

C14-A/AA/BM/CH/CHST/AEI/MNG/ MET/IT/TT/PCT-102

4002

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV-2015

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

(2) Each question carries **three** marks.

1. Resolve $\frac{3x}{(x-2)(x-3)}$ into partial fractions.

2. If

find $(A A^T)$.

3. Find the values of x, y and z from

- **4.** If $A + B = 45^{\circ}$, then prove that $(1 \tan A)(1 \tan B) = 2$.
- 5. Prove that

$$\frac{\cos 7A}{\sec A} \quad \frac{\sin 7A}{\csc A} \quad \cos 8A$$

* /4002

- 6. Find the real and imaginary parts of the complex number $\frac{4}{1} \frac{5i}{2i}$.
- **7.** Find the perpendicular distance of the point (3, 5) from the line $4x \quad 3y \quad 6 \quad 0$.

8. Find the centre and radius of the circle x^2 y^2 4x 6y 0.

9. Evaluate :

$$\operatorname{Lt}_{x \to 0} \frac{\log(1 - x)}{x}$$

10. Differentiate $\frac{x^8}{8} e^x \sqrt{x} 2$ with respect to x.

PART-B

10×5=50

Instructions: (1) Answer any **five** questions. (2) Each question carries **ten** marks.

11. (a) Solve

(b) Solve the following equations by matrix inversion method : $3x \ y \ 2z \ 3, \ 2x \ 3y \ z \ 3$ and $x \ 2y \ z \ 4$

12. (a) If $\cos C \quad \cos D \quad \frac{3}{7}$ and $\cos C \quad \cos D \quad \frac{5}{9}$, then show that $27 \tan \frac{C \quad D}{2} \quad 35 \cot \frac{C \quad D}{2} \quad 0$

(b) Prove that

$$\sin \frac{1}{5} \frac{3}{5} \sin \frac{1}{5} \frac{5}{13} \tan \frac{1}{5} \frac{56}{33}$$

* /4002

*

[Contd...

13. (a) In a ABC, prove that

$$\cot \frac{A}{2} \quad \cot \frac{B}{2} \quad \cot \frac{C}{2} \quad \frac{s^2}{2}$$

- (b) Solve $\sin 3 \sin \sin 7 \sin 5$.
- **14.** (a) Find the equation of the parabola with focus (3, 0) and vertex (1, 0).
 - (b) Find the equation of the ellipse whose major axis is 6 and whose eccentricity is $\frac{\sqrt{3}}{2}$, referred to its axes as the axes of coordinates.
- **15.** (a) If $y = \sqrt{\sin \sqrt{x}}$, then find $\frac{dy}{dx}$.
 - (b) Differentiate $\sin(\log x)$ with respect to $\tan(e^x)$.
- **16.** (a) If $y = \sqrt{\sec x} = \sqrt{\sec x} = \frac{1}{\sqrt{\sec x}} = \frac{1}{\sqrt{\tan x}} =$
 - (b) If $u \sin(x \ y) \log(x \ y)$, then prove that

$$\frac{\frac{2u}{x^2}}{\frac{y^2}{y^2}}$$

- 17. (a) Show that the curves $y = x^2 1$ and $y = 8x x^2 9$ touch each other at the point (2, 3). Also find the equations of common tangent and common normal at that point to the curves.
 - (b) Gas is leaking out from a spherical balloon at the rate of 2 cu. cm/sec. How fast is the surface area shrinking when the radius is 16 cm?
- **18.** (a) Find the maximum and minimum values of $2x^3 \ 9x^2 \ 12x \ 10$.
 - (b) The pressure P and the volume V of a gas are connected by the relation PV^{14} K, where K is a constant. Find the percentage increase in P if V is decreased by 1%.

3

* /4002