

C16-A/AA/BM/CH/CHST/AEI/MET/ MNG/TT/IT/PCT-103

6003

BOARD DIPLOMA EXAMINATION, (C-16)

OCT/NOV-2018

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSIC

Time : 3 hours]

Total Marks : 80

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write any three advantages of SI units.
- 2. Define scalar and vector quantities. Give one example for each.
- **3.** Define a projectile. Give two examples.
- 4. The displacement of a particle executing SHM is given by

y 8 sin 2 t
$$\frac{1}{4}$$

Find the initial phase, angular velocity and amplitude.

5. Write any three differences between isothermal and adiabatic processes.

* /6003

[Contd...

- **6.** Write any three applications of beats.
- 7. Define stress and state Hooke's law.
- 8. Define surface tension. Give one example.
- 9. Define specific resistance and write its SI unit.
- 10. State the laws of photoelectric emission.

PART—B

UKRISHMADIST, A.P 10×5=50

4

2

5

[Contd...

Instructions : (1) Answer any **five** questions

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. (a) State the parallelogram law of vectors. Derive the expression for the magnitude of resultant.
 - (b) Find the dot product of two vectors if $\vec{A} = 2\vec{i} + 5\vec{j} + 7\vec{k}$ and $\vec{B} = 3\vec{i} + 8\vec{j} + 4\vec{k}$.
- 12. (a) Show that the path of an oblique projectile is a parabola.
 (b) A body is thrown up vertically up from the top of a tower with a velocity of 9 m/s. If it reaches the ground in 6 s, find the height of the tower.
- **13.** (a) Define friction. List three types of friction.
 - (b) Derive an expression for the acceleration of a body projected up a rough inclined plane.
 - (c) Write any three advantages of friction. 3

2

* /6003

*	14.	(a)	Define the terms work, power and energy.	3
		(b)	Derive the work-energy theorem.	3
		(c)	A machine gun fires 360 bullets per minute and each bullet travels with a velocity of 600 m/s. If the mass of each bullet is 5 g, find the power of the machine gun.	4
	15.	. ,	State any four conditions of SHM.	4
		(b)	Derive the expression for time period of oscillations of a simple pendulum. Derive the relation C_p C_v R .	6
	16.	(a)	Derive the relation C_p C_v R .	7
		(b)	The volume of certain mass of gas at 17 °C is 500 cm ³ . Find the volume at 162 °C if the pressure is kept constant.	3
	17.	(a)	Write any three applications of Doppler effect.	3
		(b)	Define noise pollution and write three effects of noise pollution.	+3
		(c)	Write three methods to minimize noise pollution.	3
	18.		State and explain Coulomb's inverse square law.	3
		(b)	Derive the expression for magnetic induction field strength \mathbf{a} a point on axial line of a bar magnet.	7
	P	P.I	* * *	

* /6003

*

*