

C14-M/CHOT/RAC-102

4050

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV-2015

DME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time: 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Resolve

into partial fractions.

2. If

	1	3	1		2	0	2
Α	2	5	4 ar	nd B	2	1	5
	1	6	1		0	2	4
	1	. 1			0.17	0	

find X such that $2A \quad 3B \quad 2X \quad 0$.

* /4050

[Contd...

3. Find :

4. Prove that

 $\frac{\cos 11 \quad \sin 11}{\cos 11 \quad \sin 11} \quad \tan 56$

5. If

$$x = \frac{1}{x} - 2\cos(x)$$

then show that

$$x^2 \quad \frac{1}{x^2} \quad 2\cos 2$$

- **6.** Find the modulus-amplitude form of 1 $i\sqrt{3}$.
- 7. Find the equation of the point circle with centre (9, -2).

8. Find :

$$\lim_{x} x(\sqrt{x^2 + x})$$

- **9.** Find the value of x, if the slope of the line joining the points (2, 5) and (x, 3) is 2.
- **10.** Find the derivative of $\sqrt[3]{x^2} \sin x$.

* /4050

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Solve the equations $x \ 2y \ z \ 1, \ 3x \ y \ 2z \ 5$ and $x \ y \ 3z \ 0$ by using Cramer's method.
 - (b) Show that
 - $\begin{vmatrix} 1 & a & 1 & 1 \\ 1 & 1 & b & 1 \\ 1 & 1 & 1 & c \end{vmatrix} \quad abc \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} \begin{pmatrix} 1 \\ c \end{bmatrix} \begin{bmatrix} 1 \\ c \end{bmatrix}$

12. (a) If

$$\sin x \quad \sin y \quad \frac{3}{4} \text{ and } \sin x \quad \sin y \quad \frac{2}{5}$$

Then prove that

$$8\cot\frac{x\ y}{2} \quad 15\cot\frac{x\ y}{2}$$

(b) If

 $\cos^{1}x \cos^{1}y \cos^{1}z$

then prove that

$$x^2$$
 y^2 z^2 $2xyz$ 1

13. (a) Solve $2\sin^2 - 3\cos - 3 = 0$.

(b) In triangle ABC, if $\frac{1}{a \ c} \quad \frac{1}{b \ c} \quad \frac{3}{a \ b \ c}$

Then show that $c = 60^{\circ}$.

* /4050

*

[Contd...

- 14. (a) Find the equation of the parabola whose axis is parallel to x-axis and which passes through the points (2, 0); (0, 4) and (1, 2).
 - (b) Find the equation of the rectangular hyperbola whose focus is (1, 3) and direction is $x \ 2y \ 7 \ 0$.
- **15.** (*a*) If

 $y x^{x^{x \cdots}}$

Then prove that

$$\frac{dy}{dx} \quad \frac{y^2}{x(1 \quad y \log x)}$$

(b) Differentiate sin $(3x + 4x^3)$ with respect to x.

tan u

16. (*a*) If

$$y \quad \tan^{-1}(\frac{2x}{1-x^2})$$
, then find $\frac{d^2y}{dx^2}$

 $u \sin \frac{1}{x} \frac{x^2}{x} \frac{y^2}{y}$

 $x - \frac{u}{x} \quad y - \frac{u}{y}$

then prove that

(b) If

17. (a) Compute lengths of tangent, normal, subtangent and subnormal of the curve $y \ 6x^3 \ 7x^2 \ 9$ at (1, 8).

- (b) The volume of a sphere is increasing at the rate of 400 cubic.cm/sec. Find the rate of increase of its radius and surface area when the radius of the sphere is 40 cm.
- **18.** (a) The sum of two numbers is 24. Find the numbers when the sum of their squares is minimum.
 - (b) If an error of 2% is made in measuring the side of a square plate then find % error in its area.

* /4050

AA15—PDF