C16-EE-303

6239

BOARD DIPLOMA EXAMINATION, (C-16)

JANUARY/FEBRUARY-2022

DEEE - THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time: 3 hours]

[Total Marks : 80

PART—A

3×10=30

- **Instructions**: (1) Answer **all** questions.
 - (2) Each question carries three marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
 - **1.** Classify the resistance into low, medium and high values, give examples for each.
 - **2.** Define active and passive elements with example.
 - **3.** State Kirchhoff's laws.
 - **4.** State Thevenin's theorem.
 - **5.** Define (a) Time period, (b) Peak factor and (c) Instantaneous value.
 - **6.** Show that the average power consumed in a pure capacitor is zero.
 - **7.** Define Q factor of series resonant circuit.

/6239

[Contd...

- 8. Why a parallel resonant circuit is called as rejector circuit?
- **9.** List the advantages of polyphase system over a $1-\phi$ system.
- **10.** State the relation between line and phase values voltage and current of delta connected network.

PART—B

Instructions :	(1) Answer any five questions.	

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.

/6239	2 [Co.	ntd
	(iii) Peak factor	
	(ii) Form factor	
	(i) Frequency	
	(b) Find the following parameters of a voltage $V = 200 \sin 314t$:	6
	<i>(ii)</i> 100∠45°	
	(<i>i</i>) $3 - 6j$	
14.	<i>(a)</i> Convert the following rectangular to polar OR polar to rectangular form :	4
	find <i>(i)</i> Total active power and <i>(ii)</i> reactive power.	5
	(b) A balanced star connected load of $(4 + 3j)\Omega$ per phase is connected to a balanced 3 phase 400 V supply. If the phase current is 12 A, find (i) Total active power and (ii) reactive power	5
	theorem.	5
13.	(a) State Superposition theorem and Maximum Power Transfer	_
12.	Develop transformation formulae for Star- Delta transformation.	10
11.	Explain the construction and working of basic potentiometer with a neat sketch.	10

- **15.** An inductive coil having a resistance of 15Ω takes a current of 4 A when connected to a 100 V, 60 Hz supply. If the coil is connected to a 100 V, 50 Hz supply, calculate *(a)* The current, *(b)* power and *(c)* power factor. Draw the vector diagram for the 50Hz condition.
- 16. A 5μ F condenser is connected in series with a coil has an inductance of 50 mH. Determine the frequency of resonance, the resistance of the coil if a 50 V source operating at resonance frequency causes a circuit current of 10 mA. What is the Q factor and power loss of the coil? Also calculate the voltage across the capacitor and the coil at resonance.
- **17.** Two impedances $Z_1 = (5+10j)\Omega$ and $Z_2 = (10-15j)\Omega$ are connected in parallel. If the total current supplied to the combination is 20 A, find (a) voltage applied, (b) power factor and (c) power dissipated in each branch.
- 18. (a) A balanced 3-phase delta connected load of 80 kW at a power factor of 0.8 leading is connected across a 400 V, 50 Hz supply. Find the circuit constants of load per phase.
 - (b) The power input to a 3-phase induction motor is read by two wattmeters. The readings are 860 W and 240 W. What is the power factor of the motor?

* * *

10

10

6

4