

C09-CHOT-302/C09-M-302/

C09-RAC-302

3246

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2014

DME—THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—II

Time : 3 hours]

PART—A

3×10=30

[Total Marks : 80

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Evaluate $\frac{1}{1 \cos x} dx$.
- **2.** Evaluate $\frac{dx}{\sqrt{25 x^2}}$.
- **3.** Evaluate $e^x (\sin x \cos x) dx$.
- **4.** Evaluate $2x e^{x^2} dx$.
- **5.** Evaluate $\frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$.
- **6.** Find the mean value of the function $x^2 e^x$ in the interval [1, 3].
- **7.** Find the area bounded the curve $y^2 = 4x$ between x = 0 and x = 3.
- **8.** Form the differential equation of family of curves $y = Ae^{2x} = Be^{-2x}$, where A, B are arbitrary constants.

9. Solve
$$(D^2 \ 18D \ 77)y$$
 0.

10. Solve $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

10×5=50

PART-B

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11. (a) Evaluate
$$\frac{1}{x^2(x-1)}dx$$
.

- (b) Evaluate $x \cot^{-1} x dx$.
- **12.** (a) Evaluate $\sin 5x \cos 2x \, dx$.
 - (b) Evaluate $\cos^3 \sin^3 d$.
- **13.** Find the area enclosed between the parabolas y^2 16x and x^2 16y.
- 14. (a) Find the volume of the solid formed by revolving the area enclosed by the curve \sqrt{x} \sqrt{y} \sqrt{a} , x 0, y 0 about y-axis.
 - (b) Find the RMS value of $\sqrt{27} 4x^2$ between x 0, x 3.
- **15.** (a) Solve $(D^2 \ 4)y \ \cos 2x$. (b) Solve $(D^2 \ 4)y \ x^4$.
- **16.** Solve $(x^2 \ y^2) dx \ 2xy dy \ 0$.
- **17.** (a) Solve $\frac{dy}{dx} + y \sec^2 x + \sin x \sec^3 x$.

(b) Solve
$$(D^2 \ 7D \ 6)y \ e^{2x}$$
.

18. (a) Given $e_{1,e^{1}}$ 2 72, e^{2} 7 39, e^{3} 20 09 and e^{4} 54 60, verify Simpson's rule by finding the value of $\frac{4}{0}e^{x}dx$.

(b) Solve
$$\frac{dy}{dx} = \frac{a^2}{(x - y)}$$
.

* /3246