

C16-M-103/C16-CHOT-103/C16-RAC-103 HNADIST, A.P

6053

BOARD DIPLOMA EXAMINATION, (C-16)

OCT/NOV—2017

DME-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State the limitations of dimensional analysis.
- Define scalars and vectors. Write one example for each. 2.
- Define acceleration due to gravity. Write its SI unit and 3. dimensional formula.
 - Calculate the length of seconds pendulum at a place where 9 8 m / s^2 . g
- 5. Write three differences between universal gas constant (R) and specific gas constant (r).
- 6. Write any three applications of echoes.

* /6053

[Contd...

- 7. Define surface tension and give one example.
- 8. Define stress. Write its SI unit and dimensional formula.
- 9. Calculate the potential difference to be applied across a conductor so that a current of 2 A may flow through it of resistance 20 RRISHNA DIST
- **10.** Write three applications of photoelectric effect.

PART-B

Instructions : (1) Answer any five questions.

- (2) Each question carries ten marks
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

	(b)	A car of mass 1000 kg moving with a velocity of 10 ms ^{1} is accelerated to 70 ms ^{1} Find the work done	1
14.	(a)	State and prove the work-energy theorem.	6
	(b)	Explain two methods of reducing friction.	4
13	(a)	Derive expressions for acceleration and time taken to come to rest for a body moving over a rough horizontal surface.	6
	1	a velocity of 9 8 ms ⁻¹ . Find the maximum height reached and time of ascent.	4
	(b)	A stone is thrown vertically upwards from the ground with	
12.	(a)	Derive expressions for maximum height and time of flight of a body projected vertically upwards.	6
	(b)	Find the magnitude of the vector $2\vec{i}$ $3\vec{j}$ $4\vec{k}$.	3
11.	(a)	State parallelogram law of vectors and derive expressions for magnitude and direction of the resultant vector.	7

15. (a) State any four conditions of SHM. 4 (b) Derive expressions for velocity and acceleration of a particle performing SHM. 6 **16.** (a) Derive the ideal gas equation PV RT. (b) One litre of gas is heated from 27 °C to 127 °C at constant pressure. Find its final volume. 17. (a) Define noise pollution and write five effects of noise pollution. 1+5=6(b) A boy hears an echo of his own voice from a distant hill after 2 seconds. Find the distance of the hill if the velocity of sound is 345 ms^{-1} . 4 18. (a) Derive expression for couple acting on a bar magnet in uniform magnetic field. 7 (b) A bar magnet of pole strength 40 A-m has a length 20 cm. 3