6639 BOARD DIPLOMA EXAMINATION MARCH/APRIL - 2019 DIPLOMA IN MECHANICAL ENGINEERING REFRIGERATION & AIR-CONDITIONING FIFTH SEMESTER EXAMINATION

Time: 3 Hours

Total Marks: 80

DIST

PART - A $(3m \times 10 = 30m)$

Note 1:Answer all questions and each question carries 3 marks 2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

- 1. A reversed Carnot cycle refrigeration system works between the temperature limits of 40° C and -5° C. Calculate the COP of the system
- 2. What is the effect of undercooling on the following (a)Compressor work (b)COP
- 3. State the purpose of flash chamber and accumulator in the vapour compression refrigeration system
- 4. Differentiate between the two fluid and three fluid refrigeration system
- 5. What is the function of drier in refrigeration system?. List out different types of driers
- 6. Draw the sketch of Shell and Tube evaporator
- 7. State any four applications of refrigeration
- 8. What is the comfort chart? What information can read from comfort chart
- 9. Draw the sketch of viscous air filter
- 10. Mention the advantages of unitary air conditioning system

PART - B $(10m \ x \ 5 = 50m)$

Note 1: Answer any five questions and each carries 10 marks

2: The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer

11. Explain an Air Refrigeration System based on Bell-Coleman cycle. Indicate the cycle on P-V diagram 12. The ammonia refrigeration plant works between the temperature limits of -15°C to 30°C. The working fluid ammonia is assumed to be dry saturated at the end of compression. Calculate

(4)1101112	, or a ching of the		001		
	Enthalpy, KJ/Kg		Entropy, KJ/KgK]
Temperature, ⁰ C	Liquid, h _f	Vapour, h _g	Liquid, S _f	Vapour, S _g	-
-15 ⁰ C	112.2	1424.9	0.4564	5.5423	
30°C	322.6	1468.1	1.2017	4.9809	JST,A
3. Explain the work the help of neat sl	ing of vapou ketch	ır absorptic	on refrigeratio	on system w	ith
4. Explain the workin neat sketch.	g of thermos	tatic expans	ion valve with	the help of	
5 (a) Explain the t	orimary and	Secondary	refrigerants	in details	

(a)Refrigerating effect	(\mathbf{b})	COP
(u)Reningerung enreet		

- 15. (a) Explain the primary and Secondary refrigerants in details (b) Explain the Thermodynamic properties of refrigerants
- 16. Explain the following duct systems
 - (a) Loop Perimeter duct system.
 - (b) Radial Perimeter duct system
- 17. The atmospheric conditions of air are specified by Dry bulb temperature is 30°C and humidity ratio is 15gms/Kg of air. Determine (a) Partial pressure of water vapour (ii) Relative humidity
- 18. Explain the following air conditioning systems with neat sketches A r cot PO A.A.N.M& V.V.R.S.R.PO (a) Year Round Air conditioning system.

- xxx -

(b) Unitary Air conditioning system