C16-A/AA/BM/CH/CHST/AEI/MNG/MET/TT/IT/PCT - 102
 6002

BOARD DIPLOMA EXAMINATION
MARCH/APRIL - 2019
COMMON FIRST YEAR EXAMINATION
ENGINEERING MATHEMATICS - I

Time: 3Hours
Max. Marks : 80

PART - A

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not excec FIVE simple sentences
(1) Resolve $\frac{x-4}{(x-2)(x-3)}$ into Partial Fractions
(2) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$ then verify $(A+B)^{\mathbb{R}^{T}}=A^{T}+B^{T}$
(3) Evaluate $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$ if ω is a complex cube root of unity
(4) If $A+B+C=180^{\circ}$ then show that $\tan A+\tan B+\tan C=\tan A \tan B \tan C$
(5) Prove that $\cos ^{4} A-\sin ^{\frac{8}{2}} A=\cos 2 A$
(6) Find the real amd imaginary of parts of the complex number $\frac{1+3 i}{1+i}$
(7) Find the equation of the line passing through the point (7, 9) and having slope -3
(8) Find the equation of the straight line passing through the point $(-4,3)$ and perpendicular to the line $3 x+y-31=0$
(9) Evaluate $\lim _{x \rightarrow 1}\left(\frac{x^{2}+5 x-6}{x^{2}+x-2}\right)$
(10) Differentiate $\frac{1-e^{x}}{1+e^{x}}$ with respect to x

$$
P A R T-B
$$

$$
5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content But not the length of the answer
(11) Solve the equations $2 x+8 y+5 z=5, x+y+z=-2$ and $x+2 y+2=2$ using matrix inversion method
(12) (a) Prove that $\cos A+\cos \left(120^{\circ}+A\right)+\cos \left(120^{\circ}-A\right)-\theta$
(b) Prove that $\operatorname{Tan}^{-1}\left(\frac{3}{5}\right)+\operatorname{Tan}^{-1}\left(\frac{3}{4}\right)=\operatorname{Tan}^{-1}\left(\frac{27}{11}\right)$
(13) (a) Solve the equation $7 \sin ^{2} x+3 \cos ^{2} x=4$
(b) In a $\Delta^{l e} A B C$ prove that $a^{3} \sin (B-C)=0$
(14) (a) Find the equatign of the Circle with center at the point $(1,2)$ and whose tangent is thefline $3 x-4 y-1=0$
(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
(a) Find $\frac{d y}{d x}$, if $y=\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$
(b) Find $\frac{d y}{d x}$ if $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
(16) (a) If $y=\sin (\log x)$ then show that $x^{2} y_{2}+x y_{1}+y=0$
(b) If $u(x, y)=\sin ^{-1}\left(\frac{x^{4}+y^{4}}{x+y}\right)$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 \tan u$
(17) (a) Find the equations of tangent and normal to the curve $x=a(\theta-\sin \theta)$. $y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{4}$
(b) The displacement s of a particle is given at any time t by the retation $s=t^{3}+25 t$. Find its velocity when the acceleration is 0
(18) (a) Find the maximum and minimum values of $f(x)=4 x^{3} 49 x^{2}-12 x+1$
(b) If time and length of a simple pendulum is giveny the equation $T=2 \pi \sqrt{\frac{l}{g}}$ where g is constant. Find the approximate percentage error inthe calculated value of T corresponding to an error 1% in the value of l

