C16-EE-303

6239

BOARD DIPLOMA EXAMINATION, (C-16)
 MARCH/APRIL—2021

 DEEE - THIRD SEMESTER EXAYMINATION

 DEEE - THIRD SEMESTER EXAYMINATION
 ELECTRICAL CLfeUITS

Time : 3 hours]

(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall Fót exceed five simple sentences.

1. List methods of measurement of medium resistance.
2. state Kirchhoff's Laws.
3. ${ }^{2}$ Three resistances of $4 \Omega, 6 \Omega$ and 8Ω are connected in delta, find the j. equivalent star connected resistances.
\& 4. State maximum power transfer theorem.
4. Derive the relation between poles, speed and frequency.
5. Show that the average power consumed in a pure inductor is zero.
6. Define Q -factor of series resonant circuit.
7. Compare the series and parallel resonance circuits in three aspects.
8. Define the poly-phase and draw 3-phase waveforms.
9. State the relation between line and phase values of delta connected network.

PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. Explain the construction and working of meger with a neat diagram. 10
12. For the circuit shown in Fig., find the loop currents by using loop analysis method.

13. (a) $\cdot{ }^{2}$ State and explain superposition theorem.

A balanced 3-phase star connected load of 80 kW at a power factor of 0.8 lagging is connected across a $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the circuit constants of load per phase.
14. (a) An alternating current ' i ' is given by $i=141.4 \sin 314 t$. Find (i) maximum value, (ii) frequency, (iii) time period and (iv) instantaneous value when t is 3 ms .
(b) Convert the following polar to rectangular or rectangular to polar :
(i) $200\left\llcorner 30^{\circ}\right.$ (ii) $16+j 12$
15. A 4Ω resistance connected in series to a 10 mH inductance across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find (i) impedance (ii) current (iii) voltage drop across resistance and inductance, (iv) power factor (v) phase angle between V and I, (vi) total power supplied.
16. A coil of resistance 40Ω and inductance 0.75 H forms part of series circuit for which the resonant frequency is 55 Hz . If the supply is $250 \mathrm{~V}, 50 \mathrm{~Hz}$, find (i) line current, (ii) power, factor of total circuit and coil, (iii) voltage across the coil.
17. Two impedances $Z_{1}=(5+j 10) \Omega$ and $Z_{2}=(10-j 15) \Omega$ are connected in parallel. If the total current surplied to the combination is 20 A , find (i) voltage applied, (ii) powep factor and (iii) power dissipated in each branch.
18. (a) A balanced delta connected load $(10+j 10) \Omega$ per phase is connected to ashase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the line current, poyer factor and power drawn.
(b) Derive theyormula for measurement of 3-phase power by using two wat-meters.

