

C14-M-304

4252

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2018 DME—THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- (4) Assume missing data wherever necessary.
- 1. Define temperature and absolute zero.

 $1\frac{1}{2}+1\frac{1}{2}$

- 2. Convert 740 mm of Hg into kN/m².
- **3.** State Clausius statement related to second law of thermodynamics.
- **4.** State Boyle's law and represent it on a *P-V* diagram. 2+1
- **5.** If characteristic gas constant of a gas is 0.348 kJ/kg K, find the molecular weight of the gas.
- **6.** Prove that change in enthalpy, $dH = mc_p (T_2 T_1)$.
- **7.** Write the expression for entropy of constant temperature process and name the terms involved in it. 2+1

/4252 1 [Contd...

- **8.** Define lower calorific value and justify that it is always less than higher calorific value. 2+1
- **9.** Find the higher calorific value of the fuel whose composition by mass is as follows:

Carbon 75% Hydrogen 5% Sulphur 3% Oxygen 9% Nitrogen 4%

and the remainder being ash.

1+1+1

10. Write any six desired characteristics of fuel.

½×6

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- (4) Assume missing data wherever necessary.
- **11.** A system undergoes a cycle composed of four processes and the energy transfers are tabulated below:

Process	Q kJ/min	W kJ/min	du kJ/min
1–2	550	200	
2–3	130		280
3–4	-400		
4–1	0	90	

(a) Complete the table.

5

(b) Determine the rate of work in kW.

5

- **12.** (a) Write steady flow energy equation for an open system and state the terms involved in it.
- 5

(b) Derive the relation $C_V = \frac{R}{1}$.

5

- 13. An ideal gas is expanded from 400 kN/m² and 0·04 m³ to 120 kN/m^2 and 0·1 m³. The temperature fell down during this process was observed as 150 °C. If C_P 1 025 kJ/kg K and C_V 0 765 kJ/kg K, find (a) the change in internal energy and (b) the mass of the gas. 5+5
- 14. Show that for a polytropic process heat transfer

$$Q - \frac{n}{1} W$$

- **15.** A quantity of gas has an initial pressure, volume and temperature of 60 kN/m^2 , 0.2 m^3 and 35 °C respectively. It is expanded to a pressure of 40 kN/m^2 , according to the law PV C. Determine—
 - (a) the mass of the gas;
 - (b) work transfer to the gas;
 - (c) heat transfer from the gas;
 - (d) change in entropy.

Take C_P 1 005 kJ/kg K and C_V 0 717 kJ/kg K. 2+3+3+2

- **16.** 5 kg of an ideal gas is connected in a rigid cylinder. 35 kJ of heat is added to the gas, which has an initial temperature of 40 °C. Determine—
 - (a) final temperature;
 - (b) change in entropy.

Take R 0 328 kJ/kg K and 1 36.

5+5

17. Write about Orsat apparatus with a neat sketch.

5+5

- 18. The percentage composition of a sample of fuel by mass is found to be C 90%, $\rm H_2$ 5%, $\rm O_2$ 2%, $\rm S_2$ 0 8% and remaining ash. Calculate—
 - (a) the minimum amount of air required for complete combustion of one kg of fuel;
 - (b) the percentage composition by mass of dry products of combustion, if 40% excess air is supplied. 5+5

* * *