

C14-CM-303/C14-IT-303

4233

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2016 DCME—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time . 3 Hours		[Total Marks . 80
	PART—A	3×10=30
Instructions: (1) Answe	er all questions.	
(2) Each	question carries thre	e marks.
` '	ers should be brief and not exceed <i>five</i> simpl	I straight to the point and e sentences.
1. Write about EX-OR	gate.	3
2. State DeMorgan's th	neorems.	$1\frac{1}{2} \times 2 = 3$
3. Draw the full-adder gate.	diagram using two	half-adders and OR 3
4. Define the following (a) Fan-in (b) Fan-out (c) Noise margin	terms:	1×3=3
5. Define flip-flop.		3
6. Distinguish between	n edge triggering and	level triggering. 1×3=3
7. Draw 4-bit ring cou	inter.	3
* /4233	1	[Contd

8. List different types of data transfer in registers.

3

9. Distinguish between EEPROM and UVPROM.

3

10. List any three applications of encoders.

3

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. (a) Explain NAND and NOR gates in detail.

 $2\frac{1}{2} + 2\frac{1}{2} = 5$

(b) Write the Boolean expression for Y in the following forms from the given table: $2\frac{1}{2} + 2\frac{1}{2} = 5$

Sum of products form

(ii) Product of sums form

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

12. (a) Explain the working of serial adder.

5

(b) Simplify the following expression using K-Map:

5

m(0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15)

13. Draw and explain RS latch using NAND gate and NOR gate.

5+5=10

14.	Draw and explain the working of edge-triggered JK flip-flop with its truth table and waveforms. 4+4+2=10	С
15.	Draw and explain 4-bit synchronous counter. 4+6=10)
16.	(b) Explain the operation of a 1 to 4 demultiplexer with neat	5 5
17 .	Explain the working of Universal Shift Register.)
18.		5 5

* * *

* **/4233** AA16—PDF