

$c_{09-c_{HOT}-103/c_{09-M-103/rac}-103}$

3041

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2014

DME—FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Write three applications of dimensional analysis.
- **2.** A force of $2\hat{i}$ $3\hat{j}$ $4\hat{k}$ N acts on a body and produces a displacement of $3\hat{i}$ $4\hat{j}$ $5\hat{k}$ m. Calculate the work done.
- **3.** Write the equations of motion in the case of a body thrown up vertically.
- **4.** State the laws of friction.
- **5.** The displacement of a particle executing simple harmonic motion is represented by an equation $y = 0.25 \cos(6280t)$. Find the amplitude, angular frequency and time period of that particle.
- **6.** State any three differences between 'isothermal process' and 'adiabatic process'.

* /3041

[Contd...

- 7. State and explain Sabine's formula.
- 8. Explain briefly 'viscosity' of gases.
- 9. Explain Coulomb's inverse square law in magnetism.
- 10. State any three laws of photoelectric effect.

PART-B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

10×5=50

11.	(a)	State the parallelogram law of vectors.	2
	(b)	Derive an expression for the magnitude and direction of the resultant vector using parallelogram law.	8
12.	(a)	Define an oblique projectile. Give any two examples.	3
	(b)	Derive an equation for the horizontal range for an object projected at a certain angle with the horizontal.	4
	(C)	Find the angle of projection for which the projectile can attain the maximum height which is numerically equal to its horizontal range.	3
13.	(a)	Define the terms work, power and energy. State their units and dimensional formulae.	6
	(b)	A man weighting 50 kg climbs up a staircase of height 5 m carrying a bag of 10 kg in 15 seconds. Calculate his power $(g 10 \text{ ms}^{-2})$.	4
14.	Der <i>(c)</i> sim	rive expression for (a) displacement, (b) velocity, acceleration, (d) time period and (e) frequency for a body in the period barmonic motion.	10
15.	(a)	Derive C_p C_v R .	6
	(b)	One litre of gas at 27 °C is heated such that its volume and pressure are doubled. Find the final temperature.	4
/3041 2		2 [Cont	d

16. (a) What is noise pollution? What are effects of noise pollution? How to minimize the noise pollution? 7 (b) Two tunning forks give 4 beats per second when sounded simultaneously. The frequency of one of the forks is 384 Hz. When the other fork is loaded with a little wax 6 beats per second are produced. What is the frequency of the second fork? 3 7 **17.** (a) What is stain? Explain the different types of strain. (b) A steel wire 2 mm diameter and of length 2 m is stretched by applying a force of 11 N. If the increase in length is 0.036 mm, find Young's modulus. 3 **18.** (a) Explain the principle, construction of a metre bridge with the help of diagram and explain the experimental determination of unknown resistance. 7 (b) In a metre bridge experiment the balancing length is 40 cm. The resistance in the left gap is 4 ohms. Find the resistance 3 in the right gap.