

$c_{09-c_{HOT}-102/c_{09-M}-102/c_{09-RAC}-102}$

3040

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL-2014

DME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

[Total Marks : 80

PART-A

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Simplify 4 $[3 \{ 6(5 \ \overline{4} \ 3) \}]$.
- **2.** Solve x^2 5x 6 0.
- **3.** Resolve into partial fractions $\frac{6 \quad 5x}{(x \quad 2)(x \quad 1)}$
- **4.** In any *ABC*, prove that $\tan A \tan B \tan C \tan A \tan B \tan C$.
- 5. Show that $\cos(60) \cos(60) = \frac{1}{4}(4\cos^2)$ 3).
- **6.** Find the real and imaginary of $\frac{1}{1} \frac{i}{i}$.

* /3040

[Contd...

- **7.** Find the equation of the line passing through the points (1, 2), (-3, 5).
- **8.** Find the equation of the circle having the points (4, 2), (1, 5) as the end points of a diameter.
- 9. Evaluate

 $Lt_0 \frac{1 \cos}{\sin}$

10. Differentiate $\sqrt{\cos \sqrt{x}}$ with respect to x.

PART—B

 $10 \times 5 = 50$

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Solve x 2y z 4, x 3y 2z 2, 3x y 2z 6 using Gauss-Jordan method.
 - (b) Show that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} (a \ b)(b \ c)(c \ a)$$

12. (a) Prove that $\frac{\sin A \quad \sin 2A \quad \sin 3A \quad \sin 4A}{\cos A \quad \cos 2A \quad \cos 3A \quad \cos 4A}$ $\cot A$.

(b) Solve
$$\tan^{-1}(1 x) \tan^{-1}(1 x) \tan^{-1}\frac{1}{2}$$
.

- **13.** (a) Solve $\sin 5 \quad \sin \quad \sin 3$.
 - (b) Solve ABC, with $a = 1, b = \sqrt{3}, c = 2$.

* /3040

2

- **14.** (a) Find the equation of the parabola whose focus is (2, 3) and the directrix is $x \ y \ 2 \ 0$.
 - (b) Find the centre, vertex, foci, directrix, eccentricity, LLR of $9x^2$ 25 y^2 225.
- **15.** (a) Find the equation of the hyperbola with foci (3,0) and e 6.
 - (b) If two vertices (3, -9, 11) (-2, 5, 7) and the centroid (-3, 3, -3), find the third vertex of the triangle.
- **16.** (a) Find $\frac{dy}{dx}$, if $y = \sqrt{\cos x} = \sqrt{\cos x} = \sqrt{\cos x}$

(b) If $U \log(x \ y \ z)$, prove that $x - \frac{u}{x} \ y - \frac{u}{y} \ z - \frac{u}{z} \ 1$.

- 17. (a) Find the angle between the curves x^2 y^2 8 and x^2 2y.
 - (b) A particle is moving along a line according to the law $S \ 2t^3 \ 3t^2 \ 15t \ 18$ (t in second). Find its velocity when acceleration is zero.
- **18.** (a) Find the maxima and minima of $2x^3$ $9x^2$ 12x 15.
 - (b) Radius of a spherical balloon is increased by 0.1%. Find the approximate percentage increase in its volume.

* * *