

C14-A-102/C14-AA-102/C14-BM-102/
C14-CH-102/C14-CHST-102/C14-AEI-102/ C14-MNG-102/C14-MET-102/C14-IT-102/

C14-TT-102/C14-РCT-102

4002

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH / APRIL-2016 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

PART—A

$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Split

$$
\frac{2 x}{x^{2}+2 x+1}
$$

into partial fractions.
2. If

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{ll}
3 & 8 \\
7 & 2
\end{array}\right] \text { and } 2 X+A=B
$$

then find X.
3. Evaluate :

$$
\left|\begin{array}{lll}
11 & 12 & 13 \\
14 & 15 & 16 \\
17 & 18 & 19
\end{array}\right|
$$

4. If $\tan \theta=\sqrt{3}$ and $\tan \phi=2-\sqrt{3}$, then show that $\theta-\phi=\pi / 4$.
5. Prove that $\cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ}=\sqrt{3 / 8}$.
6. Express $\sqrt{3-i}$ in the modulus amplitude form.
7. Find the perpendicular distance of the point $(2,4)$ from the line $4 x-3 y-6=0$.
8. Find the equation of the tangent to the circle $x^{2}+y^{2}-10 x+4 y-140=0$ at $(-7,-7)$ on it.
9. Find

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{5^{x}-3^{x}}{x}
$$

10. Find the derivative of

$$
\frac{\sin x}{1+\cos x}
$$

w.r.t. x.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Find the adjoint of

$$
\left[\begin{array}{lll}
2 & 7 & 3 \\
3 & 9 & 4 \\
1 & 5 & 3
\end{array}\right]
$$

[Contd...
(b) Solve the equations

$$
\begin{aligned}
& 2 a-3 b+c=-1 \\
& a+4 b-2 c=3 \\
& 4 a-b+3 c=11
\end{aligned}
$$

by Cramer's rule.
12. (a) Prove that

$$
\frac{\cos 7 A+\cos 5 A+\cos 3 A+\cos A}{\sin 7 A+\sin 5 A+\sin 3 A+\sin A}=\cot 4 A
$$

(b) Solve :

$$
\tan ^{-1}\left(\frac{x}{1+x}\right)+\tan ^{-1}\left(\frac{x}{1-x}\right)=\tan ^{-1} 2
$$

13. (a) Solve the equation $\tan ^{3} \theta=3 \tan \theta$.
(b) Solve the triangle $A B C$ with $b=\sqrt{8}, c=\sqrt{12}$ and $B=45^{\circ}$.
14. (a) Find the equation to parabola whose focus is $(2,-3)$ and whose directrix is $3 x-4 y+16=0$.
(b) The cross section of a tunnel is a semi-ellipse, the road level being the major axis. The breadth of the road is 12 metres. A vehicle 4 metres high just touches the tunnel when one metre from a side. Find the greatest height of the tunnel.
15. (a) Find the derivative of $\log (\sin (\sqrt{\cos x}))$ with respect to x.
(b) If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$, then prove that

$$
\frac{d y}{d x}=\tan \theta
$$

16. (a) Find the derivative of

$$
\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

w.r.t. $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$.
(b) If

$$
y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

then find $\frac{d^{2} y}{d x^{2}}$.
17. (a) Find the equation of tangent and normal to the curve $y=x^{2}-3 x+2$ at $(2,0)$.
(b) The radius of a sphere is decreasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its volume is decreasing when radius is 10 cm .
18. (a) Find the dimensions of rectangle of the maximum area having a perimeter of 48 ft .
(b) Find the approximately the value of $\sqrt{50}$.

