с14-м-304

4252

BOARD DIPLOMA EXAMINATION, (C-14) SEPTEMBER/OCTOBER - 2020 DME—THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS

Time : 3 hours]
Total Marks : 80

PART-A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define 'thermodynamic system' and classify the thermodynamic systems.
2. Write the first law of thermodynamics for a closed system undergoing a process.
3. State Clausius statement of second law of thermodynamics.
4. Write the characteristic gas equation. What are the parameters involved in it? Mention the units for each parameter.
5. The density of air at NTP is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the gas constant for air.
6. 2 kg of air at STP is compressed isothermally to $1 / 8$ th of its initial volume. Find the work done. Take $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
7. Derive the expression for change of entropy in constant pressure process.
8. Define HCV and LCV of the fuels.
9. Write any three advantages and limitations of solid fuels.
10. What is the purpose of Bomb calorimeter?

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. The pressure of the fluid in a system is the linear function of volume and given by the equation, $p=a+b V$, where a and b are constants and p is in $\mathrm{kN} / \mathrm{m}^{2}$ and V is in m^{3}. If the system changes from initial condition of $200 \mathrm{kN} / \mathrm{m}^{2}$ and $0 \cdot 1 \mathrm{~m}^{3}$ to the final condition of $500 \mathrm{kN} / \mathrm{m}^{2}$ and volume of $0.4 \mathrm{~m}^{3}$, determine the work transfer.
12. (a) Calculate the absolute pressure in ' kPa ' of a gas in a vessel if the vacuum gauge indicates 300 mm of Hg while the barometer pressure is equal to 760 mm of Hg .
(b) Derive characteristic gas equation.
13. An ideal gas is expanded from $400 \mathrm{kN} / \mathrm{m}^{2}$ and $0.04 \mathrm{~m}^{3}$ to $120 \mathrm{kN} / \mathrm{m}^{2}$ and $0 \cdot 1 \mathrm{~m}^{3}$. The temperature fell down during this process was observed as $180^{\circ} \mathrm{C}$. If the values of C_{p} and C_{v} are $1.025 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $0.726 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ respectively, find (a) the change in internal energy and (b) the mass of gas.
14. $0 \cdot 12 \mathrm{~m}^{3}$ of air at 1.5 MPa and $1500^{\circ} \mathrm{C}$ expands adiabatically to 175 kPa . Find (a) the final temperature and (b) the work done. Take $C_{p}=1.0035 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, C_{v}=0.7165 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
15. A certain gas has initial volume $0.56 \mathrm{~m}^{3}$ at $400^{\circ} \mathrm{C}$ and 28 bar. It expands isothermally to a final volume of $2.8 \mathrm{~m}^{3}$. Find the (a) work done, (b) mass of gas, (c) heat transfer and (d) change of entropy.
$3+2+2+3$
16. 3 kg of air at a pressure of 14 bar and a temperature of $100{ }^{\circ} \mathrm{C}$ undergoes a reversible process which may be represented by $p V^{1 \cdot 3}=$ constant. The final pressure is 3 bar. Assume $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\gamma=1 \cdot 4$. Find the (a) final volume, (b) final temperature and (c) increase in entropy.
17. Explain the working of Junker's gas calorimeter with a neat sketch.
18. The volumetric analysis of a flue gas is $\mathrm{CO}=4 \%, \mathrm{CO}_{2}=10 \%$, $\mathrm{O}_{2}=8 \%, \mathrm{H}_{2}=4 \%$ and $\mathrm{N}_{2}=74 \%$. Convert volumetric analysis into mass analysis.

