

C-14-A/AA/BM/CH/CHST/AEI/FW/MNG/MET/IT/TTT/PCT/PKG/PPT-102

4002

BOARD DIPLOMA EXAMINATION, (C-14)
 APRIL/MAY—2015
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART-A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Resolve $\frac{1}{(x-8)(x-11)}$ into partial fractions.
2. If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$, then find $A^{2}-3 A+2 I$, where I is the unit matrix of order 2.
3. Using Laplace expansion, evaluate the determinant $\left|\begin{array}{lll}q & r & p \\ r & p & q \\ p & q & r\end{array}\right|$.
4. Show that $\frac{\cos 11^{\circ}+\sin 11^{\circ}}{\cos 11^{\circ}-\sin 11^{\circ}}=\tan 56^{\circ}$.
5. Show that $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta$.
6. Find the mod-amplitude form of the complex number $1-i \sqrt{3}$.
7. Find the intercepts made by the straight line $3 x-2 y-2=0$ on the coordinate axes.
8. Find the equation of the circle having $(-5,1)$ and $(3,-7)$ as end points of a diameter.
9. Evaluate $\operatorname{Lt}_{x \rightarrow 1} \frac{x^{2}+5 x-6}{x^{2}+x-2}$.
10. Differentiate $\frac{a+b \cos x}{a-b \cos x}$ with respect to x.

PART-B
$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 1 & 2 \\ 2 & 0 & 5 \\ 1 & 2 & 0\end{array}\right]$, then find $A B$.
(b) Solve the system of equations $x+2 y+3 z=6,2 x+4 y+z=7$, $3 x+2 y+3 z=8$ using matrix inversion method.
12. (a) Show that $\frac{\cos 7 A+\cos 5 A}{\sin 7 A+\sin 5 A}=\cot 6 A$.
(b) Show that $\tan ^{-1} \frac{2}{3}+\tan ^{-1} \frac{3}{4}=\tan ^{-1} \frac{17}{6}$.
13. (a) Solve, $\sqrt{3} \cos \theta+\sin \theta=\sqrt{2}$.
(b) In any triangle $A B C$, prove that $\sum a^{3} \cdot \sin (B-C)=0$.
14. (a) Find the equation of parabola whose focus is $(-4,3)$ and directrix is $x+y-2=0$.
(b) Find the centre, vertices, eccentricity, foci, directrices, length of latus rectum of the hyperbola $9 x^{2}-4 y^{2}=36$.
15. (a) Find the derivative of $\cos ^{-1}\left(4 x^{3}-3 x\right)$ with respect to x.
(b) Find $\frac{d y}{d x}$, if $x^{3}+y^{3}=3 a x y$.
16. (a) If $y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\sqrt{\cdots \text { to } \infty}}}}$, then show that $\frac{d y}{d x}=\frac{\sec ^{2} x}{2 y-1}$.
(b) Verify Euler's theorem for $f(x, y)=a x^{2}+2 h x y+b y^{2}$.
17. (a) Find the lengths of the tangent, normal, sub-tangent and sub-normal to the curve $x^{2}+y^{2}-6 x-2 y+5=0$ at the point $(2,-1)$.
(b) A stone is thrown upwards vertically whose movement is governed by $S=80 t-16 t^{2}$. Find its (i) initial velocity, (ii) time, when its velocity is zero and (iii) greatest height reached.
18. (a) Find the maximum and minimum values of the function $f(x)=2 x^{3}-9 x^{2}+12 x+10$.
(b) The radius of a spherical balloon is increased by 2%. Find the approximate percentage increase in its surface area.

