Max. Marks : 80

 $10 \times 3 = 30$

[Contd...

6052

BOARD DIPLOMA EXAMINATION MARCH/APRIL - 2019 COMMON FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I

Time: 3Hours

PART - A

Instructions:

- Answer **ALL** questions and each question carries **THREE** marks
- Answers should be brief and straight to the point and shall not exceed **FIVE** simple sentences

(1) Resolve
$$\frac{x+3}{(x-3)(x+1)}$$
 into Partial Fractions
(2) If $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & 3 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$ then find $2A + 3B$
(3) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x \end{bmatrix}$ and $det(A) = 48$ then find the value of x
(4) Prove that $\frac{\sin(A-B)}{\sin A \sin B} + \frac{\sin(B-C)}{\sin B \sin C} + \frac{\sin(C-A)}{\sin C \sin A} = 0$
(5) If $tan \theta = \frac{1}{2}$ then find $cos 2\theta$ and $sin 2\theta$
(6) Find the modules of the complex number $(3 + 2i)(1 + 2i)$

(7) Find the equation of line passing through the point (3, -4) and having inclination 60°

(8) Find the angle between the lines 3x - y + 4 = 0 and 2x + y + 2 = 0

/6052

1

(9) Evaluate
$$\lim_{x \to -2} \left(\frac{x^2 + x - 2}{x^2 + x + 3} \right)$$

(10) Find the derivative of $(x+3)(2x^3+3)$ with respect to x

$$\boxed{PART - B} \qquad 5 \times 10 = 50$$
Instructions:

• Answer ANY FIVE questions and each question carries TEN marks

• The answer should be comprehensive and criteria for valuation is the content but not the length of the answer

(11) (a) Solve the equations $x + 2y - z = -1$, $3x - y - 2z = 5$ and $x - y$, $5z = 0$ by Crammer's Rule

(b) Find the adjoint of the matrix $\begin{bmatrix} 2 & 3 & -1 \\ -4 & 0 & 3 \\ 3 & -1 & 7 \end{bmatrix}$

(12) (a) Prove that $sin 78^o - sin 18^o + cos 132^o = 0$

(b) If $Sin^{-1}x + Sin^{-1}y + Sin^{-1}z = \frac{\pi}{2}$ then show that $x^2 + y^2 + z^2 + 2xyz = 1$

(13) (a) Solve the equation $2 \cos^2 \theta = 1 + sin \theta$

(b) In a $\Delta^{le}ABC$ prove that $(b + c) sin(\frac{A}{2}) = a cos(\frac{B - C}{2})$

(14) (a) Find the equation of the Circle whose center is at the point (-1, 2) and radius is 5 units

(b) Find the vertex, focus equation of axis, latus rectum, directrix and length of latur rectum of the Parabola $y^2 = 32x$

/6052

*

[Contd...

3

*