

C14-M-401/C14-CHOT-401/C14-RAC-401

4477

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2017

DME—FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—III

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- 1. Solve:

$$(D^2 \ 5D \ 6)y \ 0$$

2. Solve :

$$\frac{d^3y}{dx^3}$$
 $7\frac{dy}{dx}$ 6y 0

3. Find the particular integral of

$$\frac{d^2y}{dx^2}$$
 5 $\frac{dy}{dx}$ 6y e^{4x}

- **4.** Find the Laplace transform of t^3 3t 5
- **5.** Find the Laplace transform of $\sin 2t \cos 3t$.

6. Find

$$L^{1} \frac{1}{(s \ 2)^{3}}$$

7. Find the inverse Laplace transform of

$$\frac{s^2}{s^3} \frac{3s}{4}$$

- **8.** Define Fourier series of a function f(x) in the interval (c, c 2).
- **9.** Find the Fourier constant a_0 for $x \sin x$ in (,).
- **10.** A card is drawn from the set of pack of cards. What is the probability that it is not a king?

PART—B
$$10 \times 5 = 50$$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- **11.** (a) Solve:

$$(D^2 \quad 1)y \quad \cosh 2x$$

(b) Solve:

$$(D^2 \quad 4)y \quad \sin 2x$$

12. (a) Solve:

$$(D^2 \quad 4D \quad 4)y \quad e^x \quad \cos 2x$$

(b) Solve:

$$(D^2 \ 4)y \ x^3$$

13. (a) State 1st shift theorem and use it to find a Laplace transform of $e^{-at} \cosh bt$.

(b) If
$$L\{f(t)\}=\frac{20-4s}{s^2-4s-20}$$
, find $L\{f(3t)\}$.

14. (a) Find

$$L^{1} \frac{2s}{(s-1)^{3}}$$

- (b) Using convolution theorem, find $L^{-1} = \frac{1}{(s-1)(s-3)}$.
- **15.** Write down Fourier series for f(x) x in the interval 0 x 2.
- **16.** Find a Fourier series to represent $x x^2$ from x 1 to x 1.
- **17.** Define the following:
 - (a) Addition theorem on probability
 - (b) Multiplication theorem on probability
 - (c) Conditional probability
- **18.** Let A and B are two events with $P(A) = \frac{3}{8}$, $P(B) = \frac{5}{8}$ and $P(A = B) = \frac{3}{4}$. Find $P(A \mid B)$ and $P(B \mid A)$.

* * *