4467

BOARD DI PLOMA EXAMI NATI ON, (C-14)
 MARCH / APRI L- 2019

DEEE - FOURTH SEMESTER EXAMI NATI ON

ELECTRICAL ENGINEERING DRAWING

Time: 3 Hours]

[Max.Marks: 60

PART-A

$4 \times 5=20 M$
Instructions: 1) Answer all questions.
2) Each question carries five marks.

1) Draw the graphical symbols for
(a) Earth
(b) Power Factor Meter
(c) Ceiling Fan
(d) Buzzer
(e) Fault
2) Draw the wiring diagram of Star/Delta Starter. 5M
3) Draw the sketch of Bulk Oil Circuit Breaker and label the parts. 5M
4) Draw the sketch of 132 KV Single Circuit Steel Tower. 5M

PART-B

$2 \times 20=40 \mathrm{M}$
Instructions: 1) Answer any two quesions.
2) Each question carries twenty marks
5) (a) Draw the Sectional End View of 4 pole DC Machine with the following dimensions
Shaft Diameter $\quad=30 \mathrm{~mm}$ at Bearing and 35 mm at Center
$\begin{array}{ll}\text { Outer Diameter of Armature } & =160 \mathrm{~mm} \\ \text { Number of Armature Slots } & =32-\text { Semi Closed Rectangle type }\end{array}$
Size of Armature Slot $=14 \times 8 \mathrm{~mm}$
Height of Pole including Pole Shoe $=33 \mathrm{~mm}$
Height of Pole Shoe $\quad=11 \mathrm{~mm}$
Pole Pitch Ratio $=0.6$
Outer Diameter of Yoke $=280 \mathrm{~mm}$
Thickness of Yoke $\quad=25 \mathrm{~mm}$
Height of Foot Rest $=18 \mathrm{~mm}$
Distance between Foot Rest Bolt Holes $=185 \mathrm{~mm}$
Total Distance at Foot Rest $\quad=220 \mathrm{~mm}$ 10M
(Assume any missing data in proportionate with the above dimensions)
(b) Draw the Winding diagram of 36 Slot 6 Ploe single Layer Lap Wound DC Machine
6) (a) Draw the Sectional End View and Elevation of Three Phase, Three Stepped Core type Transformer with the following dimensions.

Core Circle Diameter
Spacing between Core Centers
LT Winding Inner Diameter
LT Winding Outer Diameter
HT Winding Inner Diameter
HT Winding Outer Diameter
Height of Core
Height of Yoke
Height of Bakelite Rings
$=240 \mathrm{~mm}$
$=420 \mathrm{~mm}$
$=250 \mathrm{~mm}$
$=300 \mathrm{~mm}$
$=340 \mathrm{~mm}$
$=410 \mathrm{~mm}$
$=1000 \mathrm{~mm}$
$=250 \mathrm{~mm}$
$=50 \mathrm{~mm}$
10M
(Assume any missing data in proportionate with the above dimensions)
(b) Draw the Sectional End View of Three Phase Squirrrel cage Induction Motor with the following dimensions.

Shaft Diameter at Bearing	$=50 \mathrm{~mm}$
Shaft Diameter at Center	$=55 \mathrm{~mm}$
Outer Diameter of Rotor Stampings	$=180 \mathrm{~mm}$
Number of Rotor Slots	$=31-$ Semi Closed Circle
Size of Rotor Slots	$=8 \mathrm{~mm}$
Number of Air-Ducts in Rotor	$=4$
Inner Diameter of Stator Stampings	$=184 \mathrm{~mm}$
Outer Diameter of Stator Stampings	$=240 \mathrm{~mm}$
Number of Stator Slots	$=36-0 p e n e d$
Size of Stator Slot	$=16 \times 8 \mathrm{~mm}$
Thickness of Stator Frame	$=30 \mathrm{~mm}$
Number of Air-Ducts in Stator Fram	$=8$
Height of Foot Rest	$=30 \mathrm{~mm}$
Distance between Foot Rest Bolt Holes	$=200 \mathrm{~mm}$
Total Distance at Foot Rest	$=260 \mathrm{~mm}$

(Assume any missing data in prpportionate with the above dimen sions)
7. (a) Draw the sketch of 11 kV/400 V Pole Mounted Substation and label the parts.

10M
(b) Draw the sketch of Substation Earthing and label the parts 10M

