с09-м-305

## 3249

# BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2014 

## DME-THIRD SEMESTER EXAMINATION

## THERMAL ENGINEERING-I

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. What do you mean by density of a substance?
2. State the terms involved in the equation

$$
C_{v}=\frac{R}{\gamma-1}
$$

3. Write the expression for entropy for a constant temperature process and state the parameters involved.
4. Why isothermal process is often referred to as hyperbolic process?
5. Define the term FUEL.
6. Write Dulong's formula for HCV . What is the significance of $\frac{\mathrm{O}_{2}}{8}$ in the formula?
7. Show Otto cycle on $P-V$ and $T-S$ diagram.
8. Draw Mollier diagram (enthalpy-entropy) and show on it constant dryness fraction and constant pressure lines.
9. Write the expression for entropy of wet steam and describe the terms involved.
10. What is the principle of open air refrigeration?

> PART—B

$$
10 \times 5=50
$$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
(4) Assume any missing data.
11. In a steady flow open system, a fluid substance flows at the rate of $5 \mathrm{~kg} / \mathrm{sec}$. It enters the system at a pressure of $500 \mathrm{kN} / \mathrm{m}^{2}$, a velocity of $140 \mathrm{~m} / \mathrm{sec}$ with internal energy $2000 \mathrm{~kJ} / \mathrm{kg}$ and specific volume $0.4 \mathrm{~m}^{3} / \mathrm{kg}$. It leaves the system at a pressure of $125 \mathrm{kN} / \mathrm{m}^{2}$, velocity of $100 \mathrm{~m} / \mathrm{sec}$ with internal energy $1600 \mathrm{~kJ} / \mathrm{kg}$ and specific volume of $1 \mathrm{~m}^{3} / \mathrm{kg}$. During its passage through the system, the substance lost heat of $40 \mathrm{~kJ} / \mathrm{kg}$ to the surroundings. Determine the power of system stating whether it is from or to the system.
12. A quantity of gas has an initial pressure, volume and temperature of $150 \mathrm{kN} / \mathrm{m}^{2}, 0 \cdot 14 \mathrm{~m}^{3}$ and $25^{\circ} \mathrm{C}$ respectively. It is compressed to a pressure of $1.5 \mathrm{MN} / \mathrm{m}^{2}$ according to the law $P V^{1.25}=$ constant. Determine (a) work transfer to the gas, (b) heat transfer from the gas and (c) the change of entropy. [Take $C_{p}=1.041 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, $\left.C_{v}=0.743 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}.\right]$
13. Certain mass of gas expanding reversibly at constant pressure does 10 kJ of work. Calculate the quantity of heat supplied and change in internal energy. Assume gas is perfect and $\gamma=1.66$.
14. Explain the working of Junkers gas calorimeter with a neat sketch.
15. A reversible engine converts $1 / 5$ th of the heat input into work. When the temperature of the sink is reduced by $40^{\circ} \mathrm{C}$, its efficiency is doubled. Find the temperature of the source and the sink.
16. Steam initially at a pressure of 14 bar and $250^{\circ} \mathrm{C}$ expands isentropically to 2 bar. Find (a) the final condition, (b) work transfer and (c) change in internal energy.
17. Describe the process of steam jet refrigeration with the help of a neat sketch.
18. (a) Define and explain Boyle's law.
(b) An air standard diesel cycle has compression ratio of 15 and cut-off ratio of 2 . Inlet pressure and temperature are 150 kPa and 350 K . Determine heat added per kg.

