C20-COMMON-301

7245

BOARD DIPLOMA EXAMINATION, (C-20)

FEBRUARY/MARCH – 2022

THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - II

Time: 3 hours]

PART—A

[Total Marks : 80

3×10=30

Instructions: (1) Answer all questions.

- (2) Each question carries **three** marks.
- 1. Evaluate $\int (3x^2 + 2x + 5)dx$
- **2.** Evaluate $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$
- **3.** Evaluate $\int x \cos x \, dx$

4. Evaluate
$$\int \frac{e^{\sin^2 x}}{\sqrt{1-x^2}} dx$$

5. Evaluate
$$\int_{0}^{1} (x^{3} + 1) dx$$

- 6. Find the mean value of $f(x) = x^2 + 3$ over the interval [0,1].
- 7. Find the volume of the solid of revolution generated by revolving the area between the curve $y = \sqrt{x}$ about x-axis between x = 2 and x = 4.
- **8.** Find the differential equation for $y = a \sin 3x$.

/7245

9. Solve
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$

10. Solve $\frac{dy}{dx} = e^{2x+y}$

PART—B

8×5=40

Instructions : (1) Answer **all** questions.

(2) Each question carries **eight** marks.

11. (a) Find
$$\int \frac{1}{\sqrt{x^2 + 2x + 3}} dx$$

(OR)

(b) Evaluate
$$\frac{1}{5+4\sin x}$$

12. (a) Evaluate
$$\int \frac{1}{(x+1)(x+2)} dx$$

(b) Find $\int x \tan^1 x \, dx$

13. (a) Evaluate
$$\int_0^1 \frac{\cos^{-1} x}{\sqrt{1-x^2}} dx$$
 (OR)

(b) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sin^{20} x}{\sin^{20} x + \cos^{20} x} dx$$

k

14. (a) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by the method of integration.

(OR)

(b) Find the R.M.S value of $\sqrt{16-3x^2}$ between x = 0 and x = 2.

/7245

15. (a) Find the volume of a right circular cone of height 'h' and base radius 'r' using integration.

(OR)

(b) Obtain the value of $\int_0^6 \frac{dx}{1+x^2}$ using Trapezoidal rule by taking n = 6.

PART-C

 $10 \times 1 = 10$

Instructions : (1) Answer the following question.

- (2) The question carries ten marks.
- **16.** Solve $\frac{dy}{dx} = \frac{y}{x} + \cos^2\left(\frac{y}{x}\right)$

 $\star \star \star$