

C16-M-402

6447

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV—2018 DME-FOURTH SEMESTER EXAMINATION

HYDRAULICS AND FLUID POWER CONTROL SYSTEMS

Time : 3 hours]

Total Marks : 80
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the following:
(a) Absolute pressure
(b) Gauge pressure
2. Define the following :
(a) Laminar flow
(b) Turbulent flow
3. If a pipe of length 300 m and diameter 230 mm with $f=0.017$ is to be replaced by 180 mm diameter pipe with $f=0.02$ to carry same discharge and for same loss of head, what length has to be provided?
4. A jet of water of 50 mm diameter strikes a flat stationary plate normally with a velocity $30 \mathrm{~m} / \mathrm{s}$. Find the force exerted by the ge on the plate.
5. Give any three comparisons between Francis turbine athd Kaplan turbine.
6. Give any three comparisons between centrifygal pumps and reciprocating pumps.
7. Give the classification of hydraulic actuators.
8. What is a flow control valve? Statelts functions.
9. Draw the layout of pneunatic circuit indicating the basic components.
10. Draw the symbols for the following :
(a) Air filter
(b) Lubricatof

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) The answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A simple manometer containing mercury is connected to pipe in which an oil of specific gravity 0.85 is flowing as shown in the figure below.

Determine the absolute pressure and gauge pressure in the pipe.

12. A pipe 300 m long has a slope of 1 in 100 taper from 1.5 m diameter at the higher end to 0.75 m diameter at the lower end. The discharge of water through the pipe is 5500 litre/min. If the pressure at the higherend is 100 kPa , then find the pressure at the other end.
13. (a) Explain thefunction of syphon pipe with neat sketch. Mention its uses.
(b) Define and sketch the following graphically :
(i) Hydraulic gradient line
(ii) Total energy line
14. A jet of 100 mm diameter, moving with a velocity $25 \mathrm{~m} / \mathrm{s}$, strikes a plate. Find the force exerted by the jet on the plate in the following cases :
(a) The plate is normal to the jet and moves with a velocity of 5 m / s in the direction of jet.
(b) In the direction of jet and in the direction normal to plate when the plate is stationary and inclined at an angle 30° with the jet
15. Explain the working of a Francis turbine with a neat sketch.
16. Explain the construction and working of centrifugal pump with a neat sketch.
17. Explain the working of the following hydraulic actuators with neat sketch :
(a) Double acting cylinder
(b) Telescopic cylinder
(c) Tandem cylinder
18. With a neat sketch explain the working of pressure regulator.

