

C14-M-602

4758

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2018

DME—SIXTH SEMESTER EXAMINATION

REFRIGERATION AND AIR CONDITIONING

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write different methods of refrigeration.
- 2. What is the purpose of flash chamber in the VCR system?
- 3. Write any three important refrigerant and absorbent pairs.
- 4. Distinguish between primary and secondary refrigerants.
- **5.** What is expansion device? State its function.
- **6.** Classify different types of air conditioning system,
- 7. Define (a) Wet bulb temperature, and (b) Dry bulb temperature.
- **8.** What is the psychrometric chart? State the uses of psychrometric chart.

/4758 1 [Contd...

- **9.** Define the following:
 - (a) Conduction
 - (b) Convection
- 10. What is cooling tower? What is the need of cooling tower?

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) The answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. In a closed cycle Bell-Coleman refrigeration plant air is taken into the compressor at 1 bar pressure and -5°C and is compressed isentropically to 5 bar at which it is cooled to 15°C. It is then expanded to 1 bar and discharged into refrigerant chamber. If the law of expansion is *PV* ^{1.2} *C* and law of compression is *PV* ^{1.4} *C*, find (a) the net work done on the air per kg of air, and (b) COP of the plant.

Take
$$C_p = 1.0035 \text{kJ/k.g}$$
 K, $1.4, R = 0.287 \text{kJ/kg}$ K

12. In a 15 TR ammonia refrigeration plant, the condensing temperature is 25°C and evaporating temperature is −10°C. The refrigerant is subcooled by 5°C before passing through throttle valve. The vapour entering the compressor is dry saturated. Find (a) COP, and (b) power required. The properties of ammonia are given in the table below:

Saturation Temperature	Enthalpy kJ/kg		Entropy kJ/kgK		Specific Heats kJ/kgK	
°C	Liquid (h _f)	Vapour (h _g)	Liquid (s _f)	Vapour (s _g)	Liquid	Vapour
25	536.35	1703.2	4.593	8.509	4.6057	2.805
-10	375.15	1660.35	4.016	8.994	_	_

13. Explain the working principle of lithium bromide vapour absorption system with a neat sketch.

- **14.** (a) Write the differences between water-cooled and air-cooled condensers.
 - (b) Write short notes on
 - (i) Vane type compressor
 - (ii) Screw compressor
- **15.** Describe briefly the working of water cooler with neat sketch.
- **16.** Explain the following:
 - (a) Centrifugal dust collector
 - (b) Electronic air filter
- **17.** What is the importance of mixing of air streams in air conditioning? Write the conditions of mixture.
- **18.** Explain with the help of a neat sketch the summer air conditioning for hot and dry outdoor conditions.

