

4401

BOARD DIPLOMA EXAMINATION, (C-14)
 SEPTEMBER/OCTOBER - 2020 FOURTH SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—III

Time : 3 hours]

PART-A
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Solve $\left(D^{2}+5 D+6\right) y=0$, where $D=\frac{d}{d x}$.
2. Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$.
3. Find the particular integral of $\left(D^{2}-3 D+2\right) y=e^{3 x}$.
4. Find $L\left\{\left(t^{2}+\sin 3 t+5\right)\right\}$.
5. Find $L\left(e^{-t} \sin 2 t\right)$.
6. Find $L^{-1}\left(\frac{2}{s-4}+\frac{3}{s^{2}-9}\right)$.
7. Find $L^{-1}\left(\frac{1}{s(s-1)}\right)$.
8. Find the value of a_{0} in $f(x)=x$ in $0<x<2 \pi$.
9. Write down the formulae of Euler's constants for a function $f(x)$ in the interval $(-\pi, \pi)$.
10. What is the probability of obtaining a total of 8 when a die is thrown?

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Solve $\left(D^{2}+4 D+4\right) y=e^{2 x}+e^{-2 x}$.
(b) Solve $\left(D^{2}+4\right) y=x^{2}+3$.
12. Solve $\left(D^{2}-3 D+2\right) y=e^{4 x}+x^{2}+x$.
13. (a) Find $L(t \sin 2 t)$.
(b) Find $L^{-1}\left(\frac{1}{s\left(s^{2}+4\right)}\right)$ using convolution theorem.
14. Use Laplace transform method to solve $\left(y^{\prime \prime}+3 y^{\prime}+2 y\right)=e^{-t}$ with $y(0)=0$ and $y^{\prime}(0)=1$.
15. Find the Fourier series for $f(x)=x^{2}$ in the interval $[-\pi, \pi]$.
[Contd...
16. Obtain the half-range cosine series for the function $f(x)=2 x-1$ in (0, 1).
17. (a) Four boys and four girls sit in a row at random. Find the probability that (i) the girls sit together and (ii) boys and girls sit alternatively.
(b) A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a king or a spade?
18. (a) Let A and B be two events with $P(A)=1 / 6$ and $P(A \cap B)=1 / 8$. Then find $P(B / A)$.
(b) A bag contains 10 red and 5 white balls. Two balls are drawn one after the other without replacement. Find the probability that both balls drawn are red.

