с16-м-405

6450

BOARD DIPLOMA EXAMINATION, (C-16)
 SEPTEMBER/OCTOBER - 2020 DME-FOURTH SEMESTER EXAMINATION
 DESIGN OF MACHINE ELEMENYS

Time : 3 hours]

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. List out any six factors to be considered for the design of machine elements.

2. A thread is designated by $M 24 \times 3-7 d$. What does it mean?
3. Write the torsion equation and state the terms involved in it.

Write any three advantages of belt drive over other forms of drives.
5. List any six applications of chain drive.
6. Define the following terms :
(a) Circular pitch
(b) Back lash
7. How are the bearings classified?
8. Draw a neat sketch of cam mechanism.
9. What is the function of flywheel?
10. State any three differences between flywheel and governor.

PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Design and draw an eye bolt using following parameters:

Lifting load $=80 \mathrm{kN}$, Ultimate strength of steel $=540 \mathrm{MPa}$, Factor of safety $=6$
12. A mild steel shaft transmits 23 kW at 200 r.p.m. It carried a central load of 900 N and is simply supported between the bearings 2.5 m apart, The allowable tensile stress is 56 MPa and the shear stressis 42 MPa . Determine the size of the shaft.
13. Design a protective cast iron flange coupling to connect two shafts in order to transmit 15 kW at 200 r.p.m. having an permissible shear stress of $40 \mathrm{~N} / \mathrm{mm}^{2}$. The working stress in the bolts fhould not exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$. Assume that the same materiàd is used for shaft and key and that the crushing stress is twice the value of its shear stress. The maximum torque is 85% greater than the full load torque. Permissible shear stress for CI flange is $14 \mathrm{~N} / \mathrm{mm}^{2}$.
14. Two pulleys 450 mm and 200 mm diameters are on parallel shafts 2 m apart and are connected by a crossed belt. Find the length of belt required and the angle of contact between the belt and each pulley. What power can be transmitted by the belt when the larger pulley rotates at $200 \mathrm{rev} / \mathrm{min}$, if the maximum permissible tension in the belt is 1000 N , and the coefficient of friction between belt and pulley is $0 \cdot 25$?
15. Explain the following gear trains with neat sketches and state their applications :
(a) Simple gear train
(b) Compound gear train
(c) Reverted gear train
16. A turbine shaft of diameter 250 mm is running at 1600 r pm. in a journal bearing and supports a load of 130 kN . Calculate (a) length of bearing if the permissible bearing pressure is $1.5 \mathrm{~N} / \mathrm{mm}^{2}$, (b) coefficient of friction, (c) rubbing velocity, (d) amount of heat to be removed by the lubricant, per minute. The bearing temperature is $58^{\circ} \mathrm{C}$ and viscosity of oil at this term is $0.02 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$. The bearing clearance is 0.25 mm , $k=0.002$.
17. Draw the displacement diagram and cam profile for a knife edge follower moving with uniforn velocity as given below :
Outward stroke 120° of cam rofation, Dwell 30°; Return stroke 90° of cam rotation, Dwell for the remaining period of cam rotation. Stroke of the follower is 30 mm . The axis of the follower passes through the axis of the cam shaft. The minimum radius of the cam is 25 mm . The cam is rotating in clockwise direation.
18. (a) Explain the porter governor with neat sketch.
(b) The kinetic energy of flywheel at 150 r.p.m. is 1200 joules. If the radius of gyration is 0.5 m , what should be its mass?

