C14-CM-303/C14-IT-303

4233

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV—2017
 DCME-THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time : 3 hours]

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State De Morgan's theorem.
2. Draw a half-adder circuit using an XOR gate and an AND gate.
3. Simplify the Boolean function $F=A \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}$ using k-maps.
4. Define positive and negative logic levels.
5. Draw the NOR latch and write its truth table.
6. Distinguish between synchronous and asynchronous inputs of a flip-flop.
7. List the applications of counters.
8. List different types of registers.
9. Distinguish between static RAM and dynamic RAM.
10. Write the applications of multiplexer.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Write SOP (Sum of Products), POS (Product of Sums) expressions for the below representations :
$2+2=4$

$$
f(A B C)=\sum m(0,2,3,4,6)
$$

(b) Find the complement of the expression

$$
\begin{equation*}
y=A B C+A B \bar{C}+\bar{A} \bar{B} C+\bar{A} B C \tag{3}
\end{equation*}
$$

(c) Simplify the Boolen function to a minimum number of literals by applying the Boolen postulates

$$
\begin{equation*}
y=(A+B)(A+\bar{B})(\bar{A}+C) \tag{3}
\end{equation*}
$$

12. Draw and explain 2's complement adder-subtractor circuit.
13. Explain the working of T (toggle) flip-flip with block diagram and write its truth table.
14. Explain the working of $J-K$ master slave flip-flip with suitable diagram and truth table.
15. Draw and explain a mod-8 ripple counter.
16. (a) Draw a 4-bit synchronous counter.
(b) Explain 4×1 multiplexer with diagram.
17. Draw and explain the working of 4-bit shift right register.
18. Draw and explain a 4-bit serial in-parallel out register.
