

со9-м-606А

3784

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL-2017

DME—SIXTH SEMESTER EXAMINATION

REFRIGERATION AND AIR-CONDITIONING

Time : 3 hours]

[Total Marks : 80

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Explain ice refrigeration with a neat sketch.
- 2. Explain the term 'ton of refrigeration'.
- **3.** What are the advantages of vapour compression system over air refrigeration system?
- **4.** What are the uses of analyzer and rectifier in a vapour absorption system?
- **5.** What are the basic components of a simple vapour absorption refrigeration system?
- 6. What are the desirable properties of an ideal refrigerant?
- **7.** What is the function of condenser? How do you classify condensers?
- 8. What are the uses of cold storage plant?

/3784

[Contd...

- **9.** Why are filters used in air-conditioning system? List out different types of filters.
- 10. What is 'psychrometric chart'? State its uses.

PART—B

10×5=50

6

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (*a*) List out various methods of refrigeration and explain steam jet refrigeration with neat sketch.
 - (b) What are the advantages and limitations of air refrigeration? 4
- 12. In an ammonia refrigeration plant, temperature range is from -10 °C to 20 °C. Find the COP if vapour after compression is (a) 0.95 dry and (b) superheated to 35 °C at same pressure. Take specific heat of vapour as 2.65 kJ/kg K. The properties of ammonia are (assume that there is no subcooling) :

Temperature,	Enthalpy, kJ/kg		<i>Entropy</i> , kJ/kg K	
°C	Liquid	Vapour	Liquid	Vapour
-10	154	1450	0.8296	5.755
20	293.8	1479.8	1.3285	5.374

- **13.** Explain the working principle of lithium-bromide-water absorption system with a neat sketch.
- 14. Explain the working of the following components with the help of a neat sketch : 5×2=10
 - (a) Vane type rotary compressor
 - (b) Refill type dryers

* /3784

15.	<i>(a)</i> Explain the working of shell and coil condenser with a neat sketch.	5
	<i>(b)</i> Explain the working of solenoid valve with a neat sketch.	5
16.	What are the different air distribution systems? Explain different arrangements in ejection system.	
17.	(a) List out various psychrometric processes.(b) Describe humidification and dehumidification processes with a neat sketch. Plot the processes on psychrometric	4
	chart.	6
18.	Explain the following with neat sketches : 5×2=	=10
	(a) Central air-conditioning system	

(b) Factors governing effective temperature (ET) conditions

*