# C16-A/AA/BM/CH/CHST/AEI/MNG/MET/TT/IT/PCT - 102 <br> 6002 <br> BOARD DIPLOMA EXAMINATION <br> JUNE - 2019 <br> COMMON FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I 

Time: 3Hours Max. Marks : 80


## Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceè FIVE simple sentences
(1)Resolve $\frac{2 x}{(x-4)(x-5)}$ into Partial Fractions
(2)If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 3 & 1 \\ -3 & 1 & 2\end{array}\right]$ then verify $(A+B)^{T}=A^{T}+B^{T}$
(3)Evaluate $\begin{array}{llll}\text { | } 0 & y & -z \\ \text { । } \\ -y & 0 & x \\ \text { । } \\ z & -x & 0 & \text { । }\end{array}$
(4)If $A+B+C=180^{\circ}$ then show that $\tan 2 A+\tan 2 B+\tan 2 C=\tan 2 A \tan 2 B \tan 2 C$
(5)Prove that $\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}=\tan \theta$
q
(6)Find the mpdzales of the complex number $\frac{7+5 i}{3-4 i}$
(7)Find the slope of a line passing through the points $A(3,-7)$ and $B(2,-5)$ and also find its equation
(8)Find the distance between the parallel lines $11 x-3 y+39=0$ and $11 x-3 y+26=0$
(9) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sqrt{4+x}-\sqrt{4-x}}{x}\right)$
(10) Differentiate $\cos \left(e^{x}+x^{3}\right)$ with respect to $x$

$$
P A R T-B
$$

$$
5 \times 10=50
$$

## Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) Solve the equations $x+2 y+3 z=6,3 x-2 y+z=2$ and $4 x+2 y+2$ using matrix inversion method
(12) (a) Prove that $\frac{\sin 85^{\circ}-\sin 35^{\circ}}{\cos 35^{\circ}-\cos 85^{\circ}}=\frac{1}{\sqrt{3}}$
(b) Prove that $\operatorname{Tan}^{-1}\left(\frac{m}{n}\right)-\operatorname{Tan}^{-1}\left(\frac{m-n}{m+n}\right)=\frac{\pi}{4}$
(13) (a) Solve the equation $\tan ^{2} x+\cot ^{2} \boldsymbol{x} \underline{\underline{x}} 2$
(14) (a) Find the equation of the Circle with center at the point $(-3,4)$ and passing through the Origin
(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
(15) (a) Differentiate $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ with respect to $\sin ^{-1} x$
(b) If $y=\sqrt{\frac{1}{x}+\sqrt{\frac{1}{x}+\sqrt{\frac{1}{x}+\ldots \infty}}}$ then show that $\frac{d y}{d x}=\frac{1}{x^{2}(1-2 y)}$
(16) (a) If $y=a \sin 2 x+b \cos 2 x$ then show that $\frac{d^{2} y}{d x^{2}}-4 y=0$
(b) If $u(x, y)=\tan ^{-1}\left(x^{2}+x y+y^{2}\right)$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
(17) (a) Find the lengths of tangent, normal, sub-tangent and sub-normal the curve $y=x^{2}+2 x+1$ at the point $(1,4)$
(b) The volume of a sphere is increasing at the rate of $10 \mathrm{cubsinch} / \mathrm{sec}$. Find the rate of increase of its surface area and radius at the instant when the adius of the sphere is 10 inch
(18) (a) Find the dimension of a rectangle of maximum area having a perimeter 20 ft .
(b) Find an approximate value of $\sin 61^{\circ}$ giver that $1^{\circ}=0.0175$ radians

