

C14-M-504

1+1+1=3

4652

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2017 DME-FIFTH SEMESTER EXAMINATION

HEAT POWER ENGINEERING—II

Time: 3 hours]		[Total Marks : 80
	PART—A	3×10=30
Instructions: (1) Answer	all questions.	
(2) Each qu	uestion carries three	marks.
` '	s should be brief an all not exceed <i>five</i> sin	d straight to the point mple sentences.
1. Find out the condition enthalpy is 2600 kJ/	-	ssure is 10 bar and 3
2. List out any six prop	perties of steam.	½×6=3
3. List out important sp boilers.	pecial features of mo	dern high pressure 1+1+1
4. What is boiler mount	tings with boiler acce	essories? 3
5. Define critical pressurers of inlet preservansion.		-

6. Draw the line diagrams of convergent, divergent and

convergent-divergent nozzles.

7. Write the advantages of steam turbines over steam engines.

8. What is governing of steam turbines? List any two methods of governing of a steam turbine. 1+2=3

9. State the functions of a steam condenser.

,

3

3

10. Draw a line diagram of shell and tube surface condenser and label the parts. 2+1=3

PART—B

10×5=50

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. If 1 kg of steam with a dryness fraction of 0.8 expands adiabatically, according to the law pv^{113} constant from a pressure of 10 bar to 2.8 bar, determine the (a) final condition of steam, (b) work done, (c) heat transfer and (d) change in internal energy. 3+2+2+3=10
- **12.** Describe the working of Benson boiler with a line diagram and label its parts.

 4+4+2=10
- **13.** During test on a boiler the following data were collected:

Steam pressure—10.5 bar abs

Steam condition—dry and saturated

Feed water temperature—35 °C

Rate of evaporation—12 kg/kg of coal

Calorific value—37500 kJ/kg

Determine the (a) factor of covalent of evaporation, (b) equivalent evaporation and (c) thermal efficiency. 4+3+3=10

- 14. Determine the diameters of throat and exit for a steam nozzle to convey 10 kg/min, where the inlet conditions are 12 bar and 250 °C and the final pressure is 2 bar, neglect initial velocity of steam and effect of friction.6+4=10
- **15.** (a) Describe supersaturated flow of steam in a nozzle with the aid of Moellier diagram.
 - (b) List out the differences between jet and surface condensers.

5+5=10

- **16.** (a) Describe about pressure compounding of steam turbine.
 - (b) Write any six differences between impulse and reaction steam turbines. 4+6=10
- 17. Steam issues from a nozzle at 900 m/s. The velocity of moving blade is 350 m/s and the mass of steam flow is 2.5 kg/s. The nozzles are inclined at 15° to the plane of the wheel; neglecting friction, and inlet, outlet angles of blade are equal. Find the (a) power developed, (b) blade angle at inlet, (c) blade efficiency and (d) axial thrust.
- **18.** The following observations were made during a trial on a steam condenser:

Barometric pressure—760 mm of Hg Vacuum reading—710 mm of Hg Rate of cooling water—18 kg/sec Inlet temperature of cooling water—18 °C Outlet temperature of cooling water—28 °C Quantity of steam condensed—25 kg/minute Hot-well temperature—30 °C Mean temperature of condensate—33 °C

Determine (a) vacuum efficiency, (b) condenser efficiency, (c) dryness fraction of exhaust steam, (d) sub-cooling of condensate and (e) amount of air leakage per kg of steam condensed.

Assume R for air 0 287 kJ/kg-K and specific heat of water 4 182 kJ/kg-K. 2+2+3+1+2=10

* * *