

C09-СНОТ-102/C09-M-102/C09-RAC-102

3040

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2014
 DME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Simplify $4-[3-\{6(5-\overline{4-3)}\}]$.
2. Solve $x^{2}+5 x+6=0$.
3. Resolve into partial fractions

$$
\frac{6-5 x}{(x+2)(x-1)}
$$

4. In any $\triangle A B C$, prove that $\tan A+\tan B+\tan C=\tan A \tan B \tan C$.
5. Show that $\cos (60-\theta) \cos (60+\theta)=\frac{1}{4}\left(4 \cos ^{2} \theta-3\right)$.
6. Find the real and imaginary of $\left(\frac{1+i}{1-i}\right)$.
7. Find the equation of the line passing through the points $(1,2),(-3,5)$.
8. Find the equation of the circle having the points $(4,2),(1,5)$ as the end points of a diameter.
9. Evaluate

$$
\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos \theta}{\theta \sin \theta}
$$

10. Differentiate $\sqrt{\cos \sqrt{x}}$ with respect to x.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Solve $x+2 y+z=4, x+3 y-2 z=2,3 x+y+2 z=6 \quad$ using Gauss-Jordan method.
(b) Show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a)
$$

12. (a) Prove that $\frac{\sin A+\sin 2 A+\sin 3 A+\sin 4 A}{\cos A+\cos 2 A-\cos 3 A-\cos 4 A}=\cot A$.
(b) Solve $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\tan ^{-1}\left(\frac{1}{2}\right)$.
13. (a) Solve $\sin 5 \theta+\sin \theta=\sin 3 \theta$.
(b) Solve $\triangle A B C$, with $a=1, b=\sqrt{3,} c=2$.
14. (a) Find the equation of the parabola whose focus is $(2,3)$ and the directrix is $x+y-2=0$.
(b) Find the centre, vertex, foci, directrix, eccentricity, LLR of $9 x^{2}+25 y^{2}=225$
15. (a) Find the equation of the hyperbola with foci $(\pm 3,0)$ and $e=6$.
(b) If two vertices $(3,-9,11)(-2,5,7)$ and the centroid $(-3,3,-3)$, find the third vertex of the triangle.
16. (a) Find $\frac{d y}{d x}$, if $y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\cdots \infty}}}$
(b) If $U=\log (x+y+z)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=1$.
17. (a) Find the angle between the curves $x^{2}+y^{2}=8$ and $x^{2}=2 y$.
(b) A particle is moving along a line according to the law $S=2 t^{3}-3 t^{2}+15 t+18$ (t in second). Find its velocity when acceleration is zero.
18. (a) Find the maxima and minima of $2 x^{3}-9 x^{2}+12 x+15$.
(b) Radius of a spherical balloon is increased by $0 \cdot 1 \%$. Find the approximate percentage increase in its volume.
