6239

BOARD DIPLOMA EXAMINATIONS

OCT/NOV-2019

DEEE- THIRD SEMESTER

ELECTRICAL CIRCUMS

Time: 3 hours

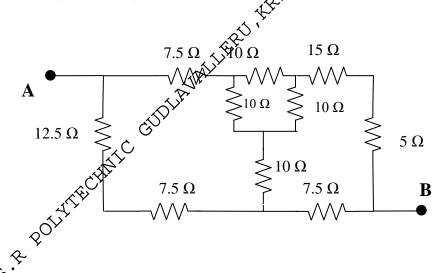
Max. Marks: 80

PAR

 $3 \times 10 = 30$

- Instructions: 1. Answer all questions
 - 2. Each question Xarries Three Marks.
 - 3. Answer should be brief and straight to the point and should not exceed five simple sentences.
- 1. Differentiate between series ohmmeter and shunt ohmmeter in three aspects.
- Define the terms: (a) active circuit (b) passive circuit. 2.
- Three resistances of 6 Ω , 10 Ω and 15 Ω are connected in star, find the 3. equivalent delta connected resistances
- State Thevenin's theorem.
- Define average value of sinusoidal voltage and give the formula.
- . A. H. M. 4.5. J. Define and give the relation for resonance frequency in RLC series circuit.
 - 7. Show that the average power consumed in a pure capacitor is zero.
 - Define Q- factor of an RLC parallel circuit. 8.
 - 9. List any three advantages of poly-phase system over single phase system.
 - 10. Show that the line voltage in 3-phase star connected system is equal to $\sqrt{3}$ times phase voltage.

[Cont...,


1

PART - B

5 X 10 = 50

Instructions: 1. Answer any Five questions

- 2. Each question carries **TEN** Marks.
- 3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.
- ^{11.} Explain the construction and working of basic potentiometer with a neat sketch. \checkmark
- 12. Find the equivalent resistance between the terminals A and B of the network shown in Fig. by using star/delta transformation.

13. a State and explain Maximum Power Transfer theorem.

ふ・b) A balanced 3-phase delta connected load of 150 KW takes a lagging current of 100 A with line voltage of 1100 V, 50 Hz. Find the circuit constants of the load per phase.

2

[Cont..,

A. A.

14. a) An alternating current is represented by $i = 50 \sin 314 t$. Determine

(i) Average value	(ii) RMS value
-------------------	----------------

(iii) Peak factor (iv) Form factor.

b) Perform the following, where $I_1 = 80 \angle -30^\circ$, $I_2 = 60 \angle 45^\circ$ and

- $V_s = 200 \angle 0^0$ i) $I_1 + I_2$ ii) $\frac{V_S}{I_{1+I_2}}$ 15. A capacitor of 20 μF is connected in Series with a resistor of 120 Ω across a 200 V, 50 Hz supply. Calculate i) Impedançé ii) Cu Voltage across resistor and capacitor A.H.M. & J. J. P. G. P. A. M. M. & J. J. P. G. P. A. M. M. & J. J. P. G. iv) Power factor and phase angle v) Power absorbed in the circuit.
 - 16. A coil of resistance 2 Ω and inductance of 0.01 H is connected in series with a capacitor across 200 V supply. Determine the value of capacitance that would produce resonance at a frequency of 50 Hz.

Also find i) Current at resonance

ii) Voltage across the coil and

iii) Voltage across capacitor.

- A coil having a resistance of 20Ω and an inductance of 0.07 H is connected in 17. parallel with a capacitor of 60μ F, which is in series with a resistor of 50Ω . Calculate the total current and phase angle when this combination is connected across 200 V, 50 Hz supply.
- 18. a) A three phase delta connected load has $(\mathfrak{S} \mathfrak{F}^{\mathsf{T}} \mathfrak{I} \mathfrak{S}) \Omega$ impedance per phase. The load is connected to a 400 V, 3-phase, 50 Hz supply. If two watt meters are used for the measurement of power, find their readings. b) Three coils, each having a resistance of 20 Ω and an inductive reactance of 15Ω are connected in star to 400 V, 3- phase, 50 Hz supply. Calculate a) kine current,

A.A. M.M. & J. J. R. S. R. A. A. M. & J. J. R. S. R. S b) Power factor and

c) Power supplied.