

C14-M-103/C14-CHOT-103/C14-RAC-103

4051

BOARD DIPLOMA EXAMINATION, (C-14)

MARCH/APRIL—2016

DME-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write the dimensional formulae of (a) latent heat, (b) momentum and (c) acceleration.
- 2. State triangle law of vectors. Draw a diagram for it.
- **3.** Derive an expression for maximum height for a body projected vertically up.
- **4.** Find the value of acceleration due to gravity at a place where the length of the seconds pendulum is 0.9 m.
- 5. Define (a) gas constant and (b) universal gas constant.
- 6. Write any three characteristics of musical sound.
- 7. Define surface tension. Write any one example of it.
- * /4051

[Contd...

- **8.** Write the Newton's formula for viscous force and hence define coefficient of viscosity.
- 9. State the Kirchhoff's laws.

*

10. Define critical angle and total internal reflection.

PART—B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

 $10 \times 5 = 50$

11.	(a)	Define dot product of two vectors.	2
	(b)	Write any four properties of dot product.	4
12.	(c) (a)	If a vector $\vec{A} = 2\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{B} = 2\vec{i} + 3\vec{j} + 2\vec{k}$ are two adjacent sides of a parallelogram, find the area of parallelogram. Show that the path of a horizontally projected body is a	4
	(b)	A bullet is fired at an angle of 45° with horizontal with a	6
(velocity of 49 m/sec. Find the time of flight and horizontal range.	4
13.	(a)	Derive the expression for acceleration of a body moving down the rough inclined plane with diagram.	5
	(b)	Write any four advantages of friction.	5
14.	(a)	Define work done, power and energy. Write their SI units.	6
	(b)	An engine is used to lift water from a well 50 m deep to fill a tank of dimensions $5 \text{ m} \times 5 \text{ m} \times 10 \text{ m}$ in 50 minute. Find the power of the engine.	4
/4051		2 [Conto	ł

*	15.	(a)	Derive the expression for velocity and acceleration in simple harmonic motion.	6
		(b)	A particle executing SHM with a period of 10 seconds and amplitude 1.5 m. Calculate the maximum velocity.	4
	16.	(a)	Prove C_p C_v R .	6
		(b)	The volume of a gas is 20 c.c. at 27 °C. Pressure remaining constant. What is the temperature at which the volume of the gas is 40 c.c.?	4
	17.	(a)	Define echo.	2
		(b)	What is Doppler effect? Write any four applications of it.	6
		(c)	Write Sabine's formula.	2
	18.	(a)	State and explain Ohm's law.	4
		(b)	Derive an expression for magnetic induction field strength (B) at a point on the axial line of a bar magnet.	6

*