

C09-A-102/C09-AA-102/C09-AEI-102/C09-BM-102/ C09-CH-102 / C09-CHST-102/C09-FW-102 / C09-IT-102/C09-MET-102/C09-MNG-102 / C09-PKG-102/C09-TT-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2014
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time : 3 hours]

PART—A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Solve the equation $x^{2}-3 x+5=0$.
2. Simplify $x-[2 x-\{3 y-(4 z-2 x)\}]$ by removing the brackets.
3. Resolve $\frac{3}{(x-1)(x+2)}$ into partial fraction.
4. Prove that $\frac{\cot A-\tan A}{\cot A+\tan A}=\cos 2 A$.
5. Express $\sqrt{3}+i$ in the modulus amplitude form.
6. If $A+B+C=90^{\circ}$, prove that

$$
\tan A \cdot \tan B+\tan B \cdot \tan C+\tan C \cdot \tan A=1
$$

7. Find the equation of the straight line making intercepts $\frac{3}{7}$ and $\frac{4}{9}$ with the X and Y-axis respectively.
8. Find the equation of the circle with centre at $(-3,-2)$ and radius 7 .
9. Evaluate : $\operatorname{Lt}_{x \rightarrow 2} \frac{x^{2}+4 x+3}{x^{2}-2 x+1}$
10. Differentiate $e^{4 x^{2}}$ with respect to x.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. Solve the equation:

$$
\begin{array}{r}
x+y+z=6 \\
x-y+z=2 \\
2 x+y-z=1
\end{array}
$$

using matrix inverse method.
12. (a) Solve : $\sin 6 \theta+\sin 2 \theta-\sin 4 \theta=0$
(b) In any $\triangle A B C$, prove that $\sin A+\sin B+\sin C=\frac{s}{R}$
13. (a) Show that $\frac{\cos 15 A+\cos 5 A}{\sin 15 A+\sin 5 A}=\cot 10 A$.
(b) Show that $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{6}{17}$.
14. (a) Find the equation of parabola whose focus is $(-1,1)$ and directrix $x+y+1=0$.
(b) Find the centre, vertices, eccentricity, foci, equations of directrices and lengths of latus rectum of the ellipses represented by the equation $4 x^{2}+9 y^{2}=36$.
15. (a) Find the equation of hyperbola with centre at origin, y-axis as the conjugate axis and it is of length 8 and passing through the point $(6,4)$.
(b) Find the distance between the points $(2,-1,4)$ and $(-2,1,3)$.
16. (a) If

$$
y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\cdots \text { to } \infty}}}
$$

show that $\frac{d y}{d x}=\frac{\sec ^{2} x}{2 y-1}$.
(b) Find $\frac{d^{2} y}{d x^{2}}$, if $y=a \cos (\log x)$.
17. (a) A wire of length 20 cm is bent to form a rectangle. Find the maximum area the rectangle encloses.
(b) If the percentage error in the side of an equilateral triangle is 3.5%, find the absolute error and percentage error in its area when the side is measured as $6 / \sqrt{3} \mathrm{~cm}$.
18. (a) Find the angle between the curves $y^{2}=4 x$ and $x=y-1$ at any point of intersection.
(b) A circular plate of metal expands by heat so that its radius increases at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$. At what rate is the surface increasing when the radius is 2 cm ?

