

C16-M/CHOT/RAC-102

6052

BOARD DIPLOMA EXAMINATION, (C-16) OCTOBER—2020

DME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS

Time: 3 hours]

Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions

- (2) Each question carries three marks.
- 1. Resolve $\frac{2}{(x+3)(x+4)}$ into partial fractions.
- 2. If $A = \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}$ then find $A^2 3A + 2I$ where I, is a unit matrix of order 2.
- Evaluate $\begin{vmatrix} 1 & 0 & -2 \\ 3 & -1 & 2 \\ 4 & 5 & 6 \end{vmatrix}$, using Laplace expansion.
- **4.** Prove that, $\frac{\cos 19^{\circ} \sin 19^{\circ}}{\cos 19^{\circ} + \sin 19^{\circ}} = \tan 26^{\circ}$.
 - **5.** Prove that, $\frac{1-\cos\theta+\sin\theta}{1+\cos\theta+\sin\theta}=\tan\left(\frac{\theta}{2}\right).$

/6052

1

[Contd....

- Find the modulus amplitude form of the complex number -1-i.
- Find the equation of the line which makes intercepts -4 with x-axis and 1 with y-axis.
- Find the equation of the straight line passing through the point (-4, 3) and perpendicular to the line 3x+y-31=0. Evaluate $\lim_{x\to 5} \left(\frac{x^2-25}{x^3-125}\right)$.
- **9.** Evaluate $\lim_{x \to 5} \left(\frac{x^2 25}{x^3 125} \right)$.
- 10. Find the derivative of $\tan x \log x$ with respect to

 PART—B

 Instructions: (1) Answer any five questions.

 (2) Each question searcies ten months.

 $10 \times 5 = 50$

- (2) Each question carries ten marks.
- **11.** (a) Solve the equations x + 2y + 3z = 6, 3x 2y + z = 24x + 2y + z = 7 by Crammer's Rule.
 - (b) Find the adjoint of the matrix $\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- Prove that, $\sin A + \sin (120^{\circ} + A) \sin (120^{\circ} A) = 0$.
 - (b) Prove that, $2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$.
- (a) Solve the equation $(2\cos\theta + 1)(\cos\theta 1) = 0$.
 - (b) In a $\triangle ABC$, prove that $(b+c)\sin\left(\frac{A}{2}\right) = a\cos\left(\frac{B-C}{2}\right)$.

- (a) Find the equation of the circle whose center is at the point (-3, 2) and radius is 4 units.
 - (b) Find the equation of the rectangular hyperbola whose focus is at the point (1, 2) and directrix is the line 3x + 4y - 5 = 0.

- $ax^{3} + y^{3} = 6xy.$ **16.** (a) Find $\frac{d^{2}y}{dx^{2}}$, if $x = 36(\theta \sin \theta)$, $y = 36(1 \cos \theta)$. When the form $x = 36(\theta \sin \theta)$, $y = 36(1 \cos \theta)$. The find the find the find the find $x = 36(\theta \sin \theta)$. (a) Find the equations of tangent and normal to the curve $y = x^3 - 3x^2 - x + 5$, at the point (1, 2).
 - (b) The displacement s of a particle is given at any time t by the relation $s = 2t^3 3t^2 + 15t + 18$. Find its velocity when the acceleration is 0.
-um and minimum $\cos^2 + 9x + 1$.

 The side of a square plate is increased by approximate percentage increase in its area. values of
 - (b) The side of a square plate is increased by 0.1%. Find the