## с14-м-304

## 4252

# BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV—2017 

DME-THIRD SEMESTER EXAMINATION

## BASIC THERMODYNAMICS

Time : 3 hours ]

## PART-A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
(4) Assume missing data where ever necessary.

1. Define state and system.
2. Define enthalpy and internal energy.
3. State Kelvin-Planck statement.
4. State Avogadro's law.
5. Explain each term in the relation

$$
C_{V}=\frac{R}{\gamma-1}
$$

6. Show that heat transferred is equal to change in enthalpy, for a constant pressure process.
$1^{1 / 2}+1^{1 / 2}$
7. Define entropy and write its unit.
8. Define higher calorific value.
9. Write the solutions used to absorb $\mathrm{CO}_{2}, \mathrm{O}_{2}$ and CO in Orsat apparatus.
10. Write any three advantages and three disadvantages of liquid fuels. ????????????

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
(4) Assume missing data where ever necessary.
11. The pressure of the fluid in a system is the linear function of volume given by the equation, $P=a+b v$, where $a$ and $b$ are constants and $P$ is in $\mathrm{kN} / \mathrm{m}^{2}$, and $v$ is in $\mathrm{m}^{3}$. If the system changes from initial condition of $200 \mathrm{kN} / \mathrm{m}^{2}$ and $0 \cdot 1 \mathrm{~m}^{3}$ the final condition of $500 \mathrm{kN} / \mathrm{m}^{2}$ and volume of $0.4 \mathrm{~m}^{3}$, determine the work transfer.
12. (a) Heat is supplied to a heat engine at the ratio of $70 \mathrm{~kJ} / \mathrm{s}$ giving an output of 30 kW . Calculate thermal efficiency and the rate at which heat is rejected.
(b) Derive characteristic gas equation.
13. A mass of air has an initial pressure of $2 \cdot 3 \mathrm{MN} / \mathrm{m}^{2}$, volume of $0.016 \mathrm{~m}^{3}$ and temperature $=150{ }^{\circ} \mathrm{C}$. It is then expanded until
its final pressure is $475 \mathrm{kN} / \mathrm{m}^{2}$ and its volume becomes $0.078 \mathrm{~m}^{3}$. Determine-
(a) the mass of air;
(b) the final temperature of air.

Take $R=0.287 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{k}$

$$
2+2+3+3
$$

14. Derive the expression for (a) work transfer and (b) change in entropy in an isothermal process.
15. A quantity of gas has an initial pressure, volume and temperature of $240 \mathrm{kN} / \mathrm{m}^{2}, 0.4 \mathrm{~m}^{3}$ and $25^{\circ} \mathrm{C}$ respectively. It is expanded to a pressure of $140 \mathrm{kN} / \mathrm{m}^{2}$ according to the law $P V^{1 \cdot 35}=C$. Determine-
(a) the change in entropy;
(b) work transfer to the gas;
(c) heat transfer from the gas.
[Take $C_{p}=1.005 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{k}$ and $C_{V}=0.715 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{k}$ ]
16. A 2 kg of air at a pressure of $850 \mathrm{kN} / \mathrm{m}^{2}$ occupies a volume of $2 \mathrm{~m}^{3}$. The air is then expanded to a pressure of $300 \mathrm{kN} / \mathrm{m}^{2}$ at constant volume. Find the-
(a) work done;
(b) heat transfer;
(c) change in entropy during expansion.
[Take $R=0.287 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{k}$ and $C_{v}=0.717 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{k}$ ]

$$
2+5+3
$$

17. Write about Junker's calorimeter with a neat sketch.
18. The percentage composition of a sample of fuel by mass is found to be $\mathrm{C}=76 \%, \mathrm{H}_{2}=5 \cdot 2 \%, \mathrm{O}_{2}=12 \cdot 8 \%, \quad \mathrm{~N}_{2}=2 \cdot 7 \%$, $S_{2}=1 \cdot 2 \%$ and remaining ash. Calculate-
(a) the minimum amount of air required for complete combustion of one kg of fuel;
(b) percentage composition by mass of dry products of combustion.
