

C09-CHOT-103/C09-M-103/RAC-103

3041

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2014

DME-FIRST YEAR EXAMINATION
ENGINEERING PHYSICS
Time : 3 hours]

PART—A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Write three applications of dimensional analysis.
2. A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} \mathrm{~N}$ acts on a body and produces a displacement of $3 \hat{i}+4 \hat{j}+5 \hat{k} \mathrm{~m}$. Calculate the work done.
3. Write the equations of motion in the case of a body thrown up vertically.
4. State the laws of friction.
5. The displacement of a particle executing simple harmonic motion is represented by an equation $y=0.25 \cos (6280 t)$. Find the amplitude, angular frequency and time period of that particle.
6. State any three differences between 'isothermal process' and 'adiabatic process'.
7. State and explain Sabine's formula.
8. Explain briefly 'viscosity' of gases.
9. Explain Coulomb's inverse square law in magnetism.
10. State any three laws of photoelectric effect.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State the parallelogram law of vectors.
(b) Derive an expression for the magnitude and direction of the resultant vector using parallelogram law.
12. (a) Define an oblique projectile. Give any two examples.
(b) Derive an equation for the horizontal range for an object projected at a certain angle with the horizontal.
(c) Find the angle of projection for which the projectile can attain the maximum height which is numerically equal to its horizontal range.
13. (a) Define the terms work, power and energy. State their units and dimensional formulae.
(b) A man weighting 50 kg climbs up a staircase of height 5 m
carrying a bag of 10 kg in 15 seconds. Calculate his power $\left(g=10 \mathrm{~ms}^{-2}\right)$.
14. Derive expression for (a) displacement, (b) velocity, (c) acceleration, (d) time period and (e) frequency for a body in simple harmonic motion.10
15. (a) Derive $C_{p}-C_{v}=R$. 6
(b) One litre of gas at $27^{\circ} \mathrm{C}$ is heated such that its volume and pressure are doubled. Find the final temperature.
16. (a) What is noise pollution? What are effects of noise pollution? How to minimize the noise pollution?
(b) Two tunning forks give 4 beats per second when sounded simultaneously. The frequency of one of the forks is 384 Hz . When the other fork is loaded with a little wax 6 beats per second are produced. What is the frequency of the second fork?
17. (a) What is stain? Explain the different types of strain.
(b) A steel wire 2 mm diameter and of length 2 m is stretched by applying a force of 11 N . If the increase in length is 0.036 mm , find Young's modulus.
18. (a) Explain the principle, construction of a metre bridge with the help of diagram and explain the experimental determination of unknown resistance.

7
(b) In a metre bridge experiment the balancing length is 40 cm . The resistance in the left gap is 4 ohms. Find the resistance in the right gap.

