

6002

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2018 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATIGS-I

Time : 3 hours]

Instructions : (1) Answer all quevestions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and Shall not exceed five simple sentences.

1. Resolve

$$
\frac{3 x}{(x-2)(x+1)}
$$

intopartial fractions.
2. If $A=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$, then show that $A^{2}-4 A+7 I=O$, where I is the identity matrix and O is the null matrix.
3. If $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x\end{array}\right)$ and $\operatorname{det} A=45$, then find the value of x.
4. If $A+B=45^{\circ}$, then show that $(1+\tan A)(1+\tan B)=2$.
5. If $x+\frac{1}{x}=2 \cos \theta$, then show that $x^{2}+\frac{1}{x^{2}}=2 \cos 2 \theta$.
6. Express the complex number $\sqrt{3}+i$ in modulus-amplitude form.
7. Find the distance from the origin to the straight line $3 x+4 y+5=0$.
8. Find the equation of the straight line passing through the point $(-3,-4)$ and parallel to the line $3 x+y-31=0$.
9. Evaluate :

$$
\lim _{x \rightarrow 0} \frac{3 x-\sin 3 x}{x}
$$

10. Find the derivative of $\log [\log (\log x)]$ with Respect to x.

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion forpaluation is the content but not the length of the answer.
11. (a) If $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$, then find A^{-1}.
(b) Solve the equations $3 x+y+z=3, \quad 2 x+2 y+5 z=-1$ and $x-3 y-4 z=2$ by Cramer's rule.
12. (a) Prove that

$$
\frac{\sin 8 A+\sin 6 A}{\cos 8 A+\cos 6 A}=\tan 7 A
$$

(b) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi / 2$, then prove that $x y+y z+z x=1$.
13. (a) Solve $\cos \theta+\sqrt{3} \sin \theta=1$
(b) In a $\triangle A B C$, if $A=60^{\circ}$, then prove that

$$
\frac{c}{a+b}+\frac{b}{c+a}=1
$$

14. (a) Find the centre and radius of the circle $x^{2}+y^{2}-6 x+4 y-12=0$.
(b) Find the equation of the parabola whose focus is the foint $(3,-4)$ and directrix is the line $x-y+5=0$.
15. (a) Differentiate $e^{\tan ^{-1} x}$ with respect to $\tan ^{-1} x$
(b) If $y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\ldots \infty}}}$, then $\frac{d}{} \frac{d y}{d x}$.
16. (a) If $x=a(\cos t+t \sin t)$ and $y=a(\sin t-t \cos t)$, then find $\frac{d^{2} y}{d x^{2}}$.
(b) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, then prove that

$$
\frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u
$$

17. (a) Find the lengths of the tangent, normal, sub-tangent and subnormap to the curve $y=x^{3}-2 x^{2}+4$ at the point $(2,4)$.
(b) A cincular metal plate expands by heat so that its radius is increasing at the rate $0.02 \mathrm{~cm} / \mathrm{sec}$. At what rate its area Increasing when the radius is 20 cm ?
 Show that the volume of the cylinder is maximum when its height is $\frac{2 R}{\sqrt{3}}$.
(b) If the radius of a spherical balloon is increased by $0 \cdot 1 \%$, find the approximate percentage increase in its volume.
