

6040

BOARD DIPLOMA EXAMINATION, (C-16)

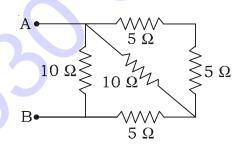
JANUARY/FEBRUARY—2022

DEEE - FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time: 3 hours [Total Marks: 80

PART—A


 $3 \times 10 = 30$

- **Instructions:** (1) Answer **all** questions.
 - (2) Each question carries three marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
 - List any three merits of electrical energy over other types of energy. 1.
 - 2. Define temperature coefficient of resistance and give its unit.
 - 3. Define (a) electrical power and (b) electrical energy and mention their units.
 - 4. Define thermal efficiency and mention the specific heat of water in SI system.
 - Draw the magnetic field patterns due to (a) straight current carrying conductor and (b) solenoid.
 - 6. Define (a) reluctance and (b) magnetic flux density and mention their units.
 - State Fleming's right hand rule and where it is applied. **7**.
 - 8. Calculate the energy stored in a coil having a self-inductance of 0.6 mH, when a current through the coil rises from 0 to 5A.
 - 9. State coulomb's laws of electrostatics.
 - 10. Define capacitance and state formula for the capacitance of parallel plate capacitor.

PART—B

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **11.** (a) Derive an expression for resistance at any temperature as $R_t = R_0(1 + a_0 t)$.
 - (b) A copper coil has a resistance of $25\,\Omega$ at $20\,^{\circ}\text{C}$ and $28.225\,\Omega$ at $50\,^{\circ}\text{C}$. Find (i) temperature co-efficient at $0\,^{\circ}\text{C}$ and (ii) resistance of the coil at $0\,^{\circ}\text{C}$.
- **12.** (a) Derive an expression for equivalent resistance when three resistors are connected in parallel.
 - (b) Find the equivalent resistance of the circuit (R_{AB}) shown in fig. below:

- 13. Calculate the bill of electricity charges for the following loads fitted in an electrical installations:
 - (a) 10 lamps 60 W each working 5 hours a day
 - (b) 5 ceiling fans 120 W each working 10 hours a day
 - (c) 2 kW heater working 4 hours a day
 - (d) 2 HP motor with efficiency 80% working 4 hours a day

Calculate the monthly bill for February 2020 at 50 paise/unit, if the meter rent per month is ≥ 5 .

4

6

14.	٠,	List any four merits of CFL and LED lamps over incandescent ups from power consumption point of view.	4
	(b)	Explain the working of (i) electric iron and (ii) metal filament la with neat sketches.	amp 3+3
15.	an uni req Ass	ing made up of iron has a cross-sectional area of 4.91 cm ² . It has air gap of 1 mm wide and a net iron path of 94.15 cm. It is formly wound with 500 turns of wire. Calculate the current uired by the exciting coil to produce a total flux of 4 mwb. tume a relative permeability of iron is 800. Neglect leakage and ging.	10
16.	(a)	Derive an expression for self and mutual inductance.	3+3
	(b)	Explain dynamically induced e.m.f.	4
17.	(a)	Derive an expression for equivalent inductance when two inductances are connected in series-opposing.	5
	(b)	The equivalent inductance of two identical coils connected in series is 4 H and 0.8 H. Determine the self-inductance of each coil and the coefficient of coupling.	5
18.	(a)	Derive an expression for the energy stored in a capacitor.	6
	(b)	Two capacitors of 4 μF and 6 μP are connected in series across a 100 V DC supply. Find the total energy stored in them.	4

 \star \star \star