

с14-м-303

4251

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV—2017

DME—THIRD SEMESTER EXAMINATION

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Define Ohm's law and state the laws of resistance.
- **2.** Define the terms related to magnetic field (*a*) magnetic field strength and (*b*) permeability.
- **3.** Explain Flemings right hand rule.
- 4. List the types of DC generators based on excitation.
- 5. Define the terms related to sinusoidal AC wave (a) RMS value, (b) average value.
- **6.** Define phase and phase difference related to sinusoidal AC wave.

* /4251

[Contd...

- 7. State applications of three-phase induction motor.
- **8.** Define the terms related to semi-conductors (a) valence band, (b) conduction band and (c) forbidden energy gap.
- 9. What is the need of earthing of electrical equipment?
- **10.** Draw the connection diagram of single phase energy meter with load.

PART-B

 $10 \times 5 = 50$

5

5

5

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Derive the expression for total resistance when three resistance R_1 , R_2 and R_3 are connected in parallel.
 - (b) When two resistances of 5 and 20 are connected in parallel across 240 V supply. Calculate the total current and current through each resistance.
- **12.** (a) Define self inductance (*L*), mutual inductance (*M*) and coefficient of coupling (*K*). State the relation between L_1 , L_2 , *M* and *K*.

(b) Derive an expression for energy stored in a magnetic field. 5

13. Draw a neat diagram of DC generator. Label all its parts. 3+1+4+2

14.	(a)	Explain the back e.m.f. of DC motor.	5
	(b)	Describe with a neat sketch about a welding transformer.	5

* /4251

*	15.	A coil of resistance of 10 is connected in series with a coil of inductance of 0 $02H$ and is connected to AC mains of 100 V and 50 Hz. Calculate current, power factor and voltage drop across both resistance and inductance.	10
	16.	(a) Explain the constructional feature of alternator.	5
		(b) Explain the working principle of alternator.	5
	17.	(a) Briefly explain the formation of <i>P-N</i> junction diode.	5
		<i>(b)</i> Describe the working of <i>P-N</i> junction diode with forward bias and reverse bias using proper diagrams.	5
	18.	Draw and explain the construction and working of AC single-phase induction type energy meter.	10

**

*