С09-СНОТ-102/C09-M-102

3040

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2013

DME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. If $x+\frac{1}{x}=2$, find the value of $x^{3}+\frac{1}{x^{3}}$.
2. Rationalise the denominator of $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$.
3. Resolve $\frac{4}{(x-2)(x-5)}$ into partial fractions.
4. If $A+B+C=180^{\circ}$, prove that

$$
\tan A+\tan B+\tan C=\tan A \tan B \tan C
$$

C09-CHOT-102 / C09-M-102

5. Show that $\frac{\cot \alpha-\tan \alpha}{\cot \alpha+\tan \alpha}=\cos 2 \alpha$.
6. Find the modulus of $\frac{7+24 i}{3+4 i}$.
7. Find the equation of the straight line passing through the point $(2,-5)$ and perpendicular to the line $7 x+2 y-1=0$.
8. Find the equation of the point circle with centre $(7,-9)$.
9. Evaluate $\lim _{x \rightarrow 0} \frac{\sin p x}{\sin q x}$.
10. Differentiate $e^{6 x} \log x$.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Using Laplace's expansion, evaluate

$$
\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|
$$

(b) Find the adjoint of

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 3 \\
1 & 1 & 2
\end{array}\right]
$$

C09-CHOT-1 02 / C09-M-1 02

12. (a) If $A+B+C=180^{\circ}$, show that

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

(b) Prove that $\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}=\cot ^{-1} \frac{9}{2}$.
13. (a) Solve : $4+\cos \theta-6 \sin ^{2} \theta=0$.
(b) In any $\triangle A B C$, show that $\Sigma 2 b c \cos A=a^{2}+b^{2}+c^{2}$.
14. (a) Find the vertex, focus and directrix of the parabola $(y-2)^{2}=8(x-1)$.
(b) Find the equation of the ellipse which passes through the points $(7,2)$ and $(3,4)$ with axes as coordinate axes.
15. (a) Find the equation of the rectangular hyperbola whose focus is $(3,4)$ and directrix is $4 x-3 y+1=0$.
(b) Find the perimeter and centroid of the triangle formed by the points $(2,3,7),(-4,1,0),(-5,-11,3)$.
16. (a) Find $\frac{d y}{d x}$, if $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$.
(b) If $y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots \text { to } \infty}}}$, show that $\frac{d y}{d x}=\frac{1}{2 y-1}$.
17. (a) For any curve, show that $\frac{\text { subnormal }}{\text { subtangent }}=\left(\frac{\text { length of normal }}{\text { length of tangent }}\right)^{2}$.
(b) When a cube is heated, all its edges increase at the rate of $0.5 \mathrm{~cm} / \mathrm{min}$. When one of its edges is 8 cm long, find the rate at which its surface and volume increase.

C09-CHOT-102 / C09-M-102

18. (a) Show that the square has the smallest perimeter of all the rectangles of given area.
(b) The radius of a sphere is found by measurement to be 10 cm with a possible error of $0 \cdot 2$. Find the proportional error in the estimated value of (i) its surface area and (ii) its volume.
