

C16-A-AA-AEI-CH-CHST-MET-MNG-TT-BM-C-CM-IT-EC-CHPC-PCT-EE-CHPP-PET-M-CHOT-RAC-301

6201

BOARD DIPLOMA EXAMINATION, (C-16)

AUGUST/SEPTEMBER—2021

THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- **1.** Evaluate: $\int (e^x + \sin x + x) dx$
- **2.** Evaluate: $\int \frac{1}{1+x^2} dx$
- **3.** Evaluate: $\int_{0}^{1} (x^2 + 1) dx$
- **4.** Find the area bounded by the parabola $y = x^2$ from x = 0 to x = 1.
- $5. \quad \text{Find } L\left(1+\cos t-e^{2t}\right)$
- $\mathbf{6.} \quad \text{Find } \int_{0}^{\pi/4} \sec^2 x \, dx$

- 7. Find the Fourier coefficient a_0 for $f(x) = x^2$ in $0 < x < 2\pi$.
- **8.** Find the differential equation to the family of curves $y = a\cos x$, where a is arbitrary constant.
- **9.** Solve : $\frac{dy}{dx} = \frac{x}{y}$
- **10.** Solve: $(D^2 6D + 8)y = 0$

PART-B

10×5=50

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- **11.** (a) Evaluate: $\int \frac{1}{(x-1)(x-2)} dx$
 - (b) Evaluate: $\int \sin^3 x \cos x \, dx$
- **12.** (a) Evaluate: $\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$
 - (b) Evaluate: $\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$
- **13.** (a) Evaluate: $\int_{1}^{3} \left(3x^2 + 5x + 2 + \frac{1}{x}\right) dx$
 - (b) Find the volume of the solid formed by $y^2 = 4x$ revolving about x-axis from x = 0 to x = 1.

- **14.** Evaluate $\int_{1}^{11} x^2 dx$ using Simpson's rule by taking n = 10.
- **15.** (a) Find the RMS value of $\sqrt{8-4x^2}$ between the lines x = 0 and x = 1.
 - (b) Find $L\left\{t\left(e^{2t}+1\right)\right\}$
- **16.** Find the Fourier series for the function f(x) = x in the interval $[-\pi, \pi]$.
- **17.** (a) Solve : $\frac{dy}{dx} + \frac{y}{x} = x^2$
 - (b) Solve: $(x^2+1)dx + (1+y^2)dy = 0$
- **18.** Solve: $(D^2 + 5D + 6)y = e^x + e^{-x}$

