C16-EE-303

6239

BOARD DIPLOMA EXAMINATION, (C-16)

AUGUST/SEPTEMBER—2021

DEEE - THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time: 3 hours]

[Total Marks: 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** State the methods for measurement of high resistances.
- **2.** Define the terms (*a*) branch, (*b*) Loop and (*c*) Junction.
- **3.** State Kirchhoff's laws.
- **4.** State superposition theorem.
- **5.** Define the terms (*a*) instantaneous value, (*b*) cycle and (*c*) time period of an alternating quantity.
- **6.** Derive the relation between voltage and current in a pure capacitive circuit when AC supply is applied.

[Contd...

- **7.** Define series resonance and state the expression for resonance frequency.
- **8.** Two circuits having impedances of $Zl = (6 + j8)\Omega$ and $Z2 = (10 j8)\Omega$ are connected in parallel across an AC supply. Calculate the admittance of the combination.
- **9.** Write the relation between line and phase values of current and voltage in 3-phase *(i)* star connected circuit and *(ii)* delta connected circuit.
- **10.** List any three advantages of 3-phase system over single phase system.

PART—B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- Explain the method of measurement of earth resistance using earth megger with a diagram.
 10
- **12.** (a) Derive an equation for transformation of delta-connected resistance into star-connected resistance.
 - (b) Determine the resistance between the terminals A and B for the circuit shown in the figure.

[Contd...

5

5

13. (a) Find the current in the load resistance R_{L} of the circuit shown below using Norton's theorem.

- (b) Derive the relation between the line current and phase current for a balanced delta connected system.
- (a) Derive an expression for average value of a sinusoidal varying 14. quantity.
 - (b) Derive the expression for RMS value of a sinusoidal varying quantity.
- 15. A series RLC circuit consists of resistor of 100Ω , inductor of 0.31 H and a capacitor of unknown value when this is energized by $230\angle 0^\circ$, 50 Hz sinusoidal supply, the current was found to be $1.5\angle 60^{\circ}$ amperes. Find (a) value of capacitor, (b) voltage across the inductor and (c) total power consumed.
- 16. (a) The current flowing through a pure inductor is 20 A. Find the inductance and power consumption when the voltage applied across the inductor is $V = 200 \sin 314t$.
 - (b) In a series RLC series circuit, $R=0.5\Omega$, L=100 mH, C=25 μ F. Determine the resonance frequency and the corresponding input current when a supply voltage of 30V is applied to the circuit.

/6239

3

5

5

5

10

5

5

5

17. For the network shown in the figure, determine :

- (a) The total impedance and admittance.
- (b) The total current.
- (c) The current in each branch.
- (d) The pf of the whole network.
- (e) Active and reactive power.

18. A 3-phase balanced load consists of resistance 100Ω and inductive reactance of 200Ω per phase. Determine line current, power factor and power when they are connected to 440V supply (*a*) star and (*b*) delta.

 $\star \star \star$

10