C09-A-103/C09-AA-103/C09-AEI-103/C09-BM-103/ C09-CH-103/C09-CHST-103/C09-FW-103/ C09-IT-103/C09-MET-103/C09-MNG-103/

C09-PKG-103/C09-TT-103

3003

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2013 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSICS

Time: 3 hours [Total Marks: 80

PART—A

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State the limitations of dimensional analysis.
- 2. State and explain triangle law of vectors.
- **3.** A stone is dropped into a well of depth 78.4m, and the splash of sound is heard after 4.23 s. Calculate the velocity of sound. $(g=9.8\text{m/s}^2)$
- 4. Write any three advantages of friction.
- **5.** Define simple harmonic motion and state at least two examples.
- 6. State the two laws of thermodynamics.
- **7.** What are beats? State any two applications.
- 8. Define stress and write its dimensional formula.
- 9. Define magnetic induction field strength. What is its SI unit?
- **10.** Write any three applications of optical fibres.

PART-B

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

4

- **11.** (a) Define 'dot product' and 'cross product' of two vectors.
 - (b) Write any three characteristics of scalar product.
 - (c) Find the area of triangle formed by $A = 3\hat{i} + 4\hat{j}$ and $B = 4\hat{i} + 3\hat{j}$.

/**3003** 1 [Contd...

C09-A-103/C09-AA-103/C09-AEI-103/C09-BM-103/ C09-CH-103/C09-CHST-103/C09-FW-103/ C09-IT-103/C09-MET-103/C09-MNG-103/ C09-PKG-103/C09-TT-103

12.	(a) (b)	Define an oblique projectile. Give any two examples. Derive the equation of a resultant velocity of a projectile in oblique projection.	3 7
13.	(a) (b)	State the law of conservation of energy and prove it in the case of a freely falling body. Deduce the relation between momentum and kinetic energy of a moving body.	7
14.	(a) (b)	Derive an expression for the time period of oscillation of simple pendulum. A body is executing SHM with an acceleration of $0.4~\text{m/s}^2$ at a displacement of $0.6~\text{m}$. Find its acceleration at a displacement of $0.4~\text{m}$.	6
15.		Derive C_p C_v R . A gas at 27°C has its temperature raised so that its volume is doubled. The pressure remaining constant. What is the final temperature?	6
16.	(a) (b)	What is Doppler effect? Derive the expression for apparent frequency of sound while source is moving away from the stationary observer. A fire engine with its bell ringing with a frequency of 285 Hz is moving with a velocity of 54 kmph towards an observer at rest near a hut on fire. What is the apparent frequency of sound heard by the observer? Velocity of sound in air is 340 m/s.	6
17.	(a) (b)	Define surface tension and explain how surface tension is experimentally determined by capillary method. What is the effect of temperature on viscosity of liquids and gases?	8
18.	` '	State Kirchhoff's laws. Explain the principle and explain the experimental determination of unknown resistance.	3 7

* * *