

с14-м-404

4480

BOARD DIPLOMA EXAMINATION, (C-14)

MARCH/APRIL—2016

DME—FOURTH SEMESTER EXAMINATION

HEAT POWER ENGINEERING-I

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Show all the processes of Carnot cycle on *P*-*V* and *T*-*S* diagrams.
- 2. Define air standard cycle.
- **3.** Briefly classify heat engines.
- 4. Write materials for given components of IC engine :
 - (a) Cylinder
 - (b) Piston
 - (c) Crank Shaft
- **5.** Write any three differences between air cooling and water cooling.
- **6.** Define supercharging.
- **7.** Write expression for isothermal compression work and explain the terms involved in it.

/4480

[Contd...

8. Define (a) isothermal efficiency and (b) adiabatic efficiency.

- **9.** Give any six applications of gas turbines.
- **10.** List out the fuels used in rockets.

PART-B

10×5=50

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** A diesel engine has a cylinder bore of 25 cm and stroke of 40 cm. Cut off takes place at 5% of stroke. Calculate—(*a*) air standard efficiency and (*b*) mean effective pressure if the clearance volume and pressure at the beginning of the suction are 0.0012 m^3 and 1.2 bar.
- **12.** Explain with neat sketch, the components of the IC engine.
- **13.** Explain with neat sketches, the working principles of (a) primary filter and (b) secondary filter.
- **14.** Explain the working principle of pressure lubrication system with the support of neat diagram.
- **15.** The following observations were made during a test on a 4-cylinder petrol engine :

Diameter of cylinder	= 30 cm
Stroke length	= 40 cm
Speed	= 900 r.p.m.
Effective diameter of brake wheel	= 0.7 m
Net load on the brake drum	= 480 N
Mean effective pressure	= 0.28 N/mm^2

* /4480

[Contd...

Calculate—

- (a) indicated power;
- (b) brake power;
- (c) friction power;
- (d) mechanical efficiency.
- **16.** A single stage single acting air compressor 30 cm diameter, 40 cm stroke makes 100 r.p.m. It takes air at 1 bar and 20 °C and compresses it to a pressure of 5 bar. Find the work done when (a) isothermal, (b) pV^{12} = Const. and (c) adiabatic.
- 17. (a) Explain the vane type compressor with neat sketch.
 - (b) Find the percentage increase in efficiency of ideal Otto cycle if compression ratio is raised from 7 to 8.
- **18.** With the help of neat sketch, explain the turbojet engine.

* * *