

C09-A-102/C09-AA-102/C09-AEI-102/C09-BM-102/ C09-CH-102 / C09-CHST-102/C09-FW-102 / C09-IT-102/C09-MET-102/C09-MNG-102 / C09-PKG-102/C09-TT-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2013
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I
Time : 3 hours]

PART—A
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve the equation $5 x^{2}+11 x=12$.
2. Simplify $(a+b+c)-(b-a+c)+(c-a-b)-(b-c-a)$ by removing the brackets.
3. Resolve $\frac{3 x+1}{(x+1)(x-1)}$ into partial fractions.
4. Show that $\frac{\tan 2 A}{1+\sec 2 A}=\tan A$

C09-A-1 02 / C09-AA-102 / C09-AEI-1 02 / C09-BM-102 / C09-CH-102 / C09-CHST-1 02 / C09-FW-1 02 / C09-IT-102 /C09-MET-102 / C09-MNG-102 / C09-PKG-102/C09-TT-102

5. Express $\left(\frac{3+i}{3-i}\right)^{2}$ in the form of $a+i b$.
6. Prove that $\tan 8 A-\tan 6 A-\tan 2 A=\tan 8 A \cdot \tan 6 A \cdot \tan 2 A$.
7. Find the equation of the straight line passing through the points $(0,1)$ and $(3,-4)$.
8. Find the centre and radius of the circle $x^{2}+y^{2}-7 x+8 y-1=0$.
9. Differentiate $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ with respect to x.
10. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin 47 x}{\tan 11 x}$.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Using Laplace expansion, evaluate

$$
\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|
$$

(b) Find the inverse of the matrix

$$
\left[\begin{array}{ccc}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3
\end{array}\right]
$$

12. (a) Show that $\frac{\sin 3 A \sin 7 A+\sin A \sin 11 A}{\sin 3 A \cos 7 A+\sin A \cos 11 A}=\tan 8 A$.
(b) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$, prove that $x y+y z+z x=1$.
13. (a) Solve $\cos 5 \theta+\cos \theta=\cos 3 \theta$.
(b) In any $\triangle A B C$, prove that

$$
\frac{b-c}{a}=\frac{\sin \left(\frac{B-C}{2}\right)}{\cos \frac{A}{2}}
$$

14. (a) Find the equation of the parabola whose axis is parallel to X-axis and passing through the points $(2,0),(3,4)$ and $(0,2)$.
(b) Find the equation of the ellipse whose foci are $(0,4)$ and $(0,-4)$ with eccentricity $e=\frac{1}{3}$.
15. (a) Find the equation of the conic whose focus at $(-1,1)$ and directrix $x-4 y+3=0$ with eccentricity 2 .
(b) Find the equation of the plane passing through the point $(4,0,1)$ and parallel to the plane $4 x+3 y-12 z+6=0$.
16. (a) Differentiate $(\sin x)^{\cos x}$ with respect to x.
(b) If $x=t^{4}-5, y=t^{7}+6$, find $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{1}{2}$.

C09-A-1 02 / C09-AA-102 / C09-AEI-1 02 /C09-BM-102 / C09-CH-102 / C09-CHST-1 02 / C09-FW-1 02 / C09-IT-102 /C09-MET-102 / C09-MNG-102 / C09-PKG-102/C09-TT-102

17. (a) Show that the square has the smallest perimeter of all the rectangles of given area.
(b) The side of an equilateral triangle increases by 3%. Find the rate at which its area increases when the side is $20 / \sqrt{3} \mathrm{~cm}$. Also find the percentage increase in its area approximately.
18. (a) Find the lengths of tangent, normal, subtangent and subnormal to the curve $3 y=x^{2}-6 x+17$ at $(4,3)$.
(b) A stone is thrown upwards vertically whose movement is governed by $s=80 t-16 t^{2}$. Find its-
(i) initial velocity;
(ii) time when velocity is zero;
(iii) greatest height reached.
