BOARD DIPLOMA EXAMINATION

JUNE - 2019

COMMON FIRST YEAR EXAMINATION **ENGINEERING MATHEMATICS - I**

Time: 3Hours Max. Marks: 80

 $\overline{PART - A}$

 $10 \times 3 = 30$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed **FIVE** simple sentences

 (1) Resolve $\frac{6x^2 + 5x 2}{2x^3 x^2 x}$ into Partial Fractions
- (2) If $A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$ then find $A^2 + 2 + 3I$
- (3) Find the determinant of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 2 \\ 1 & -1 & -3 \end{bmatrix}$
- (4) Prove the $\cos^2 75^o \cos^2 15^o = \frac{-\sqrt{3}}{2}$
- (5) Show that $\sin 8\theta = 8 \sin \theta \cos \theta \cos 2\theta \cos 4\theta$ 4
- (6) Find the modules of the complex number $\frac{7+i}{3-4i}$
- (7) Find the intercepts made by the line 13x + 7y + 11 = 0 on the co-ordinate axes
- (8) Find the equation of the straight line passing through the point (1, 2) and parallel to the line 3x + 4y - 6 = 0

/6035

(9) Evaluate
$$\lim_{x\to a} \left(\frac{(x+3)^{\frac{5}{2}} - (a+3)^{\frac{5}{2}}}{x-a} \right)$$

(10) Differentiate $e^{3x}sec\ x$ with respect to x

$$\boxed{PART - B} \qquad \qquad 5 \times 10 = 50$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
- (11) Solve the equations x + y + z = 6, x y + z = 2 and 2x + y z = 1 using matrix inversion method

using matrix inversion method

(12) (a) Prove that
$$\cos 40^{o} + \cos 80^{o} + \cot 160^{o} = 0$$

(b) If $\cot^{-1}\left(\frac{1}{x}\right) + \cot^{-1}\left(\frac{1}{y}\right) + \cot^{-1}\left(\frac{1}{z}\right) = \frac{\pi}{2}$ then show that $xy + yz + zx = 1$

(13) (a) Solve the equation $\cot \theta + \csc \theta = \sqrt{3}$

(b) In a $\Delta^{l}\Delta BC$ if $b + c = 3a$ then prove that $\cot\left(\frac{B}{2}\right) \cdot \cot\left(\frac{C}{2}\right) = 2$

(b) In a
$$\Delta^{l} \stackrel{Q}{\rightleftharpoons} ABC$$
 if $b+c=3a$ then prove that $\cot\left(\frac{B}{2}\right) \cdot \cot\left(\frac{C}{2}\right)=2$

(14) (a) \checkmark ind the equation of the circle with (2, 1) and (-4, 3) as end points of a diameter \checkmark

2

(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^2}{4} + \frac{y^2}{36} = 1$

(15) (a) Find
$$\frac{dy}{dx}$$
, if $y = \cot^{-1}\left(\frac{\sin 2x}{1 - \cos 2x}\right)$

(b) If
$$y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}$$
 then find $\frac{dy}{dx}$

(16) (a) Find
$$\frac{d^2y}{dx^2}$$
, if $x = at^2$, $y = 2at$

(b) If
$$u(x, y) = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial Q}{\partial y} = \tan u$

- Lead so that its radius increases at the rate of $1.5\ cm/sec$.

 Lead of its argument the radius is $12\ cm$ Lead of two numbers is 2^{12} . Find them so that the sum of their squares is minimum

 (b) The side of a square plate is increased by 0.1%. Find the approximate percentage increase in its area (17) (a) Find the equations of tangent and normal to the curve x² + y² - 6x - 2y + 5 = 0 at the point (2, -1)
 (b) A circular metal expands by heat so that its radius increases at the rate of 1.5 cm/sec. Find the rate of increase of its area when the radius is 12 cm
 (18) (a) The sum of two.

3

/6035