4477

BOARD DIPLOMA EXAMINATION, (C-14) JUNE—2019

DME—FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS - III

Time: 3 Hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instruction: (1) Answer all questions.

- (2) Each question carries Three marks.
- 1. Solve

$$(D^2 + 4D + 4) y = 0$$

2. Solve

$$(D^3 - 7D - 6) y = 0$$

- 3. Find the particular integral of $(4D^2 + 4D 3) y = e^{3x}$.
- **4.** Find the Laplace transform of $e^{4t} 3t^2 + 2\cos t$.
- 5. Find the Laplace transform of $\sin^2 t$.
- **6.** Find the Laplace transform of te^{4t} .
- 7. Find the inverse Laplace transform of $\frac{2s+1}{s^2-9}$.
- **8.** Write down the formulae for finding Euler's constants for f(x) in $(0, 2\pi)$.
- 9. What is the value of b_n in the Fourier series expansion of $f(x) = x \sin x \text{ in } (-\pi, \pi)$
- 10. When two dice are thrown, find the probability of obtaining total scores 7.

Instruction: (1) Answer any **five** questions.

- (2) Each question carries **Ten** marks.
- 11. *(a)* Solve

$$(D^2 + 5D + 6) y = e^{-2x}$$

(b) Solve

$$(D^2 + 25) y = \cos 5x$$

12. *(a)* Solve

$$(D^2 - 4D + 3) y = e^{2x} - \sin 3x$$

(b) Solve

$$(D^2 + 3D + 2) y = x^2$$

- 13. (a) Find the Laplace transform of $e^{-3t}(\cos 5t \sin 3t)$.
 - (b) Find the Laplace transform of $t^2 \cos t$.
- 14. (a) Evaluate $\int_0^\infty e^{-4t} \sin 3t$
 - (b) Find $L^{-1} \left\{ \frac{2s+1}{s^2+9} \right\}$
- 15. Write down the Fourier series for f(x) = /x/ in the interval $-\pi < x < \pi$.
- 16. Find the cosine and sine series for $f(x) = \pi x$ in $(0, \pi)$.
- 17. (a) A card is drawn from a packet of hundred cards numbered 1 to 100. Find the probability of drawing a number which is divisible by 13.
 - (b) Find the probability of getting at least 2 heads when tossing 6 coins.
- 18. (a) 5 boys and 3 girls sit in a row at random. Find the probability that no two girls sit together.
 - (b) If P(A) = 0.4, P(B) = 0.7 and $P(A \cap B) = 0.3$, find $P(\overline{A} \cap \overline{B})$ and $P(\overline{A} \cup \overline{B})$.
