3248

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV—2013

DME—THIRD SEMESTER EXAMINATION

ELECTRICAL ENGINEERING AND BASIC ELECTRONICS

Time : 3 hours]

[Total Marks : 80

PART—A

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Define work, power, energy and mention their units.
- **2.** Define (a) Self-inductance and (b) Mutual inductance.
- **3.** State Faraday's laws of electromagnetic induction.
- **4.** Classify DC generators on the basis of excitation.
- 5. What is the significance of back e.m.f. in a DC motor?
- **6.** State the advantages of polyphase system over single-phase system.

* /3248

[Contd...

- 7. Define (a) amplitude, (b) time period and (c) frequency.
- 8. What are the indications of a fully-charged battery?
- 9. Distinguish between intrinsic and extrinsic semiconductors.
- **10.** What is the need of earthing of electrical equipment?

PART-B

Instructions : (1) Answer any five questions.

*

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11.	(a)	State and explain Kirchhoff's laws.	6
	(b)	State the laws of resistance.	4
12.	(a)	If a coil of 1000 turns is linked with a flux of 2 mb, when carrying a current of 5 A, calculate— (i) self-inductance of the coil and (ii) energy stored in a magnetic field.	5
	(b)	Explain the necessity of starter in a DC motor.	5
13.	(a)	Explain the speed control of DC shunt motor, using <i>(i)</i> field-control method and <i>(ii)</i> armature-control method.	6
	(b)	Calculate the e.m.f. generated in a 8-pole lap wound shunt generator running at 300 r.p.m., if the flux per pole is 0.1 Wb and the No. of armature conductions is 960.	4
14.	(a)	Explain the working principle of 3-phase induction motor.	5
	(b)	Describe the welding transformer with a neat sketch.	5
/3248		2 [Conte	d

15.	(a)	An inductive circuit has a resistance of 10 ohms in series with an inductance of 0.03 H. Calculate the current and power factor, when connected across 230 V, 50 Hz supply.	4
	(b)	Describe the star-delta starter with a neat sketch.	6
16.	(a)	List the applications of single-phase induction motor.	5
	(b)	Compare between primary and secondary cells.	5
17.	(a)	Explain the construction and working of LED.	6
	(b)	Compare between <i>P</i> -type and <i>N</i> -type semiconductors in any four aspects.	4
18.	(a)	Explain the construction and working of Permanent Magnet Moving Coil (PMMC) ammeter.	6
	(b)	What are the effects of electric shock?	4

* * *

*

*