C16-M-303

6244

BOARD DIPLOMA EXAMINATION, (C-16)
AUGUST/SEPTEMBER—2021
DME - THIRD SEMESTER EXAMINATION
THERMAL ENGINEERING - 1
Time : 3 hours]
[Total Marks : 80
PART-A
$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State the relationship between two specific heats of a gas with its characteristic gas constant and mention the relevant units.
2. Define the terms (a) state and (b) cycle of a thermodynamic system.
3. Write three differences between non-flow and steady-flow processes.
4. Represent the following processes on T-s diagram :
(a) Isentropic process
(b) Isothermal process
5. Write the expression for change in entropy for isochoric process and name the terms involved in it.
6. Define air standard efficiency. Write mathematical expression for it.
7. Write the classification of IC engines.
8. State three differences between 2 -stroke and 4-stroke IC engines.
9. List the available equipment for pollution check on an IC engine.
10. Write three reasons for the use of multistage compressors.

PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. A vessel of $2.5 \mathrm{~m}^{3}$ capacity contains one kg-mole of nitrogen at $100{ }^{\circ} \mathrm{C}$. If the gas is cooled to $30^{\circ} \mathrm{C}$, calculate (a) final pressure, (b) change in specific internal energy and (c) change in specific enthalpy. Take $\gamma=1.4$ and one kg-mole nitrogen is 28 kg .
12. The pressure in the cylinder varies with the relation $\mathrm{p}=\left[\frac{\mathrm{C}}{\mathrm{V}}\right] \mathrm{kPa}$, where C is a constant. Determine the work done if the initial pressure is 400 kPa and volume changes from $0.02 \mathrm{~m}^{3}$ to $0.08 \mathrm{~m}^{3}$.
13. A system undergoes a cycle, which comprises four processes as shown in the table :

Process	Q (kJ/min)	$\mathrm{W}(\mathrm{kJ} / \mathrm{min})$	$\mathrm{dU}(\mathrm{kJ} / \mathrm{min})$
$1-2$	550	230	-
$2-3$	230	-	380
$3-4$	-250	-	-
$4-1$	0	80	-

(a) Complete the table, (b) determine the rate of work in kW and (c) show $\oint \mathrm{dU}=0$.
14. A mass of air at $1.3 \mathrm{MN} / \mathrm{m}^{2}$ pressure, $0.014 \mathrm{~m}^{3}$ volume and $135{ }^{\circ} \mathrm{C}$ is expanded until its final pressure is $275 \mathrm{kN} / \mathrm{m}^{2}$ and volume becomes $0.056 \mathrm{~m}^{3}$. Calculate (a) mass of air, (b) the final temperature, (c) law of expansion, (d) work transfer and (e) heat transfer. Assume $C_{p}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{C}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $\gamma=1.4$.
15. Explain various processes of diesel cycle with the help of $p-V$ and $T-s$ diagrams and mention various assumptions made in the analysis of diesel cycle.
16. Explain the construction and working of Zenith carburetor with a neat sketch.
17. The following details refers to a four stroke single cylinder petrol engine :
Cylinder diameter $=300 \mathrm{~mm}$
Length of stroke $=400 \mathrm{~mm}$
Speed = 900 r.p.m
Effective brake load $=480 \mathrm{~N}$
Effective diameter of the brake drum $=0.7 \mathrm{~m}$
IMEP $=0.28 \mathrm{~N} / \mathrm{mm}^{2}$
Calculate (a) indicated power, (b) brake power, (c) friction power and (d) mechanical efficiency.
18. A single stage single acting air compressor has a cylinder diameter of 30 cm and a stroke of 40 cm . Air is taken at 1 bar and $20^{\circ} \mathrm{C}$ into the cylinder and compresses it to a pressure of 5 bar at 100 r.p.m. Find the work done and power required if the compression is (a) isothermal and (b) $\mathrm{pV}^{1 \cdot 2}=\mathrm{C}$ and (c) adiabatic. Take $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \gamma=1.4$.

