

C16-M-102/C16-CHOT-102/C16-RAC-102

LA EXAMINATION, (C-16) OCT/NOV-2017 DME-FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I FLORE 3 DATE **BOARD DIPLOMA EXAMINATION, (C-16)**

Time : 3 hours]

Instructions : (1) Answer all questions (2) Each question carries three marks.

- **1.** Resolve $\frac{x \ 1}{(x \ 2)(x \ 3)}$ into partial fractions.
- **2.** If $A \begin{vmatrix} 3 & 2 \\ 1 & 6 \end{vmatrix}$ and $B \begin{vmatrix} 4 & 1 \\ 2 & 5 \end{vmatrix}$, find AB. **3.** Evaluate $\begin{vmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \end{vmatrix}$. $\frac{\sqrt{3}}{4}$.

4. Prove that
$$\cos^2 45 \sin^2 15 - \frac{1}{2}$$

5. Prove that $\frac{\sin 2}{1 \cos 2}$ cot .

- **6.** Express $\sqrt{3}$ *i* in modulus-amplitude form.
- 7. Find the distance between the parallel lines 3x 4y 3 0 and 6x 8y 1 0.
- **8.** Find the angle between the lines $2x \ y \ 3 \ 0$ and $x \ y \ 2 \ 0$.

* /6052

[Contd...

9. Evaluate
$$\lim_{x \to 2} \frac{x^2 + x + 6}{x^2 + 5x + 6}$$
.

*

10. Differentiate
$$\sqrt{\tan 2x}$$
 w.r.t. x.

_

PART—B

PART-B 10×5=50 **F**
Instructions: (1) Answer any five questions.
(2) Each question carries **ten** marks.
11. (a) Show that
$$\begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix}$$
 (a b)(b c)(c a).
(b) Solve the following equations by using Cramer's rule :
 $x & 2y & z & 4, 3x & y & 2z & 3 and 2x & 3y & z & 3$
12. (a) Prove that 8 cos 20 cos 40 cos 80 1.
(b) Prove that tan $1 \frac{2}{7}$ (cos $1 \frac{17}{33}$.
13. (a) Solve 2 sin² cos 1 0.
(b) In ABC, prove that $b \cos^2 \frac{C}{2} & \cos^2 \frac{B}{2} S$.
14. (a) Find the centre and radius of the circle $2x^2 + 2y^2 - 3x - 7y - 2 = 0$.
(b) In ABC, prove that $b \cos^2 \frac{C}{2} + 1 \cos^2 \frac{B}{2} + 1 \cos^2 \frac{1}{2} + 1 \cos^2 \frac{1}{$

(b) If
$$U = \sin \frac{1}{x} \frac{x^2}{x} \frac{y^2}{y}$$
, prove that $x - \frac{u}{x} = y - \frac{u}{y}$ tan u .

* /6052

- **17.** (a) Find the equations of tangent and normal to the curve x = a(sin), y = a(1 cos) at $\frac{1}{6}$.
 - (b) The radius of a sphere is decreasing at the rate of 0.1 cm/sec.Find the rate at which its volume is decreasing when the radius is 20 cm.
- **18.** (a) Find the dimensions of the rectangle of maximum area having a perimeter of 32 ft.
 - (b) The time period T of a complete oscillation of a simple pendulum of length L is given by the equation T $\sqrt{\frac{L}{L}}$, where

g is a constant. Find the approximate percentage error in the calculated value of *T* corresponding to an error 3% in the value of *L*.