital, and Royal G. Bivins, Jr. Generating Indices
with Lexical Association Methods: Term Uniqueness. Information Processing
and Management, 26(4):549-558, 1990.

B I B L I O G R A P H Y 429

[262] Joseph Y. Hui. Resource Allocation for Broadband Networks. IEEE Journal on
Selected Areas in Communications, 6(9):1598-1608, December 1988.

[263] J. Hull. Options, Futures and Other Securities. Prentice-Hall, Englewood Cliffs,
New Jersey, 1990.

[264] R. Hull. A Survey of Theoretical Research on Typed Complex Database Objects,
J. Paredaens Editor. Databases. Academic Press, 1987.

[265] R. Hull and D. Jacobs. On the Semantics of rules in Database Programming
Languages, In Next Generation Information System Technology: volume 504. In
Proc. of the First International East/West Workshop, Kiev, USSR, pages 59-85.
Springer-Verlag LNCS, October 1990. ed. by J. Schmidt and A. Stogny.

[266] R. Hull and R. King. Semantic Database Modeling: Survey, Application, and
Research Issues. ACM Computing Surveys, 19(3):201-258, September 1987.

[267] Richard Hull and Dean Jacobs. Language Constructs for Programming Active
Databases. In Proceedings of the 17th International Conference on Very Large
Data Bases, Barcelona, pages 455-468, September 1991.

[268] S. Hummel, E. Schonberg, and L. Flynn. Factoring: A Method for Scheduling
Parallel Loops. Communications of the ACM, pages 90-101, August 1992.

[269] Steve Huseth, Jonathan Krueger, Aaron Larson, and J. M. Purtilo. The Common
Prototyping Language, A Module Interconnection Approach. Technical Report
UMIACS-TR-90-50, S-TR-2449, University of Maryland, Department of Com-
puter Science, University of Maryland, College Park, MD 20742, May 1990.

[270] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Approaches.
The MIT Press, Cambridge, Massachusetts, 1988.

[271] T. Imielinski. Abstraction in Query Processing. JACM, 38(3), 1991.

[272] T. Imielinsld. Incomplete Deductive Databases. Annals of Mathematics and Ar-
tificial Intelligence, was Available as an Unpublished Manuscript in 1988 Spring.,
3:259-294, 1991.

[273] T. Imielinsld, R. van der Meyden, and K. Vadaparty. Complexity Tailored Design
- A New Database Design Methodology. Technical Report LCSR 171, Rutgers
University, Department Of Computer Science, New Brunswick, NJ08903, De-
cember 1991.

[274] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete Objects - A Data Model
for Design and Planning Applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Denver, Colorado, May 1991.

[275] T. Imielinski, S. Naqvi, and K. Vadaparty. Querying Design and Planning Data-
bases. Submitted to Second International Conference on Deductive and Object
Oriented Databases (DOOD), March 1991.

[276] T. Imielinsld and K. Vadaparty. Complexity of Querying Databases with OR-
Objects. In Proceedings of the Eighth A CM Symposium on Principles of Data-
bases Systems (PODS), 1989.

[277] T. Imielinski, K. Vadaparty, and R. van der Meyden. Complexity Tailored Design
- A New Database Design Methodology. Technical Report LCSR 171, Rutgers
University, Department Of Computer Science, New Brunswick, NJ08903, De-
cember 1991.

430 B I B L I O G R A P H Y

[278] Ontologic Inc. ONTOS 2.1 Product Description. MA., 1991.

[279] Interactive Software Engineering, 270 Storke Road, Suite 7, Goleta CA 93117,
U.S.A. The Environment, The Language, The Libraries. Version 2.3.

[280] Y. E. Ioannidis and Y. C. Kang. Left-Deep vs. Bushy Trees: An Analysis of
Strategy Spaces and its Impfication for Query Optimization. Proceedings of
ACM SIGMOD, pages 168-177, May 1991.

[281] Judith H. Irven, Margaret E. Nilson, Thomas H. Judd, John F. Patterson, and
Yoshitaka Shibata. Multi-Media Information Services: A Laboratory Study.
IEEE Communications Magazine, 26(6):27-44, June 1988.

[282] Fan I.S. and Sackett P.J. A PROLOG Simulator for Interactive Flexible Manu-
facturing System Control. Simulation, 50(6):239-247, 1988.

[283] T. Ishida. Parallel Rule Firing in Production Systems. IEEE Transactions on
Knowledge and Data Engineering, pages 11-17, 1991.

[284] B. Iyer, G. Ricard, and P. Varman. Percentile Finding Algorithm for Multiple
Sorted Runs. Proceedings of the 15th International Conference on Very Large
Data Bases, pages 135-144, August 1989.

[285] Widom J., Cochrane R., and B.G. Lindsay. Implementing Set-Oriented Produc-
tion Rules as an Extension to Starburst. In 17th International Conference on
Very Large Databases, 1991.

[286] Dean Jacobs and Richard Hull. Database Programming with Delayed Updates.
In Intl. Workshop on Database Programming Languages, San Mateo, California,
1991. Morgan-Kaufmann, Inc. to appear.

[287] H. V. Jagadish and O. Shmuefi. Synchronizing Trigger Events in a Distributed
Object-Oriented Database. Proc. Int'l Workshop on Distributed Object Manage-
ment, August 1992.

[288] S. J~jodia and B. Kogan. Integrating an Object-Oriented Data Model with
MultiLevel Security. Proc. IEEE Symposium on Security and Privacy, Oakland,
California, pages 76-85, May 1990.

[289] S. Jajodia, B. Kogan, and R. Sandhu. A MultiLevel-Secure Object~Oriented
Data Model. Technical Report, George Mason University, 1992.

[290] S. J~jodia and D. Mutchler. Dynamic Voting. In ACM SIGMOD Conference,
pages 227-238, 1987.

[291] S. Jajodia and D. Mutchler. A Pessimistic Consistency Control Algorithm for
Replicated Files which Achieves High Availability. IEEE Transactions on Soft-
ware Engineering, 15(1):39-46, Jan 1989.

[292] S. Jajodia and R. Sandhu. Toward a MultiLevel Secure Relational Data Model. In
Proc. A CM SIGMOD Int'l. Conf. on Management of Data, pages 50-59, Denver,
Colorado, May 1991.

[293] C. Jensen. Towards the Realization of Transaction Time Database Systems. PhD
thesis, University of Maxyland, December 1990.

[294] C.S. Jenson, J. Clifford, S.K. Gadia, A. Segev, and R.T. Snodgrass. A Glossary
of Temporal Database Concepts. ACM SIGMOD Record, 21(3):35-43, 1992.

[295] Y. Jiang. Indexing Support for Distributed Object-Oriented Database Systems.
Preliminary Ph.D. exam, Purdue University, 1992.

B I B L I O G R A P H Y 431

[296] R.E. Johnson and B. Foote. Designing Reusable Classes. J. of Object-Oriented
Programming, June/July 1988.

[297] L.L. Jones and S.G. Smith. Can Multimedia Instruction Meet Our Expectations.
Edueom Review, 27(1):39-43, January/February 1992.

[298] Rick Jones. Moving up to Eiffel 3. JOOP, September 1992.

[299] T. Joseph and A. F. Cardenas. PICQUERY: A High Level Language for Pictorial
Database Management. IEEE Transactions on Software Engineering, 14(5):630-
638, May 1988.

[300] Marsha Jovanovic. Bringing It Together for Global Change Research. San Diego
Supercomputer Center Gather/Scatter, 8(9-10), Sept. - Oct. 1992.

[301] Stanley M. Sutton Jr., Dennis Heimbigner, and Leon J. Osterweil. Language Con-
structs for Managing Change in Process-Centered Environments. In The Fourth
Symposium on Practical Software Development Environments, Irvine, CA., 1990.

[302] Stanley M. Sutton Jr., Hadar Ziv, Dennis Heimbigner, Harry E. Yessayan,
Mark Maybee, Leon J. Osterweil, and Xiping Song. Programming a Software
Requirements-Specification Process. IEEE Software, 1991.

[303] A. Juels. Personal Communication.

[304] E. Jungert et al. Vega - A Geographical Information System. Proc. Scandinavian
Research Conf. on Geographical Information Systems, June 1985.

[305] Brewster Kahle. think.com:/public/wais/README, September 1991.

[306] H. Kang and S.H. Son. A Hierarchical Export/Import Scheme for Data Sharing in
a Federated Distributed Database System. InternationalSymposium on Database
Systems for Advanced Applications, 1991.

[307] G. Kappel and M. Schrefl. Object/Behavior Diagrams. In Proc. 7th IEEE Int'l
Conf. on Data Engineering, pages 530-539, 1991.

[308] P. Karger. Limiting the Damage Potential of Discretionary Trojan Horses. In
Proc. of the 1987 IEEE Symposium on Research in Security and Privacy, Oak-
land (Calif.), May 1987.

[309] A. Karmouch, L. Orozco-Barbosa, N.D. Georganas, and M. GoIdberg. A Mul-
timedia Medical Communications System. IEEE Journal on Selected Areas in
Communications, 8(3):325-339, April 1990.

[310] R. Katz. Toward a Unified Framework for Version Modefing in Engineering
Databases. ACM Computing Surveys, 22(4), December 1990.

[311] R. H. Katz. InJormation Management for Engineering Design. Springer-Verlag,
1985.

[312] T. F. Keefe and W. T. Tsai. Prototyping the SODA Security Model. Database
Security, III: Status and Prospects, David L. Spooner and Carl Landwehr, eds.,
North-Holland, Amsterdam, pages 211-235, 1990.

[313] T. F. Keefe, W. T. Tsai, and M. B. Thuraisingham. A MultiLevel Security
Model for Object-Oriented System. In Proc. 11th National Computer Security
Conference, pages 1-9, October 1988.

[314] R. K. Keller, M. Cameron, R. N. Taylor, and D. B. Troup. User Interface De-
velopment and Software Environments: The Chiton-1 System. In Proceedings of
the 13th International Conference on Software Engineering, Austin, Texas, pages
208-218, May 13-16 1991.

432 B I B L I O G R A P H Y

[315] W. Kent. The Breakdown of the Information Model in Multi-Database Systems.
SIGMOD RECORD, 20(4), December 1991.

[316] B. W. Kernighan and D. M. Ritehie. The C Programming Language (2nd Ed.).
Prentice-Hall, 1988.

[317] M.A. Ketabchi and V. Berzins. Mathematical Model of Composite Objects and
Its Application for Organizing Engineering Databases. IEEE Trans. on Software
Engineering, 14(1):71-84, January 1988.

[318] W. Kim. Research directions for integrating heterogeneous databases. SIGMOD
RECORD, December 1989.

[319] W. Kim, N. Ballou, H. T. Chou, J. Garza, and D. Woelk. Features of the ORION
Object-Oriented Database System. Object-Oriented Concepts, Databases, and
Applications, W. Kim, and F. Lochovsky, eds., Addison-Wesley, pages 251-282,
1989.

[320] W. Kim, E. Bertino, and J. Garza. Composite Objects Revisited. In Proc. of
ACM-SIGMOD Conference on Management of Data, Portland (Oregon), May
29-June 3 1989.

[321] Won Kim. Object-Oriented Databases: Definition and Research Directions.
IEEE Transactions on Knowledge and Data Engineering, 2(3), September 1990.

[322] John Kimball, Tim King, Aaron Larson, and]on Ward. ProtoTech Phase I, Final
Technical Report. Draft Technical Report CS-C92-002, Honeywell/University
of Maryland, 1989. December 8th 1989 - April 24th 1992.

[323] M. Kitsuregawa, M. Nakano, L. Hirada, and M. Takagi. Performance Evaluation
of Functional Disk System with Nonuniform Data Distribution. Proceedings of the
2nd International Symposium on Databases in Parallel and Distributed Systems,
pages 80-89, July 1990.

[324] M. Kitsuregawa, M. Nakayama, and M. Takagi. The Effect of Bucket Size Tuning
in Dynamic Hybrid GRACE Hash Join Method. Proceedings of the 14th Inter-
national Conference on Very Large Data Bases, pages 257-266, August 1988.

[325] M. Kitsuregawa and Y. Ogawa. Bucket Spreading Parallel Hash: A New, Robust
Parallel Hash Join Method for Data Skew in the Super Database Computer
(SDC). Proceedings of the 16th VLDB Conference, pages 23-34, August 1990.

[326] Morse K.L. Parallel Distributed Simulation in ModSim. In International Con-
ference on Parallel Processing, 1990.

[327] J. Klein and A. Reuter. Migrating Transactions. In Future Trends in Distributed
Computing Systems in the 90's, Hong Kong, 1988.

[328] L.R. Klien. A Textbook of Economics. Evanston: Row Peterson and Co., 1953.

[329] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, MA, 1973.

[330] H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill Book
Company, 1991.

[331] H.F. Korth, E. Levy, and A. Sflberschatz. A Formal Approach to Recovery by
Compensating Transactions. In Proceedings of the 16th International Conference
on VLDB, pages 95-106, 1990.

[332] R. Kowalski. Algorithm ---- Logic + Control. Communications of ACM, pages
424-475, July 1979.

B I B L I O G R A P H Y 433

[333]

[334]

N. Krishnakumar and A. Bernstein. Bounded Ignorance in Replicated Systems.
Proc. of the Symposium on Principles o] Database Systems, May 1991.

R. Krishnamurthy, H. Bor~l, and C. Zaniolo. Optimization of Non-Recursive
Queries. Proceedings of the 12th International Conference on Very Large Data
Bases, pages 128-137, August 1986.

[335] R. Krishnamurthy, W. Litwin, and W. Kent. Language Features for Interoper-
ability of Databases with Schematic Discrepancies. ACM SIGMOD International
Conference on Management of Data, 1991.

[336] R. Krishnamurti and E. Ma. An Approximation Algorithm for Scheduling Tasks
on Varying Partition Sizes in Partitionable Multiprocessor Systems. IEEE Trans-
actions on Computers, 41(12):1572-1579, December 1992.

[337] A. Kumar and M. Stonebraker. Semantics Based Transaction Management Tech-
niques for Replicated Data. In Proceedings of ACM SIGMOD, pages 117-125,
1988.

[338] C.H. Kung. Conceptual Modeling in the Context of Software Development. IEEE
Transactions on Software Engineering, 15(10):1175-1187, October 1989.

[339] G. Kuper. The Logical Data Model. PhD thesis, Stanford University, Dept.of
Computer Science, 1985.

[340] Forgy Charles L. RETE : A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19, 1982.

[341] Raschid L., T. Sellis, and C.-C. Lin. Exploiting Concurrency in a DBMS Im-
plementation for Production Systems. In The First Symposium on Databases in
Parallel and Distributed Systems, 1988.

[342] Rowe L. and Stonebraker M. The POSTGRES Data Model. In International
Conference on VLDB, 1987.

[343] Bellcore Information Networking Research Laboratory. The Touring Machine
System. Communications o]ACM, 36(1):68-77, January 1993.

[344] M. S. Lakshmi and P. S. Yu. Effectiveness of Parallel Joins. IEEE Transactions
on Knowledge and Data Engineering, 2(4):410-424, December 1990.

[345] H. Lam, S. Su, and A. Alashqur. Integrating the Concepts and Techniques
of Semantic Modeling and the Object-Oriented Paradigm. In Proc. 13th Int'l
Computer Software and Applications Conference (COMPSAC), pages 209-217,
1989.

[346] H. Lam, S. Su, et al. GTOOLS: An Active Graphical User Interface Toolset for
an Object-Oriented KBMS. In International Journal of Computer Science and
Engineering, volume 7, pages 69-85, 1992.

[347] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The Object-
Store Database System. Communicatons of the ACM, 34(10), October 1991.

[348] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of ACM, 21(7), July 1978.

[349] J. Lassila. Preliminary Data in Econometric Databases. In G. Coos and J. Hart-
manis, editors, Lecture Notes in Computer Science ~BO. Springer-Verlag, 1990.

[350] B. Leban, D. McDonald, and D. Forster. A Representation for Collections of
Temporal Intervals. In Proceedings of the AAAI-1986 5th Int. Conf. on Artificial
Intelligence, pages 367-371, 1986.

434 B I B L I O G R A P H Y

[351] C. Lecluse, P. Richard, and F. Velez. 02, an Object-Oriented Data Model. In
Proc. A CM-SIGMOD 1988 International Conference on Management of Data,
pages 424-433, June 1988.

[352] S.-Y. Lee and J. K. Aggarwal. A Mapping Strategy for Paralell Processing. IEEE
Transactions on Computers, 36(4):433-442, April 1987.

[353] C. E. Leiserson et al. The Network Architecture of the Connection Machine CM-
5. Proc. 4th Annual A CM Symposium on Parallel Algorithms and Architectures,
pages 272-285, June 1992.

[354] D. Lewis. General Semantics. In Barbara H. Puttee, editor, Montague Grammar,
pages 1-50. Academic Press, Inc., New York, 1976.

[355] K. J. Lieberherr et aL Object-Oriented Programming: An Objective Sense of
Style. OOPSLA '88 Proceedings, SIGPLAN Not. (ACM) 23, 11, (San Diego, CA,
September 1988.

[356] K. J. Lieberherr et al. From Objects to Classes: Algorithms for Object-Oriented
Design. Tech. Report Demeter-3, Northeastern University, Jaxmary 1990.

[357] K. J. Lieberherr and I. Holland. Assuring Good Style for Object-Oriented Pro-
grams. IEEE Software, (September) 1989.

[358] K. J. Lieberherr and I. Holland. Tools for Preventive Software Maintenance.
Proceedings of the Conference on Software Maintenance, 1EEE Press, Miami
Beach, FL., October 1989.

[359] K. J. Lieberherr and A. J. Riel. Demeter: A CASE Study of Software Growth
through Parameterized Classes. Jrnl. of Object-Oriented Programming. 1,8,
Aug/Sept 1988.

[360] B. Linder. Informix Parallel Data Query. Proceedings of the 2nd Intl. Conf. on
Parallel and Distributed Information Systems, pages 71-72, January 1993.

[361] B. Linder. Oracle Parallel RDBMS on Massively Parallel Systems. Proceedings
of the 2nd Intl. Conf. on Parallel and Distributed Information Systems, pages
67-68, January 1993.

[362] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wflms. A Snapshot Differ-
ential Update Algorithm. A CM SIGMOD International Conference on Manage-
ment of Data, 1986.

[363] A. Lippman and W. Bender. News and Movies in the 50 Megabit Living Room.
Globecom '87, pages 1976-1981, November 9187.

[364] Andrew Lippman and William Butera. Coding Image Sequences for Interactive
Retrieval. Communications of ACM, 32(7):852-860, July 1989.

[365] Jr. Lipski. On Semantic Issues Connected with Incomplete Information Data-
bases. A CM Trans. on Database Systems, 4(3):262-296, 1979.

[366] B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Communication in
the Mercury System. Memo 59-1, Programming Methodology Group, Labora-
tory for Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, April 1988.

[367] T.D.C. Little and A. Ghafoor. Spatio-Temporal Composition of Distributed Mul-
timedia Objects for Value-Added Networks. Computer, 24(10):42-50, October
1991.

B I B L I O G R A P H Y 435

[384]

[368] Thomas D. C. Little and Arif Ghafoor. Network Considerations for Distributed
Multimedia Object Composition and Communication. IEEE Network Magazine,
pages 32-49, November 1990.

[369] Thomas D. C. Little and Arif Ghafoor. Synchronization and Storage Models
for Multimedia Objects. IEEE Journal on Selected Areas in Communications,
8(3):413-427, April 1990.

[370] Thomas D. C. Little and Arif Ghafoor. Multimedia Synchronization Protocols
for Broadband Integrated Services. IEEE Journal on Selected Areas in Commu.
nication, 9(9):1368-1381, December 1991.

[371] Thomas D. C. Little, Arif Ghafoor, and C. Y. Roger Chen. Conceptual Data
Models for Time-Dependent Multimedia Data. In Proc. International Workshop
on Multimedia Information Systems (MMIS '92), pages 86-110, February 1992.

[372] W. Litwin. MALPHA: A Relational Multidatabase Manipulation Language. 1st
IEEE Conference on Data Engineering, 1984.

[373] W. Litwin et al. SIRIUS Systems for Distributed Data Management. pages
311-366. North-Holland Publishing, 1982.

[374] W. Litwin and H. Tirri. Flexible Concurrency Control Using Value Dates. Tech-
nical Report 845, INRIA, May 1988.

[375] Delcambre L.M.L and J.N. Etheredge. The Relational Production Language: A
Production Language for Relational Databases. In Second International Confer-
ence of Expert Database Systems, 1988.

[376] M.-L. Lo, M.-S. Chen, C. V. Ravishankar, and P. S. Yu. On Optimal Processor
Allocation to Support Pipelined Hash Joins. Proceedings of ACM SIGMOD, May
1993.

[377] G. M. Lohman et al. The POSTGRES Next Generation Database Management
System. Communications of ACM, 34(10):78-92, October 1991.

[378] G. M. Lohman, B. Lindsay, H. Pirahesh, and K. B. Schiefer. Extensions to
Starburst: Objects, Types, Functions, and Rules. Communications of ACM,
34(10):94-109, October 1991.

[379] Guy M. Lohman, Bruce Lindsay, Hamid Pirahesh, and K. Bernhard Schiefer.
Extensions to Starburst: Objects, Types, Functions, and Rules. Communicatons
of the ACM, 34(10), October 1991.

[380] T. Lovett and S.S. Thakkar. The Symmetry Multiprocessor System. Proc. of
International Conference on Parallel Processing, August 1988.

[381] H. Lu, M.-C. Shan, and K.-L. Tan. Optimization of Multi-Way Join Queries for
Parallel Execution. Proceedings of the 17th International Conference on Very
Large Data Bases, pages 549-560, September 1991.

[382] David C. Luckham and Friedrich W. yon Henke. An Overview of Anna, a Spec-
ification Language for Ada. IEEE Software, March 1985.

[383] L.F. Ludwig. Integration of CAD/CAE with Multimedia Teleconferencing and
Messaging via Broadband Networks and Shared Resource Servers. Proc. 1st Intl.
Conf. Systems Integration, pages 136-143, April 1990.

Stonebraker M. and Rowe L.A. The Design of POSTGRES. In ACM-SIGMOD,
1986.

436 B I B L I O G R A P H Y

[385] Yoelle S. Maarek, Daniel M. Berry, and GaLl E. Kaiser. An Information Retrieval
Approach for Automatically Constructing Software Libraries. IEEE Transactions
on Software Engineering, 17(8):800-813, August 1991.

[386] Wendy E. Mackay and Glorianna Davenport. Virtual Video Editing in Interactive
Multimedia Applications. Communications of ACM, 32(7):802-809, July 1989.

[387] S. Manivannan and C.D. Pegden. A Rule-Based Simulator for Modeling Just-in-
Time Manufacturing System (JITSAI). Simulation, 52(8):109-117, 1990.

[388] Frank A. Manola and Jack A. ~Ibwards a General Spatial Model for Object
Oriented DBMS. In Proceedings of the l$'th International Conference on Very
Large Data Bases, 1986.

[389] V.M. Markowitz. Representing Processes in the Extended Entity-Relationship
Model. In Proc. 6th IEEE Int'l Conf. on Data Engineering, pages 103-110, 1990.

[390] Y. Masunaga. Design Issues of OMEGA: An Object-Oriented Multimedia Da-
tabase Management System. Journal of Information Processing, 14(1):60-74,
1991.

[391] Yoshifumi Masunaga. Design Issues of OMEGA: An Object-Oriented Multimedia
Database Management System. Journal of Information Processing, 14(1):60-74,

1991.

[392] M. Maybee, L.J. Osterweil, and S.D. Sykes. Q: A Multi-linguai Interprocess
Communications System for Software Environment Implementation. Technical
Report CU-CS-476-90, University of Colorado, Department of Computer Sci-
ence, Campus Box 430, University of Colorado, Boulder, CO 80309-0430, 1990.

[393] Mark Maybee. Q: A Multi-lingual Interprocess Communications System. Refer-
ence Manual. Technicai report, University of Colorado, Department of Computer
Science, Campus Box 430, University of Colorado, Boulder, CO 80309-0430,
1990.

[394] James Mayfield and Charles Nicholas. SNITCH: Augmenting Hypertext Doc-
uments with a Semantic Net. In Proceedings of the ISMM First International
Conference on Information and Knowledge Management, pages 146-152, Bal-
timore, MD, U.S.A., November 1992. The International Society for Mini and
Microcomputers.

[395] D. R. McCarthy and U. Dayal. The Architecture of an Active Database Man-
agement System. Proc. ACM-SIGMOD 1989 Int'l Conf. Management of Data,
pages 215-224, May 1989.

[396] E. McKenzie and R. Snodgrass. An Evaluation of Relational Algebras Incor-
porating the Time Dimension in Databases. ACM Computing Surveys, 23(4),
December 1991.

[397] C. Meadows and C. Landwehr. Designing a Trusted Application in an Object-
Oriented Data Model. Research Directions in Database Security, Teresa F. Lunt,
ed., Springer-Verlag, Berlin, 1992.

[398] Arnold C. Meltzer and GerMd Kowalski. Text Searching Using an Inversion Da-
tabase Consisting of Trigrams. In IEEE Proceedings of the Second International
Conference on Computers and Applications, pages 65-69, 1987.

[399] R. Merton. Theory of Rational Option Pricing. The Bell J. of Econ. and Mgmt.
Sc, 4(1), 1973.

BIBLIOGRAPHY 437

[400]

[4Ol]

[4o2]
[403]

[404]

[405]

[406]

[407]

[408]

[409]

[41o]

[411]

[412]

[413]

[414]

[415]

[416]

[417]
[418]

[419]

B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

B. Meyer. An Eiffel Collection. Technical Report TR-EI-20/EC, ISE, 270 Storke
Road, Suite 7, Goleta CA 93117, U.S.A, November 1990.

B. Meyer. Eiffel: The Language. Object-Oriented Series, New York, 1992.

Sun MicroSystems. XDR: External Data Representation Standard. Technical
Report RFC-1014, Sun MicroSystems. Inc., June 1987.

Sun MicroSystems. RPC: Remote Procedure Call Protocol Specification. Tech-
nical Report RFD-1057, Sun MicroSystems. Inc., June 1988.

M. S. Miller et al. The Application Accelerator Illustration System. OOPSAL'86
Proceedings SIGPLAN Not. (ACM) 2,11 (Portland, Oregon), November 1986.

H.D. Mills. Stepwise Refinement and Verification in Box-Structured Systems.
IEEE Computer, pages 23-36, June 1988.

J. Mills. Semaatic Integrity of the Totality of Corporate Data. In Proceedings of
the 1 ~t International Conference on Systems Integration, April 1990.

J. Minker and A Rajasekhar. A FixPoint Semantics for Disjunctive Logic Pro-
grams. Journal of Logic Programming, 1990.

P. Mishra and M.tt. Eich. Join Processing in Relational Databases. ACM Com-
puting Surveys, 24(1):63-113, Mar 1992.

C. Mohan, I. Narang, and S. Silen. Solutions to Hot Spot Problems in a Shared
Disks Transaction Environment. Proceedings of 4th International Workshop on
High Performance Transaction Systems, September 1991.

L. Mohan and R. Kashyap. An Object Oriented Knowledge Representation for
Spatial Information. IEEE Transactions on Software Engineering, 1988.

L. Mohan and R.L. Kashyap. A Visual Query Language for Graphical Interac-
tion with Schema-Intensive Database. To appear on IEEE Trans. on Data and
Knowledge Engineering.

D.E. Monarchi and G.I. Puhr. A Research Typology for Object-Oriented Analysis
and Design. Communications of the ACM, September 1992.

R. Montague. Pragmatics. In R. Klibansky, editor, Contemporary Philosophy:
A Survey, pages 102-122. La Nuova Italia Editrice, Florence, 1968.

A. Montgomery, D. D'Souza, and S. Lee. The Cost of Relational Algebraic Op-
erations on Skewed Data: Estimates and Experiments. Information Processing
83, IFIP, pages 235-241, 1983.

D.J. Moore. Multimedia Presentation Development Using the Audio Visual Con-
nection. IBM Systems Journal, 29(4):494-508, 1990.

C. Mosher. Postgres Reference Manual. Unpublished Manuscript, 1991.

J. Eliot B. Moss and Tony Hosking. Managing Persistent Data With Mneme:
User's Guide to the Client Interface. University of Massachusetts, Object Ori-
ented Systems Laboratory, Department of Computer and Information Science,
University of Massachusetts, Amherst, MA 01003.

A. Motro and P. Buneman. Constructing Superviews. ACM SIGMOD Interna-
tional Conference on Management of Data, 1981.

438

[420]

BIBLIOGRAPHY

James G. Mullen, Jagannathan Srinivasan, Prasun Dewan, and B. Bhargava.
Supporting Queries in the O-Raid Object-Oriented Database System. In Pro-
ceedings of the International Computer Software and Applications Conference,
1990. to appear.

[421] I. S. Mumick, H. V. Jagadish, and O. Shmueh. Events with Attributes in an
Active Database. Technical report, 1993.

[422] Philip Musgrove. The General Theory of Gerrymandering. American Political
Series, Ed. R.B.Ripley. Sage Publications Inc., 1977.

[423] N. NMfah. Multimedia Applications. Computer Communications, 13(4):243-249,
May 1990.

[424] G. Nagy and S. Wagle. Geographic Data Processing. Computing Surveys, June
1979.

[425] Ataru T. Nakagawa and Kokichi Futatsugi. Software Process a la Algebra: OBJ
for OBJ. 1EEE Transactions on Software Engineering, 1990.

[426] I. Nassi and B. Shneiderman. Flowchart Techniques for Structured Programming.
SIGPLAN Notices, 8(8), 1973.

[427] S. Navathe and R. Ahmed. TSQL - A Language Interface for Temporal Data-
bases. In Proceedings of Temporal Aspects of Information Systems, 1987.

[428] S. Navathe and R. Ahmed. Version Control and Management in CAD Databases.
Technical report, Univ of Florida, 1990.

[429] S.B. Navathe and Raft Ahmed. A Temporal Relational Model and a Query
Language. International Journal of Information Sciences, March 1989.

[430] Shamkant B. Navathe. Evolution of Data Modeling for Databases. Communica-
tions of the ACM, 35(9), September 1992.

[431] J. M. Nerson. Object-Oriented Analysis and Design in the 'Business Class'
Project. OOPSLA, Phoenix, Arizona, 1991. Submitted to the Workshop on
Object-Oriented (Domain) Analysis.

[432] J. M. Nerson. Applying Object-Oriented Analysis and Design. Communications
of the ACM, 35(9), September 1992.

[433] New York University, New York, NY 10012. GRIFFIN: Language Reference
Manual, October 1992. Version 1.09.

[434] T. L. Nixon, K. Lubenow, J. Srinivasan, P. Dewan, and B. Bhargava. Building
a User-Interface for the O-Raid Database System Using the Suite System. In
Proceedings of the Second International Conference on Systems Integration, June
1992.

[435] E. Nordhagen. Generic Object-Oriented Systems. Proceedings of TOOLS'89,
Paris, France., November 1989.

[436] F. Olken. Random Sampling from Databases. Unpublished Manuscript, 1992.

[437] E. Omiecinski and E. T. Lin. The Adaptive-Hash Join Algorithm for a Hyper-
cube Multicomputer. IEEE 7~ransactions on Parallel and Distributed System,
3(3):334-349, May 1992.

[438] B.C. Ooi, R.S. Davis, and K.J. McDonell. Extending a DBMS for Geographic
Applications. In Proceedings of the Fifth IEEE International Conference on Data
Engineering, pages 590-597, 1989.

B I B L I O G R A P H Y 439

[439] P. V. Oosterom and J. Bos. An Object Oriented Approach to Designing a Geo-
graphical Information Systems. Comp. and Graphics, 14, 1989.

[440] Jack A. Orenstein and F. A. Manola. An Efficient Pictorial Database System for
PSQL. IEEE Transactions on Software Engineering, 14(5):639-650, May 1988.

[441] Jack A. Orenstein and Frank A. Manola. PROBE: SpatiM Data Modefing and
Query Processing in an Image Database Appfication. 1EEE Transactions on
Software Engineering, 14(5):611-629, May 1988.

[442] Bernstein P., V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-
ery in Database Systems. Addison Wesley, 1987.

[443] Chris D. Paice. Constructing Literature Abstracts by Computer: Techniques
and Prospects. Information Processing and Management, 26(1):171-186, 1990.

[444] Chris D. Paice. A ThesaurM Model of Information Retrieval. Information Pro-
cessing and Management, 27(5):433-447, 1991.

[445] Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single Node
Case. In Proc. IEEE INFOCOM '92, 1992.

[446] C. Parent and S. Spaccapietra. An Entity-Relationship Algebra. 1st IEEE In-
ternational Conference on Data Engineering, 1984.

[447] C. Parent and S. Spaccapietra. ERC+: An Object Based Entity-Relationship
Approach. In P.Loucopoulos and R.Zicari, editors, Conceptual Modelling, Data-
bases and CASE: An Integrated View of Information Systems Development. John
Wiley, 1992.

[448] Gurudatta M. Parulkar. The Next Generation of Internetworking. Computer
Communications Review, 20(1):18-43, January 1990.

[449] Roy D. Pea. The Collaborative Visualization Project. Communications of A CM,
36(5):60-63, May 1993.

[450] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[451] Y. Perl, J. Geller, E.J. Neuhold, and V. Turau. The Dual Model for Object-
Oriented Databases. Technical report, 1991. Research Report CIS-91-30.

[452] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

[453] A. Poggio, J.J. Garcia-Luna-Aceves, E.J. Craighill, D. Moran, L. Aguilar,
D. Worthington, and J. Hight. CCWS: A Computer-Based Multimedia Infor-
mation System. Computer, 18(10):92-103, October 1985.

[454] C. A. Pogue, E. M. Rasmussen, and P. Willett. Searching and Clustering of
Databases Using the icl Distributed Array Processor. Parallel Computing, 8:399-
407, October 1988.

[455] C. A. Pogue and P. Willett. Use of Text Signatures for Document Retrieval in a
Highly Paralell Environment. Parallel Computing, 4:259-268, June 1987.

[456] C. Pu and A. Left. Replica Control in Distributed Systems: An Asynchronous
Approach. ACM SIGMOD, May 1991.

[457] J. M. Purtilo. The Polylith Software Bus. Technic~ Report UMIACS-TR-
90-65, CS-TR-2469, University of Maryland, Department of Computer Science,
University of Maryland, College Park, MD 20742, May 1990.

440 B I B L I O G R A P H Y

[458] J.M. Purtilo and Joanne M. Atlee. Module Reuse by Interface Adaptation. Tech-
nical report, University of Maryland, Computer Science Department, University
of Maryland, College Park, Maryland 20742, August 1989.

[459] Y. Rabinovich, A. Sinclair, and A. Wigderson. Quadratic Dynamical Systems. In
Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science,
pages 304-313, September 1992.

[460] F. Rabitti, E. Bertino , W. Kim, and D. Woelk. A Model of Authorization
for Next-Generation Database Systems. ACM Trans. on Database Systems,
16(1):88-131, March 1991.

[461] F. Rabitti and P. Savino. Automatic Image Indexation to Support Content-Based
Retrieval. Information Processing and Management, 28(5):547-565, 1992.

[462] E. Rahm. Use of Global Extended Memory for Distributed Transaction Process-
ing. Proceedings of ~th International Workshop on High Performance Transaction
Systems, September 1991.

[463] K. Ramamritham. Real-Time Databases. Journal of Distributed and Parallel
Database Systems, 1(1), 1992.

[464] P. Venkat Rangan, Harrick M. Vin, and Srinivas Ramanathan. Communica-
tion Architectures and Algorithms for Media Mixing in Multimedia Conferences.
IEEE/ACM Transactions on Networking, 1(1):20-30, February 1993.

[465] Erwin P. Rathgeb. Modeling and Performance Comparison of Pohcing Mecha-
nisms for ATM Networks. IEEE Journal on Selected Areas in Communications,
9(3):325-334, April 1991.

[466] O. Ratib and H.K. Huang. Low Cost Desktop Image Analysis Workstation with
Enhanced Interactive User Interface. Proc. SPIE Medical Imaging III: Image
Capture and Display, 1091:184-190, January 1989.

[467] Lee Ratzan. Building an Internet Browser. UNIX Review, 10(1):25-, January
1992.

[468] T. Reenskaug and E. Nordhagen. The Description of Complex Object-Oriented
Systems: Version 1. Senter for Industriforskning, Oslo, Norway, 1989.

[469] D. Reiner. The Kendall jSquaxe Query Decomposer. Proceedings of 2nd Intl.
Conf. on Parallel and Distributed Information Systems, pages 36-37, January
1993.

[470] T. Risch. Monitoring Database Objects. In Proceedings of the 15th International
Conference on Very Large Databases, pages 445-453, 1989.

[471] S. E. Robertson. The Methodology of Information Retrieval Experiment. In
K. Sparck Jones, editor, Information Retrieval Experiment, pages 9-31. Butter-
worths, 1981.

[472] B. Vincent Robinson. Interactive Machine Acquisition of a Fuzzy Spatial Rela-
tion. C~mputers and Geosciences, Vol 16, No 6 1990.

[473] G. C. Roman. Formal Specifications of Geographical Data Processing Require-
ments. In Proceedings of the Fifth IEEE International Conference on Data En-
gineering, 1986.

[474] N. Roussopoulos, C. Faloutsos, and T. Sellis. An Efficient Pictorial Database
System for PSQL. IEEE Transactions on Software Engineering., May 1988.

B I B L I O G R A P H Y 441

[475] N. Roussopoulos and H. Kang. A Pipeline N-Way Join Algorithm Based on the 2-
Way Semijoin Program. IEEE Transactions on Knowledge and Data Engineering,
3(4):461-473, December 1991.

[476] N. Roussopoulos and D. Leifker. Direct Spatial Search on Pictorial Databases
Using Packet R-Trees. Proc. '85 SIGMOD, pages 17-31, May 1985.

[477] W.B. Rubenstein. A Database Design for Musical Information. Proc. ACM
SIGMOD Conf. on Management of Data, pages 479-490, May I987.

[478] Gerda Ruge. Experiments on Linguistically-Based Term Associations. Informa-
tion Processing and Management, 28(3):317-332, 1992.

[479] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying Interdatabase De-
pendencies in a Multidatabase Environment. IEEE Computer, 24(12):46-52,
December 1991.

[480] G. Salton and C. Buckley. Parallel Text Search Methods. Communications of
ACM, 31(2):202-215, February 1988.

[481] G. Salton and C. Bucldey. Term Weighting Approaches in Automatic Text Re-
trieval. Information Processing and Management, 24(3):513-524~ 1988.

[482] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw Hill, 1983.

[483] H. Samet. The Qnadtree and Other Hierachical Data Structures. ACM Com-
puting surveys, 16:187-260, May 1984.

[484] H. Samet. The Quadtree and Related Data Structures. Computing Surveys,
16(2):187-260, June 1984.

[485] H. Samet. Applications of Spatial Data Structures. Addison Wesley Publications,
1989.

[486] H. Samet. The Design and Analyses of Spatial Data Structures. Addison Wesley
Publications., 1989.

[487] R.S. Sandhu, R. Thomas, and S. Jajodia. Supporting Timing Channel Free Com-
putations in MultiLevel Secure Object-Oriented Databases. Database Security
V: Status and Prospects, (C. E. Landwehr and S. Jajodia, eds.), North-Holland,
pages 297-314, 1992.

[488] N. Sarda. Extensions to SQL for Historical Databases. IEEE Tran. on Knowledge
and Data Engineering, 2(2):220-230, 1990.

[489] S. Satin, M. DeWitt, and R. Rosenburg. Overview of SHARD: A System for
Highly Available Replicated Data. Technical Report CCA-88-01, Computer Cor-
poration of America, May 1988.

[490] S. K. Satin. Robust Application Design in Highly Available Databases. In 5th
Symposium on Reliability in Distributed Systems, pages 87-94, 1986.

[491] S. K. Sarin and N. A. Lynch. Discarding Obsolete Information in a Replicated
Database System. IEEE Transactions on Software Engineering, SE-13(1):39-47,
Jan 1987.

[492] R.M. Sasnett. Reconfigurable Video. M.S. Thesis, MIT, 1986.

[493] H.-J. Schek, H.-B. Paul, and G. Weikum. The DASDBS Project: Objectives,
Experiences, and Future Prospects. In IEEE Transactions on Knowledge and
Data Engineering, volume 2, 1990.

442 B I B L I O G R A P H Y

[494]

[495]

H.-J. Schek and M.H. Scholl. The Relational Model with Relation-Valued At-
tributes. Information Systems, 11(2), 1986.

Peter Scheuermann and Clement Yu. Report on the Workshop on Heterogeneous
Database Systems Held at Northwestern University, Evanston, Illinois, December
11-13, 1989. SIGMOD RECORD, 19(4), December 1990.

[496] A. Schilberschatz, M. Stonebraker, and J.D. Ullman. Database Systems:
Achievements and Opportunities. SIGMOD RECORD, 19(4), December 1990.

[497] D. Schneider. Complex Query Processing in Multiprocessor Database Machines.
Technical Report Tech. Rep. 965, Computer Science Department, University of
Wisconsin- Madison, September 1990.

[498] D. Schneider and D. J. DeWitt. Tradeoffs in Processing Complex Join Queries
via Hashing in Multiprocessor Database Machines. Proceedings of the 16th In-
ternational Conference on Very Large Data Bases, pages 469-480, August 1990.

[499] M. Scholl and A. Voisard. Thematic Map Modeling. Lecture Notes in Computer
Science, pages 167-190, 1989. Vol. 409.

[500] M.H. Sclioll, C. Laasch, and M. Tresh. Updatable Views in Object-Oriented
Databases. In 2nd International Conference on Deductive and Object-Oriented
Databases, December 1991.

[501] M.H. Scholl, H.-B. Paul, and H.-J. Schek. Supporting Flat Relations by Nested
Relational Kernel. In 13th International Conference on Very Large Data Bases,
September 1987.

[502] M.H. Scholl, H.-J. Schek, and M. Tresh. Object Algebra and Views for Multi-
Objectbases. In International Workshop on Distributed Object Management, An-
gust 1992.

[503] Michael F. Schwartz. The NeTworked Resource Discovery Project: Goals, De-
sign, and Research Efforts. Technical Report CU-CS-387-88, University of Col-
orado, Boulder, Colorado 80309, May 1988.

[504] Michael F. Schwartz. A Scalable, Non-Hierarchical Resource Discovery Mecha-
nism Based on Probabilistic Protocols. Technical Report CU-CS-474-90, Univer-
sity of Colorado, Boulder, Colorado 80309, June 1990.

[505] Michael F. Schwartz, Darren R. Hardy, William K. Heinzman, and Glenn C.
Hirschowitz. Supporting Resource Discovery Among Public Internet Archives
Using a Spectrum of Information QuMity. In 11th International Conference on
Distributed Computing Systems, May 1991.

[506] B. Seeger and H.P. Kriegel. The Buddy-Tree: An Efficient and Robust Access
Method for Spatial Data Base Systems. In Proceedings of the 16'th International
Conference on Very Large Data Bases, pages 590-601, 1986.

[507] A. Segev and H. Gunadhi. Event-Join Optimization in Temporal Relational
Databases. In Proceedings of the Int. Conf. on Very Large Databases, pages
205-215, August 1989.

[508] A Segev and A. Shosh~tni. Logical Modeling of Temporal Data. Proceedings of
the A CM-SIGMOD International Conference on Management of Data., 1987.

[509] A. Segev and A. Shoshani. The Representation of a Temporal Data Model in the
Relational Environment. In M. Rafanelli, J.C. Klensin, and P. Svensson, editors,
Lecture Notes in Computer Science No. 339, pages 39-61. Springer-Verlag, 1988.

BIBLIOGRAPHY 443

[510] A. Segev and J,L. Zhao. Data Management for Large Rule Systems. In Pro-
ceedings of the Int. Conf. on Very Large Databases, pages 297-307, September
1991.

[511] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access Path Selection in a Relational Database Management System. Proceedings
of ACM SIGMOD, pages 23-34, 1979.

[512] T. Sellis, N. Roussopoulos, and C. Faloutsos. The Buddy-Tree: An Efficient and
Robust Access Method for Spatial Data Base Systems. In Proceedings of the
13'th International Conference on Very Large Data Bases, pages 507-518, 1987.

[513] R. Sharma. A Generic Machine for Paralell Information Retrieval. Information
Processing and Management, 25(3):223-235, 1989.

[514] A. Sheth and G. Karabatis. Multidatabase tnterdependencies in Industry. ACM
SIGMOD, May 1993.

[515] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed
Heterogeneous, and Autonomous Databases. A CM Computing Surveys, 22(3),
September 1990.

[516] A. Sheth, J. Larson, A. Cornelio, and S. Navathe. A Tool for Integrating Con-
ceptual Schemas and User Views. In gth IEEE.International Conference on Data
Engineering, February 1988.

[517] A. Sheth, Y. Leu, and A. Elmagarmid. Maintaining Consistency of Interde-
pendent Data in Multidatabase Systems. Technical Report CSD-TR-91-016,
Computer Sciences Department, Purdue University, March 1991.

[518] A. Sheth and M. Rusinldewicz. Management of Interdependent Data: Specifying
Dependency and Consistency Requirements. In Proceedings of the Workshop on
the Management of Replicated Data, Houston, TX, November 1990.

[519] A. Sheth, M. Rusinkiewicz, and G. Karabatis. Using Polytransactions to Manage
Interdependent Data. In A. Elmagarmid, editor, Database Transaction Models
for Advanced Applications, chapter 14. Morgan-Kaufmann, February 1992.

[520] D. Shmoys, J. Wein, and D. Williamson. Scheduling Parallel Machines On-Line.
In Proceedings of the 3~nd Annual Symposium on the Foundations of Computer
Science, pages 131-140, October 1991.

[521] B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
IEEE Computer, 16:57-69, 1983.

[522] Y.M. Shyy. The Design and Implementation of a Knowledge Base Programming
Language for Evolutionary Prototypin9 of Software Systems. PhD thesis, Uni-
versity of Florida, Computer and Information Science Department, 1992.

[523] Y.M. Shyy and S.Y.W. Su. K: a High-Level Knowledge Base Programming
Language for Advanced Database Applications. In ACM SIGMOD, pages 338-
347, Denver, Colorado, May 29-31 1991.

[524] A. Sflberschatz, M. Stonebraker, and J. Ullman. Database Systems: Achieve-
ments and Opportunities. CACM, 34(10):110-120, October 1991.

[525] E. Simon and P. Valduriez. Integrity Control in Distributed Database Systems.
In Proceedings of the 20 th Hawaii International Conference on System Sciences,
1986.

[536]

[537]

444 BIBLIOGRAPHY

[526] D. Sleator. A 2.5 Times Optimal Algorithm for Packing in Two Dimensions.
Information Processing Letters, 10(1):37-40, February 1980.

[527] J. Smith and C Smith. Database Abstraction: Aggregation and Generalization.
A CM Transactions on Database Systems, 2(2), June 1976.

[528] R. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on
Database Systems, 12(2):247-298, June 1987.

[529] R. Snodgrass. The Temporal Query Language TQuel. ACM Trans. on Database
Systems, 12(2):247-298, June 1987.

[530] R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proceedings of
ACM-SIGMOD 1985 International Conference on Management of Data, pages
236-246, Austin, TX., May 1985.

[531] R. Snodgrass, S. Gomez, and L.E. Jr. McKenzie. Aggregates in the Temporal
Query Language TQUEL. Technical Report Technical Report TR89-26, Univer-
sity of Arizona, 1992.

[532] A. Snyder. An Abstract Model for Object-Oriented Systems. STL-90-22., Soft-
ware Technology Laboratory, HP Labs, Palo Alto, CA., 1990.

[533] W. Kirk Snyder. The SETL2 Programming Language. Courant Institute of
Mathematical Sciences, New York University, New York, NY 10012, September
9 1990.

[534] W. Kirk Snyder. The SETL2 Programming Language: Update On Current De-
velopments. Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, September 7 1990.

[535] Snodgrass Soo, M., C. R., Dyreson, C.S. Jensen, and N. Kline. Architectural
Extensions to Support Multiple Calendars. Technical Report TempIS Technical
Report 32, University of Arizona, 1992.

S. Spaccapietra and C. Parent. Conflicts an Correspondence Assertions in Inter-
operable Databases. SIGMOD RECORD, 20(4), December 1991.

S. Spaccapietra, C. Parent, and Y. Dupont. Model-Independent Assertions for
Integration of Heterogeneous Schemas. Very Large Data Base Jopurnal, 1(1),
July 1992.

[538] S. Spaccapietra, C. Parent, K. YtongNon, and M. S. Abaidi. Generalizations:
A Formal and Flexible Approach. In 1st Conference on Management of Data,
November 1989.

[539] D. L. Spooner. The Impact of Inheritance on Security in Object-Oriented Da-
tabase Systems. Database Security, I1: Status and Prospects, Carl E. Landwehr,
ed., North-Holland, Amsterdam, pages 141-160, 1989.

[540] J. Srinivasan, Y. Jiang, Y. Zhang, and B. Bhargava. Experiments on O-Raid
Distributed Object-Oriented Database System. In Proceedings of the First In-
ternational Conference on Information and Knowledge Management, November
1992.

[541] Jagannathan Srinivasan. Replication and Fragmentation of Composite Objects in
Distributed Database Systems. PhD thesis, Purdue University, Aug 1992.

[542] S. Sripada. A Uniform Model for Temporal Object-Oriented Databases. In
International Conference on Very Large Databases, 1988.

B I B L I O G R A P H Y 445

[543] William Stallings, editor. Advances in ISDN and Broadband ISDN. IEEE Com-
puter Society Press, 1992.

[544] C. Stanfill. Partitioned Posting Files: A Paralell Inverted File Structure for
Information Retrieval. In Proceedings of the 1990 ACM SIGIR, pages 413-428,
September 1990.

[545] C. Stanfill and B. Kahle. Parallel Free-Text Search on the Connection Machine
System. Communications of ACM, 29(12):1229-1239, December 1986.

[546] C. Stanfil], R. Thau, and D. Waltz. A ParaleU Indexed Algorithm for Information
Retrieval. In Proceedings of the 1989 ACM SIGIR, pages 88-97, June 1989.

[547] Jr. Stanley M. Sutton. APPL/A: A Prototype Language for Software-Process
Programming. PhD thesis, University of Colorado, August 1990.

[548] R. Steinmetz. Synchronization Properties in Multimedia Systems. IEEE Journal
on Selected Areas in Communications, 8(3):401-412, April 1990.

[549] H. Stone, J. L. Wolf, and J. Turek. Optimal Partitioning of Cache Memory.
IEEE Transactions on Computers, 41(9):1054-1068, 1992.

[550] H. S. Stone. Parallel Querying of Large Databases: A Case Study. IEEE Com-
puter, 20(10):11-21, October 1987.

[551] M. Stonebraker. The Case for Shared Nothing. IEEE Database Engineering,
9(1), 1986.

[552] M. Stonebraker. Inclusion of New Types in Relational Database Systems. In
M. Stonebraker, editor, Readings in Database Systems, pages 480-487. Morgan
Kaufman Publishers, Inc., 1990.

[553] M. Stonebraker, E. Hanson, and S. Potamianos. The POSTGRES Rule Manager.
[EEE Transactions on Software Engineering, 14(7):897-907, July 1988.

[554] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures,
Caching and Views in Data Base Systems. In Proceedings of ACM SIGMOD
International Conference on the Management of Data, June 1990.

[555] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. The Design of XPRS.
Proceedings of the 14th International Conference on Very Large Data Bases,
pages 318-330, 1988.

[556] M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database
Management System. CACM, 34(10):78-93, October 1991.

[557] Michael Stonebraker and Greg Kemnitz. The POSTGRES Next-Generation Da-
tabase Management System. Communicatons of the ACM, 34(10), October 1991.

[558] P. D. Stotts and R. Furuta. Petri-Net-Based tIypertext : Document Structure
with Browsing Semantics. ACM Trans. on Office Automation Systems, 7(1):3-29,
January 1989.

[559] J.P. Strickland, P. P. Uhrowczik, and V. L. Watts. IMS/VS: An Evolving System.
IBM Systems Journal, V-21:490-510, 1982.

[560]~'B. Stroustrup. The C-k+ Programming Language. Addison-Wesley, Reading,
Mass, 1986.

[561] B. Stroustrup. The C-k4- Programming Language. Addison-Wesley, 1986.

[562] B. Stroustrup. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

446 BIBLIOGRAPHY

[563] B. Stroustrup. The C++ Programming Language (2nd Ed.). Addison-Wesley,
1991.

[564] S. Su, V. Krishnamurthy, and H. Lam. An Object-Oriented Semantic Association
Model OSAM*. In S. Kumara et al., editors, Artificiallntelligence Manufacturing
Theory and Practice, pages 463-494. American Inst. of Indus. Engr., 1989.

[565] S.Y.W. Su. SAM*: A Semantic Association Model for Corporate and Scientific-
Statistical Databases. Information Sciences, 29:151-199, 1983.

[566] Y.It.S. Su and H. M. Chen. A Temporal Knowledge Representation Model
OSAM*/T and its Query Language OQL/T. In Proceedings of the Int. Conf. on
Very Large Databases, pages 431-442, September 1991.

[567] R. Subramanian. Object Oriented Modeling and Intelligent Query Processing in
Spatial Databases. PhD thesis, Rutgers University, 1992.

[568] J.S. Sventek. An Architecture for Supporting Multi-Media Integration. Proc.
IEEE Computer Society Office Automation Symposium, pages 46-56, April 1987.

[569] A. Swami. Optimization of Large Join Queries: Combining Heuristics with Com-
binatorial Techniques. Proceedings of ACM SIGMOD, pages 367-376, 1989.

[570] A. Swami and A. Gupta. Optimization of Large Join Queries. Proceedings of
ACM SIGMOD, pages 8-17, 1988.

[571] Sellis T. and et. el. Implementing Large Production Systems in a DBMS Envi-
ronment. In ACM-SIGMOD, 1988.

[572] Thomasma T., Y. Mao, and Ulgen O.M. Manufacturing Simulation in SmaJltalk.
In SCS Multiconference on Object-Oriented Simulation, 1990.

[573] A.U. Tansel, M.E. Arkun, and G. Ozsoyoglu. Time-by-Example Query Language
for Historical Databases. IEEE Trans. on Software Engineering, 15(4):464-478,
April 1989.

[574] A. Tantawi, D. Towsley, and J. Wolf. Optimal Allocation of Multiple Class
Resources in Computer Systems. Proceedings of the A CM Sigmetrics Conference,
pages 253-260, May 1988.

[575] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W.
Selby, Jack C. Wileden, Alexander L. Wolf, and Michael Young. Foundations for
the Arcadia Environment Architecture. In In Proceedings of A CM SIGSOFT '88:
Third Symposium on Software Development Environments, Boston, pages 1-13,
November 1988. Appeared as Sigplan Notices 24(2) and Software Engineering
Notes 13(5).

[576] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W.
Selby, Jack C. Wileden, Alexander L. Wolf, and Michael Young. Issues En-
countered in Building a Flexible Software Development Environment: Lessons
Learned from the Arcadia Project. In Proceedings SDES, December 1992.

[577] Teradata. DBC/1012 Database Computer System Manual Release 2.0. Technical
Report Document C10-0001-02, Teradata Corperation, November 1985.

[578] Robert B. Terwilliger and R. H. Campbell. PLEASE: a Language for Incremental
Software Development. In Proceedings of the ~th International Workshop on
Software Specification and Design, pages 249-256, April 1987.

B I B L I O G R A P H Y 447

[579] Robert B. Terwilliger and Roy H. Campbell. PLEASE: Executable Specifications
for Incremental Software Development. Journal of Systems and Software, 10:97-
112, 1989.

[580] R. Tewari. Robustness in Replicated Databases. PhD thesis, Rutgers University,
1990.

[581] R. Tewari and N.R. Adam. Using Semantic Knowledge of Transactions to
Improve Recovery and Availability of Replicated Data. Information Systems,
17(2):477-490, Nov-Dec 1992.

[582] M. B. Thuraisingham. A MultiLevel Secure Object-Oriented Data Model. In
Proc. 12th National Computer Security Conference, pages 579-590, October
1989.

[583] M. B. Thuraisingham. Mandatory Security in Object-Oriented Database Sys-
tem. In Proc. Conf. on Object.Oriented Programming: Systems, Languages, and
Applications, pages 203-210, October 1989.

[584] H. Tirri, J. Srinivasan, and B. Bhargava. Transactions for Fragmented Composite
Objects. Technical report, Purdue University, 1991.

[585] H. Tirri, J. Srinivasan, and B. Bhargava. Integrating Distributed Data Sources
Using Federated Objects. In International Workshop on Distributed Object Man-
agement, Edmonton, Canada, July 1992.

[586] F.W. Tompa. A Data Model for Flexible Hypertext Database Systems. ACM
Trans. on Information Systems, 7(1):85-100, January 1989.

[587] S.T. Treves, E.S. Hashem, B.A. Majmudar, K. Mitchell, and D.J. Michaud. Mul-
timedia Communications in Medical Imaging. IEEE Journal on Selected Areas
in Communications, 10(7):1121-1132, September 1992.

[588] J. Turek, J. Wolf, K. Pattipati, and P. S. Yu. Scheduling Parallelizable Tasks:
Putting it all on the Shelf. Proceedings of the ACM Sigmetrics Conference,
Newport, RL pages 225-236, June 1992.

[589] J. Turek, J. Wolf, and P. Yu. Approximate Algorithms for Scheduling Paralleliz-
able Tasks. In Proceedings of the 4th Annual Symposium on Parallel Algorithms
and Architectures, San Diego, CA, pages 323-332, June 1992.

[590] H. R. Turtle and W. B. Croft. Evaluation of an Inference Network-Based Re-
trievaJ Model. ACM Transactions on Information Systems, 3:187-222, 1991.

[591] A. Turtur et al. IDB: An Image Database System. IBM Journal of Research and
Development, 35(1):88-95.

[592] Dayal U., Buchmann A., Goldhirsch D., and Heiler S. PROBE - A Research
Project in Knowledge Directed DBMS. Technical Report CCA-85-03, Computer
Corporation of America, 1986.

[593] J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1988.

[594] J.D. Ullman. Principles of Database Systems. Computer Science Press, Potomac,
MD, 1980.

[595] U.S.Dept. of Commerce, Bureau of the Census. TIGER/Line Precensus Files.
1990.

448

[596]

B I B L I O G R A P H Y

P. Valduriez and G. Gardarin. Join and Semijoin Algorithms for a Multiproces-
sor Database Machine. ACM Transactions on Database Systems, 9(1):133-161,
March 1984.

[597] P. Van ttentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming. MIT Press, 1989.

[598] M. Vardi. The Complexity of Relational Query Languages. In Proceedings of the
14th STOC, pages 137-146, 1982.

[599] Y. Vassiliou. Null Values in Database Management : A Denotational Semantics
Approach. In Proceedings of ACM SIGMOD International Conference on the
Management of Data, May 1979.

[600] J. Verso. Verso: A Database Machine Based on Non-INF Relations. Technical
Report 523, INRIA, 1986.

[601] Q. Wang and H. Cheng. A Heuristic of Scheduling Parallel Tasks and it Analysis.
SIAM Journal on Computing, 21(2):281-294, April 1992.

[602] Jon Ward. A Candidate HUMD ProtoTech Demonstration Vehicle: ProtoTech
Extensions to a Structured Design Methodology. Honeywell Technical Report
CS-t~92-015, Honeywell Systems and Research Center, July 7th 1992. DRAFT.

[603] Peter Wegner. Dimensions of Object-Oriented Modeling. IEEE Computer,
25(10):12-20, October 1992.

[604] W. Weihl. Commutativity-Based Concurrency Control for Abstract Data Types.
In 21st Hawaii International Conference on System Sciences, pages 205-214,
1988.

[605] K.H. Weiss. Formal Specification and Continuous Media. Proc. 1st Intl. Work-
shop on Network and Operating Support for Digital Audio and Video, November
1990.

[606] David L. Wells, Craig W. Thompson, and Jose A. Blakeley. DARPA Open
Object-Oriented Database System. Technical report, Texas Instrument Incorpo-
rated, P.O. Box 655474, MS 238, Dallas, Texas 75265, U.S.A., 1992.

[607] Marek Wernik, Osama Aboul-Magd, and Henry Gilbert. Traffic Management for
B-ISDN Services. IEEE Network, 6(5):10-19, September 1992.

[608] R.A. Whitehurst. Integrating Object-Oriented and Rule-Based Approaches with
the Simulation Environment. In 30th Annual Army Operations Research Society
Symposium, 1991.

[609] G. Wiederhold and X. Qian. Modeling Asynchrony in Distributed Databases. In
Intl. Conf. on Data Engineering, February 1987.

[610] Gio Wiederhold. Intelligent Integration of Diverse Information. In Proceedings of
the ISMM First International Conference on Information and Knowledge Man-
agement, pages 1-7, Baltimore, MD, U.S.A., November 1992. The International
Society for Mini and Microcomputers.

[611] Jack C. Wileden, Alexander L. Wolf, Charles D. Fisher, and Peri L. Tart.
PGRAPHITE: An experiment in persistent typed Object Management. In In
Proceedings of A CM SIGSOFT 88: Third Symposium on Software Development
Environments, Boston, pages 130-142, November 1988.

B I B L I O G R A P H Y 449

[612] Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and Peri L. Tart.
Specification Level Interoperability. In In Proceedings of the Twelfth Interna-
tional Conference on Software Engineering, Nice, March 1990.

[613] P. Willett. Recent Trends in Hierarchic Document Clustering: A critical review.
Information Processing and Management, 24(5):577-597, 1984.

[614] A. Wilschut and P. Apers. Dataflow Query Execution in Parallel Main-Memory
Environment. Proceedings of the 1st Conference on Parallel and Distributed In-
formation Systems, pages 68-77, December 1991.

[615] R. Wirfs-Brock et al. Designing Object-Oriented Software. Prentice Hall., 1990.

[616] Rebecca Wirfs-Brock. Object Oriented Design: A Responsibility Driven Ap-
proach. OOPSLA '89 Proceedings, 1989.

[617] Rebecca Wirfs-Brock and Ralph E. Johnson. Surveying Current Research in
Object-Oriented Design. Communications of the ACM, September 1990.

[618] N. Wirth. Programs = Algorithms + Data Structures. Prentice Hall, 1976.

[619] D. Woelk, W. Luther, , and W. Kim. Multimedia Applications and Database
Requirements. IEEE Office Automation Symposium, pages 180-189, April 1987.

[620] Alexander L. Wolf. The AdaPIC Tool Set: Supporting Interface Control and
Analysis Throughout the Software Development Process. IEEE Transactions on
Software Engineering, 15(3), March 1989.

[621] Alexander L. Wolf and Alan Kaplan. PIC/ADA Language Reference Manual.
Software Development Laboratory, Computer and Information Science Depart-
ment, University of Massachusetts, Amherst, Massachusetts 01003, December
1991. Arcadia Design Document UM-91-10.

[622] J.L. Wolf, D. M. Dins, and P. S. Yu. An Effective Algorithm for Parallelizing Sort
Merge Joins in the Presence of Data Skew. Proceedings of the 2nd International
Symposium on Databases in Parallel and Distributed Systems, pages 103-115,
July 1990.

[623] J. L. Wolf, D. M. Dins, and P. S. Yu. A Parallel Sort Merge Join Algorithm for
Managing Data Skew. IEEE Transactions on Parallel and Distributed Systems,
pages 70-86, January 1993.

[624] J. L. Wolf, D. M. Dins, P. S. Yu, and J. Turek. An Effective Algorithm for
Parallelizing Hash Joins in the Presence of Data Skew. Proceedings o] the 7th
International Conference on Data Engineering, pages 200-209, April 1991.

[625] J. L. Wolf, D. M. Dins, P. S. Yu, and J. Turek. Comparative Performance of
Parallel Join Algorithms. Proceedings of the 1st International Conference on
Parallel and Distributed Information Systems, pages 78-88, December 1991.

[626] J. L. Wolf, B. Iyer K. Pattipati, and J. Turek. Optimal Buffer Partitioning for the
Nested Block Join Algorithm. Proceedings of the 7th International Conference
on Data Engineering, pages 510-519, April 1991.

[627] J. L. Wolf, J. Turek, and P. S. Yu. A Robust Method for Performing a Par-
allel Query in azL Environment with Partial Sharing. IBM Technical Disclosure
Bulletin, October 1992.

[628] J. L. Wolf, J. T. Turek, M.-S. Chen, and P. S. Yu. On the Optimal Scheduling of
Multiple Queries in a Parallel Processing Database Environment. IBM Research
Report, RC 18298, September 1992.

450 B I B L I O G R A P H Y

[629] Wal Yee Peter Wong and Dik Lun Lee. Signature File Methods for Implementing
a Ranking Strategy. Information Processing and Management, 26(5):641-653,
1990.

[630] Gillian M. Woodruff and Rungroj Kositpalboon. Multimedia Traffic Management
Principles for Guaranteed ATM Network Performance. IEEE Journal on Selected
Areas in Communications, 8(3):437-446, April 1990.

[631] K. Wu, P. Yu, and C. Pu. Divergence Control for Epsilon Serializability. Proe.
of the 8th lnt'l Conference on Data Engineering, February 1992.

[632] G.T.J Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented
Databases. In 8th Int. Conf. on Data Engineering, pages 584-593, May 1979.

[633] N. Yankelovich, B.J. Harm, N.K. Meyrowitz, and S.M. Drucker. Intermedia: The
Concept and the Construction of a Seamless Information Environment. IEEE
Computer, 21(1):81-96, January 1988.

[634] R. Yassen, S.Y.W. Su, and H. Lam. An Extensible Kernel Object Management
System. ACM OOPSLA 1991 Conference, pages 247-263, 1986.

[635] Raj Yavatkar. MCP: A Protocol for Coordination and Temporal Synchronization
in Multi-media Collaborative Applications. In Proceedings of the 12th Interna-
tional Conference on Distributed Computing Systems, June 1992.

[636] Rajendra S. Yavatkar. Communication Support for Collaborative Multimedia
Applications. Technical Report 181-91, Department of Computer Science, Uni-
versity of Kentucky, January 1991.

[637] C. Yu et al. Efficient Placement of Audio Data on Optical Disks for Real-Time.
Applications. Communications of the ACM, 32(7):862-871, July 1989.

[638] P. S. Yu, M.-S. Chen, H. tteiss, and S. It. Lee. On Workload Characterization of
Relational Database Environments. IEEE Transactions on Software Engineering,
18(4):347-355, April 1992.

[639] P. S. Yu and A. Dan. Effect of System Dynamics on Coupling Architectures for
Transaction Processing. Proceedings of the 8th International Conference on Data
Engineering, pages 458-469, February 1992.

[640] P. S. Yu and A. Dan. Impact of Workload Partitionability on the Performance
of Coupling Architectures for Transaction Processing. Proceedings of 4th IEEE
Symposium on Parallel and Distributed Processing, December 1992.

[641] P. S. Yu, D. M. Dins, J. T. Robinson, B. R. Iyer, and D. W. Cornell. On Coupling
Multi-Systems Through Data Sharing. Proceedings of the IEEE, 75(5):573-587,
May 1987.

[642] S. Zdonik. Object-Oriented Type Evolution. Advances in Database Programming
Languages, F.Bancilhon, and P.Buneman, eds., Addison-Wesley, pages 277-288,
1990.

[643] S. B. Zdonik and P. Wegner. Language and Methodology for Object-Oriented
Database Environments. In Proc. 19th Annual Hawaii International Conference
on System Sciences, pages 378-387, 1986.

[644] K. Zhao. Panorama: Dynamic View Construction in Large Multidatabase Sys-
tems. PhD thesis, University of Colorado, Department of Computer Science,
University of Colorado, Boulder, CO 80309, 1992.

B I B L I O G R A P H Y 451

[645] K. Zhao, R. King, and A. Bouguettaya. Incremental Specification of Views Across
Databases. In First International Workshop on Interoperability in Multidatabase
Systems, Kyoto, Japan, pages 187-190, April 7-9 1991.

[646] G. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley,
MA, 1949.

Lecture Notes in Computer Science
For information about Vols. 1-685
please contact your bookseller or Springer-Verlag

Vol. 686: J. Mira, J. Cabestany, A. Prieto (Eds.), New
Trends in Neural Computation. Proceedings, 1993. XVII,
746 pages. 1993.

Vol. 687: H. H. Barrett, A. F. Gmitro (Eds.), Information
Processing in Medical Imaging. Proceedings, 1993. XVI,
567 pages. 1993.

Vol. 688: M. Ganthier (Ed.), Ada-Europe '93. Proceedings,
1993. VIII, 353 pages. 1993.

Vol. 689: J. Komorowski, Z. W, Ras (Eds.), Methodolo-
gies for Intelligent Systems. Proceedings, 1993. XI, 653
pages. 1993. (Subseries LNAI).

Vol. 690: C. Kirchner (Ed.), Rewriting Techniques and
Applications. Proceedings, 1993. XI, 488 pages. 1993.

Vol. 691: M. Ajmone Marsan (Ed.), Application and Theory
of Petri Nets 1993. Proceedings, 1993. IX, 591 pages. 1993.

Vol. 692: D. Abel, B.C. Ooi (Eds.), Advances in Spatial
Databases. Proceedings, 1993. XIII, 529 pages. 1993.

Vol. 693: P. E. Lauer (Ed,), Functional Programming,
ConcurrencY, Simulation and Automated Reasoning. Pro-
ceedings, 1991/1992. XI, 398 pages. 1993.

Vol. 694: A. Bode, M. Reeve, G. Wolf (Eds.), PARLE '93.
Parallel Architectures and Languages Europe. Proceedings,
1993. XVII, 770 pages. 1993.

Vol. 695: E. P. Klement, W. Slany (Eds.), Fuzzy Logic in
Artificial Intelligence. Proceedings, 1993. VIII, 192 pages.
1993. (Subseries LNAI).

Vol. 696: M. Worboys, A. F. Grundy (Eds.), Advances in
Databases. Proceedings, 1993. X, 276 pages. 1993,

Vol. 697: C. Courcoubetis (Ed.), Computer Aided Verifi-
cation. Proceedings, 1993. IX, 504 pages. 1993.

Vol. 698: A. Voronkov (Ed.), Logic Programming and
Automated Reasoning. Proceedings, 1993. XIII, 386 pages.
1993. (Subseries LNAI).

Vol. 699: G. W. Mineau, B. Moulin, J. F. Sowa (Eds.),
Conceptual Graphs for Knowledge Representation. Pro-
ceedings, 1993. IX, 451 pages, 1993. (Subseries LNAI).

Vol. 700: A. Lingas, R. Karlsson, S. Carlsson (Eds.), Au-
tomata, Languages and Programming. Proceedings, 1993.
XII, 697 pages. 1993.

Vol. 701: P. Atzeni (Ed.), LOGIDATA+; Deductive
Databases with Complex Objects. VIII, 273 pages. 1993.

Vol. 702: E. Btirger, G. J~iger, H. Kleine Brining, S. Mar-
tini, M.M. Richter (Eds.), Computer Science Logic. Pro-
ceedings, 1992. VIII, 439 pages. 1993.

Vol. 703: M. de Berg, Ray Shooting, Depth Orders and
Hidden Surface Removal. X, 201 pages. 1993.

Vol. 704: F. N. Paulisch, The Design of an Extendible
Graph Editor. XV, 184 pages. 1993.

Vol. 705: H. GriJnbacher, R. W. Hartenstein (Eds.), Field-
Programmable Gate Arrays. Proceedings, 1992. VIII, 218
pages. 1993.

Vol. 706: H. D. Rombach, V. R. Basili, R. W. Selby (Eds.),
Experimental Software Engineering Issues. Proceedings,
1992. XVIII, 261 pages. 1993.

Vol. 707: O. M. Nierstrasz (Ed.), ECOOP '93 - Object-
Oriented Programming. Proceedings, 1993. XI, 531 pages.
1993.

Vol. 708: C. Laugier (Ed,), Geometric Reasoning for Per-
ception and Action. Proceedings, 1991. VIII, 281 pages.
1993.

Vol. 709: F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides
(Eds.), Algorithms and Data Structures. Proceedings, 1993.
XII, 634 pages. 1993.

Vol. 710: Z. l~sik (Ed.), Fundamentals of Computation
Theory. Proceedings, 1993. IX, 471 pages. 1993.

Vol. 711: A. M, Borzyszkowski, S. Sokotowski (Eds,),
Mathematical Foundations of Computer Science 1993. Pro-
ceedings, 1993. XIII, 782 pages. 1993.

Vol. 712: P. V. Rangan (Ed.), Network and Operating Sys-
tem Support for Digital Audio and Video. Proceedings,
1992. X, 416 pages. 1993.

Vol. 713: G. Gottlob, A. Leitsch, D. Mundici (Eds.), Com-
putational Logic and Proof Theory. Proceedings, 1993. XI,
348 pages. 1993.

Vol. 714: M. Bruynooghe, J. Penjam (Eds.), Programming
Language Implementation and Logic Programming. Pro-
ceedings, 1993. XI, 421 pages. 1993.

Vol. 715: E. Best (Ed.), CONCUR'93. Proceedings, 1993.
IX, 541 pages. 1993.

Vol. 716: A. U. Frank, I. Campari (Eds.), Spatial Informa-
tion Theory. Proceedings, 1993. XI, 478 pages. 1993.

Vol. 717: I. Sommerville, M. Paul (Eds.), Software Engi-
neering - ESEC '93. Proceedings, 1993. XII, 516 pages.
1993.

Vol. 718: J. Seberry, Y. Zheng (Eds.), Advances in
Cryptology - AUSCRYPT '92. Proceedings, 1992. XIII,
543 pages. 1993.

Vol. 719: D. Chetverikov, W.G. Kropatsch (Eds.), Compu-
ter Analysis of Images and Patterns. Proceedings, 1993.
XVI, 857 pages. 1993.

Vol. 720: V.Mafik, J. Las R.R. Wagner (Eds.), Data-
base and Expert Systems Applications. Proceedings, 1993.
XV, 768 pages. 1993.

Vol. 721: J. Fitch (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1992. VIII,
215 pages. 1993.

Vol. 722: A. Miola (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1993. XII,
384 pages. 1993.

Vol. 723: N. Aussenac, G. Boy, B. Gaines, M. Linster, J.-
G. Ganascia, Y. Kodratoff (Eds.), Knowledge Acquisition
for Knowledge-Based Systems. Proceedings, 1993. XIII,
446 pages. 1993. (Subseries LNAI).
Vol. 724: P. Cousot, M. Falaschi, G. Fil~, A. Rauzy (Eds.),
Static Analysis. Proceedings, 1993. IX, 283 pages. 1993.

Vol. 725: A. Schiper (Ed.), Distributed Algorithms. Pro-
ceedings, 1993. VIII, 325 pages. 1993.

Vol. 726: T. Lengauer (Ed.), Algorithms - ESA '93. Pro-
ceedings, 1993. IX, 419 pages. 1993

Vol. 727: M. Filgueiras, L. Damas (Eds.), Progress in Ar-
tificial Intelligence. Proceedings, 1993. X, 362 pages. 1993.
(Subseries LNAI).

Vol. 728: P. Torasso (Ed.), Advances in Artificial Intelli-
gence. Proceedings, 1993. XI, 336 pages. 1993. (Subseries
LNAI).

Vol. 729: L. Donatiello, R. Nelson (Eds.), Performance
Evaluation of Computer and Communication Systems. Pro-
ceedings, 1993. VIII, 675 pages. 1993.

Vol. 730: D. B. Lomet (Ed.), Foundations of Data Organi-
zation and Algorithms. Proceedings, 1993. XII, 412 pages.
1993.

Vol. 731: A. Schill (Ed.), DCE - The OSF Distributed
Computing Environment. Proceedings, 1993. VIH, 285
pages. 1993.

Vol. 732: A. Bode, M. Dal Cin (Eds.), Parallel Computer
Architectures. IX, 311 pages. 1993.

Vol. 733: Th. Grechenig, M. Tscheligi (Eds.), Human Com-
puter Interaction. Proceedings, 1993. XIV, 450 pages. 1993.

Vol. 734: J. Volkert (Ed.), Parallel Computation. Proceed-
ings, 1993. VIII, 248 pages. 1993.

Vol. 735: D. Bjorner, M. Broy, I. V. Pottosin (Eds.), For-
mal Methods in Programming and Their Applications. Pro-
ceedings, 1993. IX, 434 pages. 1993,

Vol. 736: R. L. Grossman, A. Nerode, A. P. Ravn, H.
Rischel (Eds.), Hybrid Systems. VIII, 474 pages. 1993.

Vol. 737: J. Calmet, J. A. Campbell (Eds.), Artificial Intel-
ligence and Symbolic Mathematical Computing. Proceed-
ings, 1992. VIII, 305 pages. 1993.

Vol. 738: M. Weber, M. Simons, Ch. Lafontaine, The Ge-
neric Development Language Deva. XI, 246 pages. 1993.

Vol. 739: H. Imai, R. L. Rivest, T. Matsumoto (Eds.), Ad-
vances in Cryptology- ASIACRYPT '91. X, 499 pages.
1993.

Vol. 740: E. F. Brickell (Ed.), Advances in Cryptology -
CRYPTO '92. Proceedings, 1992. X, 593 pages. 1993.

Vol. 741: B. Preneel, R. Govaerts, J. Vandewalle (Eds.),
Computer Security and Industrial Cryptography. Proceed-
ings, 1991. VIII, 275 pages. 1993.

Vol. 742: S. Nishio, A. Yonezawa (Eds.), Object Tech-
nologies for Advanced Software. Proceedings, 1993. X, 543
pages. 1993.

Vol. 743: S. Doshita, K. Furukawa, K. P. Jantke, T. Nishida
(Eds.), Algorithmic Learning Theory. Proceedings, 1992.
X, 260 pages. 1993. (Subseries LNAI)

Vol. 744: K. P. Jantke, T. Yokomori, S. Kobayashi, E.
Torrdta (Eds.), Algorithmic Learning Theory. Proceedings,
1993. XI, 423 pages. 1993. (Subseries LNAI)

Vol. 745: V. Roberto (Ed.), Intelligent Perceptual Systems.
VIII, 378 pages. 1993. (Subseries LNAI)

Vol. 746: A. S. Tanguiane, Artificial Perception and Mu-
sic Recognition. XV, 210 pages. 1993. (Subseries LNAI).

Vol. 747: M. Clarke, R. Kruse, S. Moral (Eds.), Symbolic
and Quantitative Approaches to Reasoning and Uncertainty.
Proceedings, 1993. X, 390 pages. 1993.

Vol. 748: R. H. Halstead Jr., T. Ito (Eds.), Parallel Sym-
bolic Computing: Languages, Systems, and Applications.
Proceedings, 1992. X, 419 pages. 1993.

Vol. 749: P. A. Fritzson (Ed.), Autonuated and Algorith-
mic Debugging. Proceedings, 1993. VIII, 369 pages. 1993.

Vol. 750: J. L. Diaz-Herrera (Ed.), Software Engineering
Education. Proceedings, 1994. XH, 601 pages. 1994.

Vol. 751: B. J~hne, Spatio-Temporal Image Processing.
XII, 208 pages. 1993.

Vol. 752: T. W. Finin, C. K. Nicholas, Y. Yesha (Eds.),
Information and Knowledge Management. Proceedings,
1992. VII, 142 pages. 1993.

Vol. 753: L. J. Bass, J. Gornostaev, C. Unger (Eds.), Hu-
man-Computer Interaction. Proceedings, 1993. X, 388
pages. 1993.

Vol. 754: H. D. Pfeiffer, T. E. Nagle (Eds.), Conceptual
Structures: Theory and Implementation. Proceedings, 1992.
IX, 327 pages. 1993. (Subseries LNAI).

Vol. 755: B. MOiler, H. Partsch, S. Schuman (Eds.), For-
mal Program Development. Proceedings. VII, 371 pages.
1993.

Vol. 756: J. Pieprzyk, B. Sadeghiyan, Design of Hashing
Algorithms. XV, 194 pages. 1993.

Vol. 757: U. Banerjee, D. Gelernter, A. Nicolan, D. Padua
(Eds.), Languages and Compilers for Parallel Computing.
Proceedings, 1992. X, 576 pages. 1993.

Vol. 758: M. Teillaud, Towards Dynamic Randomized
Algorithms in Computational Geometry. IX, 157 pages.
1993.

Vol, 759: N. R. Adam, B. K. Bhargava (Eds.), Advanced
Database Systems. XV, 451 pages. 1993.

Vol. 760: S. Ceri, K. Tanaka, S. Tsur (Eds.), Deductive
and Object-Oriented Databases. Proceedings, 1993. XII,
488 pages. 1993.

Vol. 761: R. K. Shyamasundar (Ed.), Foundations of Soft-
ware Technology and Theoretical Computer Science. Pro-
ceedings, 1993. XIV, 456 pages. 1993.

Vol. 762: K. W. Ng, P. Raghavan, N. V. Balasubramanian,
F. Y. L. Chin (Eds.), Algorithms and Computation. Pro-
ceedings, 1993. XIII, 542 pages. 1993.

Vol. 765: T. Helleseth (Ed.), Advances in Cryptology -
EUROCRYPT '93. Proceedings, 1993. X, 467 pages. 1994.

